Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Radiotherapy | Research

Radiation treatment planning with embedded dose escalation

Authors: William T. Hrinivich, Todd R. McNutt, Jeffrey J. Meyer

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Heterogeneous target doses are a common by-product from attempts to improve normal tissue sparing in radiosurgery treatment planning. These regions of escalated dose within the target may increase tumor control probability (TCP). Purposely embedding hot spots within tumors during optimization may also increase the TCP. This study discusses and compares five optimization approaches that not only eliminate homogeneity constraints, but also maximize heterogeneity and internal dose escalation.

Methods

Co-planar volumetric modulated arc therapy (VMAT) plans were produced for virtual spherical targets with 2–8 cm diameters, minimum target dose objectives of 25 Gy, and objectives to minimize normal tissue dose. Five other sets of plans were produced with additional target dose objectives: 1) minimum dose-volume histogram (DVH) objective on 10% of the target 2) minimum dose objective on a sub-structure within the target, and 3–5) minimum generalized equivalent uniform dose (gEUD) objectives assuming three different volume-effect parameters. Plans were normalized to provide equivalent maximum OAR dose and were compared in terms of target D0.1 cc, ratio of V12.5 Gy to PTV volume (R50%), monitor units per 5 Gy fraction (MU), and mean multi-leaf collimator (MLC) segment size. All planning approaches were also applied to a clinical patient dataset and compared.

Results

Mean ± standard deviation metrics achievable using the baseline and experimental approaches 1–5) included D0.1 cc: 27.7 ± 0.8, 64.6 ± 10.5, 56.5 ± 10.3, 48.9 ± 5.7, 44.8 ± 5.0, and 37.4 ± 4.5 Gy. R50%: 4.64 ± 3.27, 5.15 ± 2.32, 4.83 ± 2.64, 4.42 ± 1.83, 4.45 ± 1.88, and 4.21 ± 1.75. MU: 795 ± 27, 1988 ± 222, 1766 ± 259, 1612 ± 112, 1524 ± 90, and 1362 ± 146. MLC segment size: 4.7 ± 1.6, 2.3 ± 0.7, 2.6 ± 0.8, 2.7 ± 0.7, 2.7 ± 0.8, and 2.8 ± 0.8 cm.

Conclusions

The DVH-based approach provided the highest embedded doses for all target diameters and patient example with modest increases in R50%, achieved by decreasing MLC segment size while increasing MU. These results suggest that embedding doses > 220% of tumor margin dose is feasible, potentially improving TCP for solid tumors.
Literature
1.
go back to reference Liu FF, Okunieff P, Bernhard EJ, Stone HB, Yoo S, Norman Coleman C, Vikram B, Brown M, Buatti J, Guha C. Lessons learned from radiation oncology clinical trials. Clin Cancer Res. 2013;19:6089–100.CrossRef Liu FF, Okunieff P, Bernhard EJ, Stone HB, Yoo S, Norman Coleman C, Vikram B, Brown M, Buatti J, Guha C. Lessons learned from radiation oncology clinical trials. Clin Cancer Res. 2013;19:6089–100.CrossRef
2.
go back to reference Monz M, Küfer KH, Bortfeld TR, Thieke C. Pareto navigation - Algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol. 2008;53:985–98.CrossRef Monz M, Küfer KH, Bortfeld TR, Thieke C. Pareto navigation - Algorithmic foundation of interactive multi-criteria IMRT planning. Phys Med Biol. 2008;53:985–98.CrossRef
3.
go back to reference Grégoire V, Mackie TR. State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report no. 83). Cancer/Radiotherapie. 2011;15:555–9.CrossRef Grégoire V, Mackie TR. State of the art on dose prescription, reporting and recording in intensity-modulated radiation therapy (ICRU report no. 83). Cancer/Radiotherapie. 2011;15:555–9.CrossRef
4.
go back to reference Tomé WA, Fowler JF. Selective boosting of tumor subvolumes. Int J Radiat Oncol Biol Phys. 2000;48:593–9.CrossRef Tomé WA, Fowler JF. Selective boosting of tumor subvolumes. Int J Radiat Oncol Biol Phys. 2000;48:593–9.CrossRef
5.
go back to reference Deasy JO. Partial tumor boosts: even more attractive than theory predicts? Int J Radiat Oncol Biol Phys. 2001;51:279–80.CrossRef Deasy JO. Partial tumor boosts: even more attractive than theory predicts? Int J Radiat Oncol Biol Phys. 2001;51:279–80.CrossRef
6.
go back to reference Marks LB. Radiosurgery dose distributions: theoretical impact of inhomogeneities on lesion control. Acta Neurochir Suppl. 1994;62:13–7.CrossRef Marks LB. Radiosurgery dose distributions: theoretical impact of inhomogeneities on lesion control. Acta Neurochir Suppl. 1994;62:13–7.CrossRef
7.
go back to reference Craft D, Khan F, Young M, Bortfeld T. The Price of target dose uniformity. Int J Radiat Oncol Biol Phys. 2016;96:913–4.CrossRef Craft D, Khan F, Young M, Bortfeld T. The Price of target dose uniformity. Int J Radiat Oncol Biol Phys. 2016;96:913–4.CrossRef
8.
go back to reference Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105 Suppl:194–201.CrossRef Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105 Suppl:194–201.CrossRef
9.
go back to reference Meeks SL, Buatti JM, Bova FJ, Friedman WA, Mendenhall WM. Treatment planning optimization for linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys. 1998;41:183–97.CrossRef Meeks SL, Buatti JM, Bova FJ, Friedman WA, Mendenhall WM. Treatment planning optimization for linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys. 1998;41:183–97.CrossRef
10.
go back to reference Sun L, Smith W, Ghose A, Kirkby C. A quantitative assessment of the consequences of allowing dose heterogeneity in prostate radiation therapy planning. J Appl Clin Med Phys. 2018;19:580–90.CrossRef Sun L, Smith W, Ghose A, Kirkby C. A quantitative assessment of the consequences of allowing dose heterogeneity in prostate radiation therapy planning. J Appl Clin Med Phys. 2018;19:580–90.CrossRef
11.
go back to reference Ma L, Larson D, Petti P, Chuang C, Verhey L. Boosting central target dose by optimizing embedded dose hot spots for gamma knife radiosurgery. Stereotact Funct Neurosurg. 2007;85:259–63.CrossRef Ma L, Larson D, Petti P, Chuang C, Verhey L. Boosting central target dose by optimizing embedded dose hot spots for gamma knife radiosurgery. Stereotact Funct Neurosurg. 2007;85:259–63.CrossRef
12.
go back to reference Spalding AC, Jee KW, Vineberg K, Jablonowski M, Fraass BA, Pan CC, Lawrence TS, Ten Haken RK, Ben-Josef E. Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions. Med Phys. 2007;34:521–9.CrossRef Spalding AC, Jee KW, Vineberg K, Jablonowski M, Fraass BA, Pan CC, Lawrence TS, Ten Haken RK, Ben-Josef E. Potential for dose-escalation and reduction of risk in pancreatic cancer using IMRT optimization with lexicographic ordering and gEUD-based cost functions. Med Phys. 2007;34:521–9.CrossRef
13.
go back to reference Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016;122:1974–86.CrossRef Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016;122:1974–86.CrossRef
14.
go back to reference Bai Y, Gao XS, Bin QS, Chen JY, Su MM, Liu Q, Qin XB, Ma MW, Zhao B, X Bin G, Xie M, Cui M, Qi X, Li XY. Partial stereotactic ablative boost radiotherapy in bulky non-small cell lung cancer: a retrospective study. Onco Targets Ther. 2018;11:2571–9.CrossRef Bai Y, Gao XS, Bin QS, Chen JY, Su MM, Liu Q, Qin XB, Ma MW, Zhao B, X Bin G, Xie M, Cui M, Qi X, Li XY. Partial stereotactic ablative boost radiotherapy in bulky non-small cell lung cancer: a retrospective study. Onco Targets Ther. 2018;11:2571–9.CrossRef
15.
go back to reference Nomiya T, Akamatsu H, Harada M, Ota I, Hagiwara Y, Ichikawa M, Miwa M, Suzuki A, Nemoto K. Modified simultaneous integrated boost radiotherapy for unresectable locally advanced breast cancer: preliminary results of a prospective clinical trial. Clin Breast Cancer. 2015;15:161–7.CrossRef Nomiya T, Akamatsu H, Harada M, Ota I, Hagiwara Y, Ichikawa M, Miwa M, Suzuki A, Nemoto K. Modified simultaneous integrated boost radiotherapy for unresectable locally advanced breast cancer: preliminary results of a prospective clinical trial. Clin Breast Cancer. 2015;15:161–7.CrossRef
16.
go back to reference Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24:103–10.CrossRef Niemierko A. Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys. 1997;24:103–10.CrossRef
17.
go back to reference Yan Y, Dou Y, Weng X, Wallin A. SU-GG-T-256: an enhanced DICOM-RT viewer. Med Phys. 2010;37:3244. Yan Y, Dou Y, Weng X, Wallin A. SU-GG-T-256: an enhanced DICOM-RT viewer. Med Phys. 2010;37:3244.
18.
go back to reference Bzdusek K, Friberger H, Eriksson K, Hrdemark B, Robinson D, Kaus M. Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys. 2009;36:2328–39.CrossRef Bzdusek K, Friberger H, Eriksson K, Hrdemark B, Robinson D, Kaus M. Development and evaluation of an efficient approach to volumetric arc therapy planning. Med Phys. 2009;36:2328–39.CrossRef
19.
go back to reference Crane CH. Hypofractionated ablative radiotherapy for locally advanced pancreatic cancer. J Radiat Res. 2016;57:i53–7.CrossRef Crane CH. Hypofractionated ablative radiotherapy for locally advanced pancreatic cancer. J Radiat Res. 2016;57:i53–7.CrossRef
20.
go back to reference Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47:291–8.CrossRef Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47:291–8.CrossRef
21.
go back to reference Radiation Therapy Oncology Group. RTOG 0915: a randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. RTOG. 2009. Radiation Therapy Oncology Group. RTOG 0915: a randomized phase II study comparing 2 stereotactic body radiation therapy (SBRT) schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer. RTOG. 2009.
22.
go back to reference Fuller DB, Naitoh J, Lee C, Hardy S, Jin H. Virtual HDRSM CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys. 2008;70:1588–97.CrossRef Fuller DB, Naitoh J, Lee C, Hardy S, Jin H. Virtual HDRSM CyberKnife treatment for localized prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical observations. Int J Radiat Oncol Biol Phys. 2008;70:1588–97.CrossRef
23.
go back to reference Spratt DE, Scala LM, Folkert M, Voros L, Cohen GN, Happersett L, Katsoulakis E, Zelefsky MJ, Kollmeier MA, Yamada Y. A comparative dosimetric analysis of virtual stereotactic body radiotherapy to high-dose-rate monotherapy for intermediate-risk prostate cancer. Brachytherapy. 2013;12:428–33.CrossRef Spratt DE, Scala LM, Folkert M, Voros L, Cohen GN, Happersett L, Katsoulakis E, Zelefsky MJ, Kollmeier MA, Yamada Y. A comparative dosimetric analysis of virtual stereotactic body radiotherapy to high-dose-rate monotherapy for intermediate-risk prostate cancer. Brachytherapy. 2013;12:428–33.CrossRef
24.
go back to reference Tanyi JA, Doss EJ, Kato CM, Monaco DL, Meng LZ, Chen Y, Kubicky CD, Marquez CM, Fuss M. Dynamic conformal arc cranial stereotactic radiosurgery: implications of multileaf collimator margin on dose-volume metrics. Br J Radiol. 2012;85. Tanyi JA, Doss EJ, Kato CM, Monaco DL, Meng LZ, Chen Y, Kubicky CD, Marquez CM, Fuss M. Dynamic conformal arc cranial stereotactic radiosurgery: implications of multileaf collimator margin on dose-volume metrics. Br J Radiol. 2012;85.
25.
go back to reference Lax I. Target dose versus extratarget dose in stereotactic radiosurgery. Acta Oncol (Madr). 1993;32:453–7.CrossRef Lax I. Target dose versus extratarget dose in stereotactic radiosurgery. Acta Oncol (Madr). 1993;32:453–7.CrossRef
26.
go back to reference Lucia F, Key S, Dissaux G, Goasduff G, Lucia AS, Ollivier L, Pradier O, Schick U. Inhomogeneous tumor dose distribution provides better local control than homogeneous distribution in stereotactic radiotherapy for brain metastases. Radiother Oncol. 2018; [Epub ahead of print]. Lucia F, Key S, Dissaux G, Goasduff G, Lucia AS, Ollivier L, Pradier O, Schick U. Inhomogeneous tumor dose distribution provides better local control than homogeneous distribution in stereotactic radiotherapy for brain metastases. Radiother Oncol. 2018; [Epub ahead of print].
27.
go back to reference Abraham C, Garsa A, Badiyan SN, Drzymala R, Yang D, DeWees T, Tsien C, Dowling JL, Rich KM, Chicoine MR, Kim AH, Leuthardt EC, Robinson C. Internal dose escalation is associated with increased local control for non-small cell lung cancer (NSCLC) brain metastases treated with stereotactic radiosurgery (SRS). Adv Radiat Oncol. 2018;3:146–53.CrossRef Abraham C, Garsa A, Badiyan SN, Drzymala R, Yang D, DeWees T, Tsien C, Dowling JL, Rich KM, Chicoine MR, Kim AH, Leuthardt EC, Robinson C. Internal dose escalation is associated with increased local control for non-small cell lung cancer (NSCLC) brain metastases treated with stereotactic radiosurgery (SRS). Adv Radiat Oncol. 2018;3:146–53.CrossRef
28.
go back to reference Søvik Å, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys. 2009;73:650–8.CrossRef Søvik Å, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys. 2009;73:650–8.CrossRef
29.
go back to reference Lin Z, Mechalakos J, Nehmeh S, Schoder H, Lee N, Humm J, Ling CC. The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys. 2008;70:1219–28.CrossRef Lin Z, Mechalakos J, Nehmeh S, Schoder H, Lee N, Humm J, Ling CC. The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys. 2008;70:1219–28.CrossRef
30.
go back to reference Vassiliev O, Titt U, Kry S, Poenisch F, Gillin M, Mohan R. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Med Phys. 2005;32:1907–17.CrossRef Vassiliev O, Titt U, Kry S, Poenisch F, Gillin M, Mohan R. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Med Phys. 2005;32:1907–17.CrossRef
31.
go back to reference Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, Low D, Kupelian P, Sheng K. 4 pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–6.CrossRef Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, Low D, Kupelian P, Sheng K. 4 pi non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys. 2013;85:1360–6.CrossRef
32.
go back to reference Chan MKH, Kwong DLW, Law GML, Tam E, Tong A, Lee V, Ng SCY. Dosimetric evaluation of four-dimensional dose distributions of cyberknife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy. J Appl Clin Med Phys. 2013;14:136–49.CrossRef Chan MKH, Kwong DLW, Law GML, Tam E, Tong A, Lee V, Ng SCY. Dosimetric evaluation of four-dimensional dose distributions of cyberknife and volumetric-modulated arc radiotherapy in stereotactic body lung radiotherapy. J Appl Clin Med Phys. 2013;14:136–49.CrossRef
Metadata
Title
Radiation treatment planning with embedded dose escalation
Authors
William T. Hrinivich
Todd R. McNutt
Jeffrey J. Meyer
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1348-3

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue