Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Research

Mechanisms of different response to ionizing irradiation in isogenic head and neck cancer cell lines

Authors: Vesna Todorovic, Ajda Prevc, Martina Niksic Zakelj, Monika Savarin, Andreja Brozic, Blaz Groselj, Primoz Strojan, Maja Cemazar, Gregor Sersa

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Treatment options for recurrent head and neck tumours in the previously irradiated area are limited, including re-irradiation due to radioresistance of the recurrent tumour and previous dose received by surrounding normal tissues. As an in vitro model to study radioresistance mechanisms, isogenic cells with different radiosensitivity can be used. However, they are not readily available. Therefore, our objective was to establish and characterize radioresistant isogenic human pharyngeal squamous carcinoma cells and to evaluate early radiation response in isogenic parental, radioresistant and radiosensitive cells.

Methods

Radioresistant cells were derived from parental FaDu cells by repeated exposure to ionizing radiation. Radiosensitivity of the established isogenic radioresistant FaDu-RR cells was evaluated by clonogenic assay and compared to isogenic parental FaDu and radiosensitive 2A3 cells. Additional phenotypic characterization of these isogenic cells with different radiosensitivity included evaluation of chemosensitivity, cell proliferation, cell cycle, radiation-induced apoptosis, resolution of DNA double-strand breaks, and DNA damage and repair signalling gene expression before and after irradiation.

Results

In the newly established radioresistant cells in response to 5 Gy irradiation, we observed no alteration in cell cycle regulation, but delayed induction and enhanced resolution of DNA double-strand breaks, lower induction of apoptosis, and pronounced over-expression of DNA damage signalling genes in comparison to parental cells. On the other hand, radiosensitive 2A3 cells were arrested in G2/M-phase in response to 5 Gy irradiation, had a prominent accumulation of and slower resolution of DNA double-strand breaks, and no change in DNA damage signalling genes expression.

Conclusions

We concluded that the emergence of the radioresistance in the established radioresistant isogenic cells can be at least partially attributed to the enhanced DNA double-strand break repair, altered expression of DNA damage signalling and repair genes. On the other hand, in radiosensitive isogenic cells the reduced ability to repair a high number of induced DNA double-strand breaks and no transcriptional response in DNA damage signalling genes indicate on a lack of adaptive response to irradiation. Altogether, our results confirmed that these isogenic cells with different radiosensitivity are an appropriate model to study the mechanisms of radioresistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Vigneswaran N, Williams MD. Epidemiologic trends in head and neck Cancer and aids in diagnosis. Oral Maxillofac Surg Clin Nort Am. 2014;26(2):123–41.CrossRef Vigneswaran N, Williams MD. Epidemiologic trends in head and neck Cancer and aids in diagnosis. Oral Maxillofac Surg Clin Nort Am. 2014;26(2):123–41.CrossRef
2.
go back to reference Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91(3):386–96.CrossRefPubMed Marur S, Forastiere AA. Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2016;91(3):386–96.CrossRefPubMed
3.
go back to reference Arenz A, Ziemann F, Mayer C, Wittig A, Dreffke K, Preising S, et al. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlentherapie und Onkol. 2014;190(9):839–46.CrossRef Arenz A, Ziemann F, Mayer C, Wittig A, Dreffke K, Preising S, et al. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlentherapie und Onkol. 2014;190(9):839–46.CrossRef
4.
go back to reference Rieckmann T, Tribius S, Grob TJ, Meyer F, Busch C-JJ, Petersen C, et al. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol. 2013;107(2):242–6.CrossRefPubMed Rieckmann T, Tribius S, Grob TJ, Meyer F, Busch C-JJ, Petersen C, et al. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSB repair capacity. Radiother Oncol. 2013;107(2):242–6.CrossRefPubMed
5.
go back to reference Prevc A, Kranjc S, Cemazar M, Todorovic V, Zegura B, Novak M, et al. Dose-Modifying Factor of Radiation Therapy with Concurrent Cisplatin Treatment in HPV-Positive Squamous Cell Carcinoma: A Preclinical Study. Radiat Res. 2018;189(6):1-8. Prevc A, Kranjc S, Cemazar M, Todorovic V, Zegura B, Novak M, et al. Dose-Modifying Factor of Radiation Therapy with Concurrent Cisplatin Treatment in HPV-Positive Squamous Cell Carcinoma: A Preclinical Study. Radiat Res. 2018;189(6):1-8.
6.
go back to reference Pignon JP, le Maître A, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14.CrossRefPubMed Pignon JP, le Maître A, Maillard E, Bourhis J. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14.CrossRefPubMed
7.
go back to reference Strojan P, Corry J, Eisbruch A, Vermorken JB, Mendenhall WM, Lee AWM, et al. Recurrent and second primary squamous cell carcinoma of the head and neck: when and how to reirradiate. Head Neck. 2015;37(1):134–50.CrossRefPubMed Strojan P, Corry J, Eisbruch A, Vermorken JB, Mendenhall WM, Lee AWM, et al. Recurrent and second primary squamous cell carcinoma of the head and neck: when and how to reirradiate. Head Neck. 2015;37(1):134–50.CrossRefPubMed
8.
go back to reference Blanchard P, Baujat B, Holostenco V, Bourredjem A, Baey C, Bourhis J, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site. Radiother Oncol. 2011;100(1):33–40.CrossRefPubMed Blanchard P, Baujat B, Holostenco V, Bourredjem A, Baey C, Bourhis J, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site. Radiother Oncol. 2011;100(1):33–40.CrossRefPubMed
9.
go back to reference McDermott N, Meunier A, Lynch TH, Hollywood D, Marignol L. Isogenic radiation resistant cell lines: development and validation strategies. Int J Radiat Biol. 2014;90(2):115–26.CrossRefPubMed McDermott N, Meunier A, Lynch TH, Hollywood D, Marignol L. Isogenic radiation resistant cell lines: development and validation strategies. Int J Radiat Biol. 2014;90(2):115–26.CrossRefPubMed
10.
go back to reference Kuwahara Y, Roudkenar MH, Urushihara Y, Saito Y, Tomita K, Roushandeh AM, et al. Clinically relevant radioresistant cell line: a simple model to understand cancer radioresistance. Med Mol Morphol. 2017;50(4):195–204.CrossRefPubMed Kuwahara Y, Roudkenar MH, Urushihara Y, Saito Y, Tomita K, Roushandeh AM, et al. Clinically relevant radioresistant cell line: a simple model to understand cancer radioresistance. Med Mol Morphol. 2017;50(4):195–204.CrossRefPubMed
11.
go back to reference Michna A, Schötz U, Selmansberger M, Zitzelsberger H, Lauber K, Unger K, et al. Transcriptomic analyses of the radiation response in head and neck squamous cell carcinoma subclones with different radiation sensitivity: time-course gene expression profiles and gene association networks. Radiat Oncol. 2016;11(1):94.CrossRefPubMedPubMedCentral Michna A, Schötz U, Selmansberger M, Zitzelsberger H, Lauber K, Unger K, et al. Transcriptomic analyses of the radiation response in head and neck squamous cell carcinoma subclones with different radiation sensitivity: time-course gene expression profiles and gene association networks. Radiat Oncol. 2016;11(1):94.CrossRefPubMedPubMedCentral
12.
go back to reference Harris M, Wang XG, Jiang Z, Goldberg GL, Casadevall A, Dadachova E. Radioimmunotherapy of experimental head and neck squamous cell carcinoma (HNSCC) with E6-specific antibody using a novel HPV-16 positive HNSCC cell line. Head Neck Oncol. 2011;3(1):9.CrossRefPubMedPubMedCentral Harris M, Wang XG, Jiang Z, Goldberg GL, Casadevall A, Dadachova E. Radioimmunotherapy of experimental head and neck squamous cell carcinoma (HNSCC) with E6-specific antibody using a novel HPV-16 positive HNSCC cell line. Head Neck Oncol. 2011;3(1):9.CrossRefPubMedPubMedCentral
13.
go back to reference Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33:105–10.CrossRefPubMed Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33:105–10.CrossRefPubMed
14.
go back to reference Pogacnik A, Us-Krasovec M, Bracko M. Preparation of fine needle aspiration biopsy samples for flow cytometric analysis. Anal Quant Cytol Histol. 1993;15(4):298–302.PubMed Pogacnik A, Us-Krasovec M, Bracko M. Preparation of fine needle aspiration biopsy samples for flow cytometric analysis. Anal Quant Cytol Histol. 1993;15(4):298–302.PubMed
15.
go back to reference Zakelj MNMN, Prevc A, Kranjc S, Cemazar M, Todorovic V, Savarin M, et al. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep. 2019;41(3):1658–68.PubMedPubMedCentral Zakelj MNMN, Prevc A, Kranjc S, Cemazar M, Todorovic V, Savarin M, et al. Electrochemotherapy of radioresistant head and neck squamous cell carcinoma cells and tumor xenografts. Oncol Rep. 2019;41(3):1658–68.PubMedPubMedCentral
16.
go back to reference Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: a promising molecular marker of DNA damage and aging. Mutat Res - Rev Mutat Res. 2015;766:1–19.CrossRefPubMed Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: a promising molecular marker of DNA damage and aging. Mutat Res - Rev Mutat Res. 2015;766:1–19.CrossRefPubMed
17.
go back to reference Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(SUPPL. 2):214–20.CrossRef Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(SUPPL. 2):214–20.CrossRef
18.
go back to reference Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–55.CrossRefPubMed Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–55.CrossRefPubMed
19.
go back to reference Kurth I, Hein L, Mäbert K, Peitzsch C, Koi L, Cojoc M, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.CrossRefPubMedPubMedCentral Kurth I, Hein L, Mäbert K, Peitzsch C, Koi L, Cojoc M, et al. Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma. Oncotarget. 2015;6(33):34494–509.CrossRefPubMedPubMedCentral
20.
go back to reference Skvortsov S, Jimenez CR, Knol JC, Eichberger P, Schiestl B, Debbage P, et al. Radioresistant head and neck squamous cell carcinoma cells: intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets. Radiother Oncol. 2011;101(1):177–82.CrossRefPubMed Skvortsov S, Jimenez CR, Knol JC, Eichberger P, Schiestl B, Debbage P, et al. Radioresistant head and neck squamous cell carcinoma cells: intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets. Radiother Oncol. 2011;101(1):177–82.CrossRefPubMed
21.
go back to reference Skvortsov S, Dudás J, Eichberger P, Witsch-Baumgartner M, Loeffler-Ragg J, Pritz C, et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). Br J Cancer. 2014;110(11):2677–87.CrossRefPubMedPubMedCentral Skvortsov S, Dudás J, Eichberger P, Witsch-Baumgartner M, Loeffler-Ragg J, Pritz C, et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). Br J Cancer. 2014;110(11):2677–87.CrossRefPubMedPubMedCentral
22.
go back to reference Xie L, Song X, Yu J, Wei L, Song B, Wang X, et al. Fractionated irradiation induced radio-resistant esophageal cancer EC109 cells seem to be more sensitive to chemotherapeutic drugs. J Exp Clin Cancer Res. 2009;28:68.CrossRefPubMedPubMedCentral Xie L, Song X, Yu J, Wei L, Song B, Wang X, et al. Fractionated irradiation induced radio-resistant esophageal cancer EC109 cells seem to be more sensitive to chemotherapeutic drugs. J Exp Clin Cancer Res. 2009;28:68.CrossRefPubMedPubMedCentral
23.
go back to reference De Llobet LI, Baro M, Figueras A, Modolell I, Da Silva MV, Muñoz P, et al. Development and characterization of an isogenic cell line with a radioresistant phenotype. Clin Transl Oncol. 2013;15(3):189–97.CrossRefPubMed De Llobet LI, Baro M, Figueras A, Modolell I, Da Silva MV, Muñoz P, et al. Development and characterization of an isogenic cell line with a radioresistant phenotype. Clin Transl Oncol. 2013;15(3):189–97.CrossRefPubMed
24.
go back to reference Lin TY, Chang JTC, Wang HM, Chan SH, Chiu CC, Lin CY, et al. Proteomics of the radioresistant phenotype in head-and-neck cancer: GP96 as a novel prediction marker and sensitizing target for radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(1):246–56.CrossRefPubMed Lin TY, Chang JTC, Wang HM, Chan SH, Chiu CC, Lin CY, et al. Proteomics of the radioresistant phenotype in head-and-neck cancer: GP96 as a novel prediction marker and sensitizing target for radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(1):246–56.CrossRefPubMed
25.
go back to reference McDermott N, Meunier A, Mooney B, Nortey G, Hernandez C, Hurley S, et al. Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep. 2016;6(October):34796.CrossRefPubMedPubMedCentral McDermott N, Meunier A, Mooney B, Nortey G, Hernandez C, Hurley S, et al. Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep. 2016;6(October):34796.CrossRefPubMedPubMedCentral
26.
go back to reference Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper B-A, Schiestl B, et al. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics. 2008;8(21):4521–33.CrossRefPubMed Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper B-A, Schiestl B, et al. Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics. 2008;8(21):4521–33.CrossRefPubMed
27.
go back to reference Lee YS, Oh JH, Yoon S, Kwon MS, Song CW, Kim KH, et al. Differential gene expression profiles of Radioresistant non-small-cell lung Cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 2010;77(3):858–66.CrossRefPubMed Lee YS, Oh JH, Yoon S, Kwon MS, Song CW, Kim KH, et al. Differential gene expression profiles of Radioresistant non-small-cell lung Cancer cell lines established by fractionated irradiation: tumor protein p53-inducible protein 3 confers sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 2010;77(3):858–66.CrossRefPubMed
28.
go back to reference Wei QC, Shen L, Zheng S, Zhu YL. Isolation and characterization of radiation-resistant lung cancer D6-R cell line. Biomed Environ Sci. 2008;21(4):339–44.CrossRefPubMed Wei QC, Shen L, Zheng S, Zhu YL. Isolation and characterization of radiation-resistant lung cancer D6-R cell line. Biomed Environ Sci. 2008;21(4):339–44.CrossRefPubMed
29.
go back to reference Ogawa K, Utsunomiya T, Mimori K, Tanaka F, Haraguchi N, Inoue H, et al. Differential gene expression profiles of radioresistant pancreatic cancer cell lines established by fractionated irradiation. Int J Oncol. 2006;28(3):705–13.PubMed Ogawa K, Utsunomiya T, Mimori K, Tanaka F, Haraguchi N, Inoue H, et al. Differential gene expression profiles of radioresistant pancreatic cancer cell lines established by fractionated irradiation. Int J Oncol. 2006;28(3):705–13.PubMed
30.
go back to reference Harvie RM, Davey MW, Davey RA. Increased MRP expression is associated with resistance to radiation, anthracyclines and etoposide in cells treated with fractionated ??-radiation. Int J Cancer. 1997;73(1):164–7.CrossRefPubMed Harvie RM, Davey MW, Davey RA. Increased MRP expression is associated with resistance to radiation, anthracyclines and etoposide in cells treated with fractionated ??-radiation. Int J Cancer. 1997;73(1):164–7.CrossRefPubMed
31.
go back to reference Gray M, Turnbull AK, Ward C, Meehan J, Martínez-Pérez C, Bonello M, et al. Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol. 2019;14(1):1–19.CrossRef Gray M, Turnbull AK, Ward C, Meehan J, Martínez-Pérez C, Bonello M, et al. Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol. 2019;14(1):1–19.CrossRef
32.
go back to reference Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y, et al. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009;100(4):747–52.CrossRefPubMed Kuwahara Y, Li L, Baba T, Nakagawa H, Shimura T, Yamamoto Y, et al. Clinically relevant radioresistant cells efficiently repair DNA double-strand breaks induced by X-rays. Cancer Sci. 2009;100(4):747–52.CrossRefPubMed
33.
go back to reference Pearce AG, Segura TM, Rintala AC, Rintala-maki ND, Lee H. The generation and characterization of a radiation-resistant model system to study Radioresistance in human breast Cancer cells. Radiat Res. 2001;750(6):739–50.CrossRef Pearce AG, Segura TM, Rintala AC, Rintala-maki ND, Lee H. The generation and characterization of a radiation-resistant model system to study Radioresistance in human breast Cancer cells. Radiat Res. 2001;750(6):739–50.CrossRef
34.
go back to reference Lee SY, Park HR, Cho NH, Choi YP, Rha SY, Park SW, et al. Identifying genes related to radiation resistance in oral squamous cell carcinoma cell lines. Int J Oral Maxillofac Surg. 2013;42(2):169–76.CrossRefPubMed Lee SY, Park HR, Cho NH, Choi YP, Rha SY, Park SW, et al. Identifying genes related to radiation resistance in oral squamous cell carcinoma cell lines. Int J Oral Maxillofac Surg. 2013;42(2):169–76.CrossRefPubMed
35.
go back to reference Yanagisawa T, Urade M, Takahashi Y, Kishimoto H, Sakurai K. Isolation and characterisation of radioresistant human KB carcinoma cells in vitro. Oral Oncol. 1998;34(1):30–8.CrossRefPubMed Yanagisawa T, Urade M, Takahashi Y, Kishimoto H, Sakurai K. Isolation and characterisation of radioresistant human KB carcinoma cells in vitro. Oral Oncol. 1998;34(1):30–8.CrossRefPubMed
36.
go back to reference Henness S, Davey MW, Harvie RM, Davey RA. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIalpha expression. Int J Radiat Oncol Biol Phys. 2002;54(3):895–902.CrossRefPubMed Henness S, Davey MW, Harvie RM, Davey RA. Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase IIalpha expression. Int J Radiat Oncol Biol Phys. 2002;54(3):895–902.CrossRefPubMed
37.
go back to reference Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y, et al. Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. 2004:91;1543–50. Fukuda K, Sakakura C, Miyagawa K, Kuriu Y, Kin S, Nakase Y, et al. Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. 2004:91;1543–50.
38.
go back to reference Borràs-Fresneda M, Barquinero JF, Gomolka M, Hornhardt S, Rössler U, Armengol G, et al. Differences in DNA repair capacity, cell death and transcriptional response after irradiation between a radiosensitive and a Radioresistant cell line. Sci Rep. 2016;6:1–11.CrossRef Borràs-Fresneda M, Barquinero JF, Gomolka M, Hornhardt S, Rössler U, Armengol G, et al. Differences in DNA repair capacity, cell death and transcriptional response after irradiation between a radiosensitive and a Radioresistant cell line. Sci Rep. 2016;6:1–11.CrossRef
39.
go back to reference Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol. 1999;80(6):1513–7.CrossRefPubMed Thomas M, Banks L. Human papillomavirus (HPV) E6 interactions with Bak are conserved amongst E6 proteins from high and low risk HPV types. J Gen Virol. 1999;80(6):1513–7.CrossRefPubMed
40.
go back to reference TO G, Filippova M, Duerksen-Hughes PJ. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ. 2006;13(11):1915–26.CrossRef TO G, Filippova M, Duerksen-Hughes PJ. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ. 2006;13(11):1915–26.CrossRef
41.
go back to reference Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci. 2003;100(9):5057–62.CrossRefPubMedPubMedCentral Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci. 2003;100(9):5057–62.CrossRefPubMedPubMedCentral
42.
go back to reference Marullo R, Werner E, Zhang H, Chen GZ, Shin DM, Doetsch PW. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells. Carcinogenesis. 2015;36(11):1397–406.CrossRefPubMedPubMedCentral Marullo R, Werner E, Zhang H, Chen GZ, Shin DM, Doetsch PW. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells. Carcinogenesis. 2015;36(11):1397–406.CrossRefPubMedPubMedCentral
43.
go back to reference Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol. 2015;91(12):915–24.CrossRefPubMed Borràs M, Armengol G, De Cabo M, Barquinero JF, Barrios L. Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensitivity. Int J Radiat Biol. 2015;91(12):915–24.CrossRefPubMed
44.
go back to reference Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG. Alterations in DNA repair efficiency are involved in the Radioresistance of esophageal adenocarcinoma. Radiat Res. 2010;174(6a):703–11.CrossRefPubMed Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG. Alterations in DNA repair efficiency are involved in the Radioresistance of esophageal adenocarcinoma. Radiat Res. 2010;174(6a):703–11.CrossRefPubMed
45.
go back to reference Morgan MA, Lawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015;21(13):2898–904.CrossRefPubMedPubMedCentral Morgan MA, Lawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015;21(13):2898–904.CrossRefPubMedPubMedCentral
46.
go back to reference Olive PL, Banáth JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys. 2004;58(2):331–5.CrossRefPubMed Olive PL, Banáth JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys. 2004;58(2):331–5.CrossRefPubMed
47.
go back to reference Vargas-Rondón N, Villegas VE, Rondón-Lagos M. The Role of Chromosomal Instability in Cancer and Therapeutic Responses. Cancers (Basel). 2017;10(1):1–21. Vargas-Rondón N, Villegas VE, Rondón-Lagos M. The Role of Chromosomal Instability in Cancer and Therapeutic Responses. Cancers (Basel). 2017;10(1):1–21.
48.
go back to reference Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113.CrossRefPubMedPubMedCentral Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113.CrossRefPubMedPubMedCentral
49.
go back to reference Guo W-F, Lin R-X, Huang J, Zhou Z, Yang J, Guo G, et al. Identification of differentially expressed genes contributing to radioresistance in lung cancer cells using microarray analysis. Radiat Res. 2005;164(1):27–35.CrossRefPubMed Guo W-F, Lin R-X, Huang J, Zhou Z, Yang J, Guo G, et al. Identification of differentially expressed genes contributing to radioresistance in lung cancer cells using microarray analysis. Radiat Res. 2005;164(1):27–35.CrossRefPubMed
50.
go back to reference Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18(3):168–85.CrossRefPubMed Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18(3):168–85.CrossRefPubMed
51.
go back to reference Spriggs CC, Laimins LA. FANCD2 Binds Human Papillomavirus Genomes and Associates with a Distinct Set of DNA Repair Proteins to Regulate Viral Replication. MBio. 2017;8(1):1–19. Spriggs CC, Laimins LA. FANCD2 Binds Human Papillomavirus Genomes and Associates with a Distinct Set of DNA Repair Proteins to Regulate Viral Replication. MBio. 2017;8(1):1–19.
52.
go back to reference Rosemary Siafakas A, Richardson DR. Growth arrest and DNA damage-45 alpha (GADD45α). Int J Biochem Cell Biol. 2009;41(5):986–9.CrossRefPubMed Rosemary Siafakas A, Richardson DR. Growth arrest and DNA damage-45 alpha (GADD45α). Int J Biochem Cell Biol. 2009;41(5):986–9.CrossRefPubMed
53.
go back to reference Barreto G, Schäfer A, Swaminathan SK, Döderlein G, Maltry N, Stach D, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671–5.CrossRefPubMed Barreto G, Schäfer A, Swaminathan SK, Döderlein G, Maltry N, Stach D, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature. 2007;445(7128):671–5.CrossRefPubMed
54.
go back to reference Wang BX, Yin BL, He B, Chen C, Zhao M, Zhang WX, et al. Overexpression of DNA damage-induced 45 a gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J Exp Clin Cancer Res. 2012;31(11):1–13. Wang BX, Yin BL, He B, Chen C, Zhao M, Zhang WX, et al. Overexpression of DNA damage-induced 45 a gene contributes to esophageal squamous cell cancer by promoter hypomethylation. J Exp Clin Cancer Res. 2012;31(11):1–13.
55.
go back to reference Zhang X, Wei F, Zhou C, Sun S, Qu X, Wang C, et al. Over-expression of Gadd45a enhances radiotherapy efficacy in human Tca8113 cell line. Acta Pharmacol Sin. 2011;32(2):253–8.CrossRefPubMedPubMedCentral Zhang X, Wei F, Zhou C, Sun S, Qu X, Wang C, et al. Over-expression of Gadd45a enhances radiotherapy efficacy in human Tca8113 cell line. Acta Pharmacol Sin. 2011;32(2):253–8.CrossRefPubMedPubMedCentral
56.
57.
go back to reference Yan SJ, Lee YF, Ting HJ, Liu NC, Liu S, Lin SJ, et al. Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation. Cell Mol Biol Lett. 2012;17(2):309–22.CrossRefPubMedPubMedCentral Yan SJ, Lee YF, Ting HJ, Liu NC, Liu S, Lin SJ, et al. Deficiency in TR4 nuclear receptor abrogates Gadd45a expression and increases cytotoxicity induced by ionizing radiation. Cell Mol Biol Lett. 2012;17(2):309–22.CrossRefPubMedPubMedCentral
58.
go back to reference Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial–mesenchymal transition. Nat Commun. 2016;7:1–12. Weyemi U, Redon CE, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial–mesenchymal transition. Nat Commun. 2016;7:1–12.
59.
go back to reference Tambini CE, Spink KG, Ross CJ, Hill MA, Thacker J. The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst). 2010;9(5):517–25.CrossRef Tambini CE, Spink KG, Ross CJ, Hill MA, Thacker J. The importance of XRCC2 in RAD51-related DNA damage repair. DNA Repair (Amst). 2010;9(5):517–25.CrossRef
60.
go back to reference Wang Q, Wang Y, Du L, Xu C, Sun Y, Yang B, et al. Shrna-mediated XRCC2 gene knockdown efficiently sensitizes colon tumor cells to X-ray irradiation in vitro and in vivo. Int J Mol Sci. 2014;15(2):2157–71.CrossRefPubMedPubMedCentral Wang Q, Wang Y, Du L, Xu C, Sun Y, Yang B, et al. Shrna-mediated XRCC2 gene knockdown efficiently sensitizes colon tumor cells to X-ray irradiation in vitro and in vivo. Int J Mol Sci. 2014;15(2):2157–71.CrossRefPubMedPubMedCentral
61.
go back to reference Saxena S, Somyajit K, Nagaraju G. XRCC2 Regulates Replication Fork Progression during dNTP Alterations. Cell Rep. 2018;25(12):3273–3282.e6.CrossRefPubMed Saxena S, Somyajit K, Nagaraju G. XRCC2 Regulates Replication Fork Progression during dNTP Alterations. Cell Rep. 2018;25(12):3273–3282.e6.CrossRefPubMed
62.
go back to reference Cheng J, Liu W, Zeng X, Zhang B, Guo Y, Qiu M, et al. XRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma. Cancer Sci. 2015;106(12):1678–86.CrossRefPubMedPubMedCentral Cheng J, Liu W, Zeng X, Zhang B, Guo Y, Qiu M, et al. XRCC3 is a promising target to improve the radiotherapy effect of esophageal squamous cell carcinoma. Cancer Sci. 2015;106(12):1678–86.CrossRefPubMedPubMedCentral
63.
go back to reference Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Deliv. 2005;4(4):307–20.CrossRef Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Deliv. 2005;4(4):307–20.CrossRef
64.
go back to reference Sun C, Wang Z, Song W, Chen B, Zhang J, Dai X, et al. Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells. Oncol Lett. 2015;10(3):1769–74.CrossRefPubMedPubMedCentral Sun C, Wang Z, Song W, Chen B, Zhang J, Dai X, et al. Alteration of DNA damage signaling pathway profile in radiation-treated glioblastoma stem-like cells. Oncol Lett. 2015;10(3):1769–74.CrossRefPubMedPubMedCentral
65.
go back to reference Shen D-W, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012;64(3):706–21.CrossRefPubMedPubMedCentral Shen D-W, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012;64(3):706–21.CrossRefPubMedPubMedCentral
66.
go back to reference Fong CW. Platinum anti-cancer drugs: free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic Biol Med. 2016;95:216–29.CrossRefPubMed Fong CW. Platinum anti-cancer drugs: free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic Biol Med. 2016;95:216–29.CrossRefPubMed
67.
go back to reference Nagel R, Martens-de Kemp SR, Buijze M, Jacobs G, Braakhuis BJM, Brakenhoff RH. Treatment response of HPV-positive and HPV-negative head and neck squamous cell carcinoma cell lines. Oral Oncol. 2013;49(6):560–6.CrossRefPubMed Nagel R, Martens-de Kemp SR, Buijze M, Jacobs G, Braakhuis BJM, Brakenhoff RH. Treatment response of HPV-positive and HPV-negative head and neck squamous cell carcinoma cell lines. Oral Oncol. 2013;49(6):560–6.CrossRefPubMed
68.
go back to reference Busch C-J, Becker B, Kriegs M, Gatzemeier F, Krüger K, Möckelmann N, et al. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines. Oncotarget. 2016;7(24):35832–42.CrossRefPubMedPubMedCentral Busch C-J, Becker B, Kriegs M, Gatzemeier F, Krüger K, Möckelmann N, et al. Similar cisplatin sensitivity of HPV-positive and -negative HNSCC cell lines. Oncotarget. 2016;7(24):35832–42.CrossRefPubMedPubMedCentral
70.
go back to reference Wierzbicka M, Szyfter K, Milecki P, Składowski K, Ramlau R. The rationale for HPV-related oropharyngeal cancer de-escalation treatment strategies. Contemp Oncol (Poznan). 2015;19(4):313–22. Wierzbicka M, Szyfter K, Milecki P, Składowski K, Ramlau R. The rationale for HPV-related oropharyngeal cancer de-escalation treatment strategies. Contemp Oncol (Poznan). 2015;19(4):313–22.
71.
go back to reference Kimple RJ, Harari PM. Is radiation dose reduction the right answer for HPV-positive head and neck cancer? Oral Oncol. 2014;50(6):560–4.CrossRefPubMed Kimple RJ, Harari PM. Is radiation dose reduction the right answer for HPV-positive head and neck cancer? Oral Oncol. 2014;50(6):560–4.CrossRefPubMed
Metadata
Title
Mechanisms of different response to ionizing irradiation in isogenic head and neck cancer cell lines
Authors
Vesna Todorovic
Ajda Prevc
Martina Niksic Zakelj
Monika Savarin
Andreja Brozic
Blaz Groselj
Primoz Strojan
Maja Cemazar
Gregor Sersa
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1418-6

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue