Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Breast Cancer | Research

Which target volume should be considered when irradiating the regional nodes in breast cancer? Results of a network-meta-analysis

Authors: Jan Haussmann, Wilfried Budach, Balint Tamaskovics, Edwin Bölke, Stefanie Corradini, Freddy-Joel Djiepmo-Njanang, Kai Kammers, Christiane Matuschek

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Purpose/objective(s)

Radiation treatment to the regional nodes results in an improvement in survival in breast cancer according to a meta-analysis of randomized trials. However, different volumes were targeted in these studies: breast or chestwall only (WBI/CWI), inclusion of the medial supraclavicular region and axillary apex (MS + WBI/CWI) or additional inclusion of the internal mammary chain (IM + MS + WBI/CWI). The benefit of treating the medial supraclavicular region and axillary apex compared to tangential breast or chestwall irradiation only remains unclear.

Materials/methods

A literature search was conducted identifying trials for adjuvant radiation volumes in nodal irradiation after breast surgery and axillary treatment. Events and effect sizes were extracted from the publications for the endpoints of overall survival (OS), breast cancer-specific survival (BCSS), disease-free survival (DFS), distant metastasis-free survival (DMFS) and loco-regional control (LRC). A network meta-analysis was performed using MetaXL V5.3 with the inverse variance heterogeneity model.

Results

We found two randomized studies (n = 5836) comparing comprehensive nodal irradiation to sole breast treatment as well as one randomized (n = 1407) and one prospective cohort study (n = 3377) analysing the additional treatment of the internal mammary chain against sole local and supraclavicular and axillary apex radiation. Compared to WBI/CWI alone the treatment of IM + MS + WBI/CWI (HR = 0.88; CI:0.78-0.99; p = 0.036) results in improved OS unlike MS + WBI/CWI (HR = 0.99; CI:0.86-1.14; p = 0,89). These results are confirmed in BCSS: IM + MS + WBI/CWI (HR = 0.82; CI:0.72-0.92; p = 0.002) and MS + WBI/CWI (HR = 0.96; CI:0.79-1.18; p = 0.69). PFS is significantly improved with the treatment of MS + WBI/CWI (OR = 0.83; CI:0.71-0.97; p = 0.019). Both nodal treatment volumes improve LRC (MS + WBI/CWI OR = 0.74; CI:0.62-0.87; p = 0.004 and IM + MS + WBI/CWI OR = 0.60; CI:0.43-0.86; p < 0,001). Yet only the internal mammary nodes provide a benefit in DMFS (MS + WBI/CWI HR = 0.97; CI:0.81-1.16; p = 0.74 and IM + MS + WBI/CWI HR = 0.84; CI:0.75-0.94; p = 0.002).

Conclusion

Expanding the radiation field to the axillary apex and supraclavicular nodes after axillary node dissection reduced loco-regional recurrences without improvement in overall and cancer-specific survival. A prolongation in survival due to regional nodal irradiation is achieved when the internal mammary chain is included. This derives from a reduction in distant metastasis.
Literature
1.
go back to reference Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41.CrossRef Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41.CrossRef
2.
go back to reference Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med. 2002;347:567–75.CrossRef Fisher B, Jeong JH, Anderson S, Bryant J, Fisher ER, Wolmark N. Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med. 2002;347:567–75.CrossRef
3.
go back to reference Horino T, Fujita M, Ueda N, et al. Efficacy of internal mammary node dissection in the treatment of breast cancer. Jpn J Clin Oncol. 1991;21:422–7.PubMed Horino T, Fujita M, Ueda N, et al. Efficacy of internal mammary node dissection in the treatment of breast cancer. Jpn J Clin Oncol. 1991;21:422–7.PubMed
4.
go back to reference Arriagada R, Le MG, Mouriesse H, et al. Long-term effect of internal mammary chain treatment. Results of a multivariate analysis of 1195 patients with operable breast cancer and positive axillary nodes. Radiother Oncol. 1988;11:213–22.CrossRef Arriagada R, Le MG, Mouriesse H, et al. Long-term effect of internal mammary chain treatment. Results of a multivariate analysis of 1195 patients with operable breast cancer and positive axillary nodes. Radiother Oncol. 1988;11:213–22.CrossRef
5.
go back to reference Courdi A, Chamorey E, Ferrero JM, Hannoun-Levi JM. Influence of internal mammary node irradiation on long-term outcome and contralateral breast cancer incidence in node-negative breast cancer patients. Radiother Oncol. 2013;108:259–65.CrossRef Courdi A, Chamorey E, Ferrero JM, Hannoun-Levi JM. Influence of internal mammary node irradiation on long-term outcome and contralateral breast cancer incidence in node-negative breast cancer patients. Radiother Oncol. 2013;108:259–65.CrossRef
6.
go back to reference Fowble B, Hanlon A, Freedman G, et al. Internal mammary node irradiation neither decreases distant metastases nor improves survival in stage I and II breast cancer. Int J Radiat Oncol Biol Phys. 2000;47:883–94.CrossRef Fowble B, Hanlon A, Freedman G, et al. Internal mammary node irradiation neither decreases distant metastases nor improves survival in stage I and II breast cancer. Int J Radiat Oncol Biol Phys. 2000;47:883–94.CrossRef
7.
go back to reference Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12:447–53.CrossRef Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994;12:447–53.CrossRef
8.
go back to reference Ebctcg MGP, Taylor C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383:2127–35.CrossRef Ebctcg MGP, Taylor C, et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet. 2014;383:2127–35.CrossRef
9.
go back to reference Giuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast Cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA. 2017;318:918–26.CrossRef Giuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast Cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA. 2017;318:918–26.CrossRef
10.
go back to reference Donker M, van Tienhoven G, Straver ME, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15:1303–10.CrossRef Donker M, van Tienhoven G, Straver ME, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15:1303–10.CrossRef
11.
go back to reference Boekel NB, Jacobse JN, Schaapveld M, et al. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer. Br J Cancer. 2018. Boekel NB, Jacobse JN, Schaapveld M, et al. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer. Br J Cancer. 2018.
12.
go back to reference Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRef Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368:987–98.CrossRef
13.
go back to reference Taylor C, McGale P, Bronnum D, et al. Cardiac structure injury after radiotherapy for breast Cancer: cross-sectional study with individual patient data. J Clin Oncol. 2018;36:2288–96.CrossRef Taylor C, McGale P, Bronnum D, et al. Cardiac structure injury after radiotherapy for breast Cancer: cross-sectional study with individual patient data. J Clin Oncol. 2018;36:2288–96.CrossRef
14.
go back to reference van den Bogaard VA, Ta BD, van der Schaaf A, et al. Validation and modification of a prediction model for acute cardiac events in patients with breast Cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35:1171–8.CrossRef van den Bogaard VA, Ta BD, van der Schaaf A, et al. Validation and modification of a prediction model for acute cardiac events in patients with breast Cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35:1171–8.CrossRef
15.
go back to reference Jagsi R, Moran J, Marsh R, Masi K, Griffith KA, Pierce LJ. Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1594–603.CrossRef Jagsi R, Moran J, Marsh R, Masi K, Griffith KA, Pierce LJ. Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1594–603.CrossRef
16.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.PubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.PubMedPubMedCentral
17.
go back to reference Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.CrossRef Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17:2815–34.CrossRef
18.
go back to reference Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials. 2015;45:130–8.CrossRef Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials. 2015;45:130–8.CrossRef
19.
go back to reference Friedrich JO, Adhikari NK, Beyene J. Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data. BMC Med Res Methodol. 2007;7:5.CrossRef Friedrich JO, Adhikari NK, Beyene J. Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data. BMC Med Res Methodol. 2007;7:5.CrossRef
20.
go back to reference Poortmans PM, Struikmans H, Bartelink H. Regional nodal irradiation in early-stage breast Cancer. N Engl J Med. 2015;373:1879–80.CrossRef Poortmans PM, Struikmans H, Bartelink H. Regional nodal irradiation in early-stage breast Cancer. N Engl J Med. 2015;373:1879–80.CrossRef
21.
go back to reference Hennequin C, Bossard N, Servagi-Vernat S, et al. Ten-year survival results of a randomized trial of irradiation of internal mammary nodes after mastectomy. Int J Radiat Oncol Biol Phys. 2013;86:860–6.CrossRef Hennequin C, Bossard N, Servagi-Vernat S, et al. Ten-year survival results of a randomized trial of irradiation of internal mammary nodes after mastectomy. Int J Radiat Oncol Biol Phys. 2013;86:860–6.CrossRef
22.
go back to reference Whelan TJ, Olivotto IA, Levine MN. Regional nodal irradiation in early-stage breast Cancer. N Engl J Med. 2015;373:1878–9.CrossRef Whelan TJ, Olivotto IA, Levine MN. Regional nodal irradiation in early-stage breast Cancer. N Engl J Med. 2015;373:1878–9.CrossRef
23.
go back to reference Thorsen LB, Offersen BV, Dano H, et al. DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast Cancer. J Clin Oncol. 2016;34:314–20.CrossRef Thorsen LB, Offersen BV, Dano H, et al. DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast Cancer. J Clin Oncol. 2016;34:314–20.CrossRef
24.
go back to reference Budach W, Bolke E, Kammers K, Gerber PA, Nestle-Kramling C, Matuschek C. Adjuvant radiation therapy of regional lymph nodes in breast cancer - a meta-analysis of randomized trials- an update. Radiat Oncol. 2015;10:258.CrossRef Budach W, Bolke E, Kammers K, Gerber PA, Nestle-Kramling C, Matuschek C. Adjuvant radiation therapy of regional lymph nodes in breast cancer - a meta-analysis of randomized trials- an update. Radiat Oncol. 2015;10:258.CrossRef
25.
go back to reference Pazos M, Fiorentino A, Gaasch A, et al. Dose variability in different lymph node levels during locoregional breast cancer irradiation: the impact of deep-inspiration breath hold. Strahlenther Onkol. 2018. Pazos M, Fiorentino A, Gaasch A, et al. Dose variability in different lymph node levels during locoregional breast cancer irradiation: the impact of deep-inspiration breath hold. Strahlenther Onkol. 2018.
26.
go back to reference Jagsi R, Griffith KA, Moran JM, et al. A randomized comparison of radiation therapy techniques in the Management of Node-Positive Breast Cancer: primary outcomes analysis. Int J Radiat Oncol Biol Phys. 2018;101:1149–58.CrossRef Jagsi R, Griffith KA, Moran JM, et al. A randomized comparison of radiation therapy techniques in the Management of Node-Positive Breast Cancer: primary outcomes analysis. Int J Radiat Oncol Biol Phys. 2018;101:1149–58.CrossRef
27.
go back to reference Poortmans P, Collette S, Struikmans H, et al. Fifteen-year results of the randomised EORTC trial 22922/10925 investigating internal mammary and medial supraclavicular (IM-MS) lymph node irradiation in stage I-III breast cancer. J Clin Oncol. 2018;36:504.CrossRef Poortmans P, Collette S, Struikmans H, et al. Fifteen-year results of the randomised EORTC trial 22922/10925 investigating internal mammary and medial supraclavicular (IM-MS) lymph node irradiation in stage I-III breast cancer. J Clin Oncol. 2018;36:504.CrossRef
28.
go back to reference Killander F, Anderson H, Kjellen E, Malmstrom P. Increased cardio and cerebrovascular mortality in breast cancer patients treated with postmastectomy radiotherapy--25 year follow-up of a randomised trial from the South Sweden breast Cancer group. Eur J Cancer. 2014;50:2201–10.CrossRef Killander F, Anderson H, Kjellen E, Malmstrom P. Increased cardio and cerebrovascular mortality in breast cancer patients treated with postmastectomy radiotherapy--25 year follow-up of a randomised trial from the South Sweden breast Cancer group. Eur J Cancer. 2014;50:2201–10.CrossRef
29.
go back to reference Stokes EL, Tyldesley S, Woods R, Wai E, Olivotto IA. Effect of nodal irradiation and fraction size on cardiac and cerebrovascular mortality in women with breast cancer treated with local and locoregional radiotherapy. Int J Radiat Oncol Biol Phys. 2011;80:403–9.CrossRef Stokes EL, Tyldesley S, Woods R, Wai E, Olivotto IA. Effect of nodal irradiation and fraction size on cardiac and cerebrovascular mortality in women with breast cancer treated with local and locoregional radiotherapy. Int J Radiat Oncol Biol Phys. 2011;80:403–9.CrossRef
30.
go back to reference Punglia RS, Morrow M, Winer EP, Harris JR. Local therapy and survival in breast cancer. N Engl J Med. 2007;356:2399–405.CrossRef Punglia RS, Morrow M, Winer EP, Harris JR. Local therapy and survival in breast cancer. N Engl J Med. 2007;356:2399–405.CrossRef
31.
go back to reference Jagsi R, Chadha M, Moni J, et al. Radiation field design in the ACOSOG Z0011 (Alliance) trial. J Clin Oncol. 2014;32:3600–6.CrossRef Jagsi R, Chadha M, Moni J, et al. Radiation field design in the ACOSOG Z0011 (Alliance) trial. J Clin Oncol. 2014;32:3600–6.CrossRef
32.
go back to reference Savolt A, Peley G, Polgar C, et al. Eight-year follow up result of the OTOASOR trial: the optimal treatment of the axilla - surgery or radiotherapy after positive sentinel lymph node biopsy in early-stage breast cancer: a randomized, single Centre, phase III, non-inferiority trial. Eur J Surg Oncol. 2017;43:672–9.CrossRef Savolt A, Peley G, Polgar C, et al. Eight-year follow up result of the OTOASOR trial: the optimal treatment of the axilla - surgery or radiotherapy after positive sentinel lymph node biopsy in early-stage breast cancer: a randomized, single Centre, phase III, non-inferiority trial. Eur J Surg Oncol. 2017;43:672–9.CrossRef
33.
go back to reference Yates L, Kirby A, Crichton S, et al. Risk factors for regional nodal relapse in breast cancer patients with one to three positive axillary nodes. Int J Radiat Oncol Biol Phys. 2012;82:2093–103.CrossRef Yates L, Kirby A, Crichton S, et al. Risk factors for regional nodal relapse in breast cancer patients with one to three positive axillary nodes. Int J Radiat Oncol Biol Phys. 2012;82:2093–103.CrossRef
34.
go back to reference Grills IS, Kestin LL, Goldstein N, et al. Risk factors for regional nodal failure after breast-conserving therapy: regional nodal irradiation reduces rate of axillary failure in patients with four or more positive lymph nodes. Int J Radiat Oncol Biol Phys. 2003;56:658–70.CrossRef Grills IS, Kestin LL, Goldstein N, et al. Risk factors for regional nodal failure after breast-conserving therapy: regional nodal irradiation reduces rate of axillary failure in patients with four or more positive lymph nodes. Int J Radiat Oncol Biol Phys. 2003;56:658–70.CrossRef
35.
go back to reference Yu JI, Park W, Huh SJ, et al. Determining which patients require irradiation of the supraclavicular nodal area after surgery for N1 breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1135–41.CrossRef Yu JI, Park W, Huh SJ, et al. Determining which patients require irradiation of the supraclavicular nodal area after surgery for N1 breast cancer. Int J Radiat Oncol Biol Phys. 2010;78:1135–41.CrossRef
36.
go back to reference Reed DR, Lindsley SK, Mann GN, et al. Axillary lymph node dose with tangential breast irradiation. Int J Radiat Oncol Biol Phys. 2005;61:358–64.CrossRef Reed DR, Lindsley SK, Mann GN, et al. Axillary lymph node dose with tangential breast irradiation. Int J Radiat Oncol Biol Phys. 2005;61:358–64.CrossRef
37.
go back to reference Reznik J, Cicchetti MG, Degaspe B, Fitzgerald TJ. Analysis of axillary coverage during tangential radiation therapy to the breast. Int J Radiat Oncol Biol Phys. 2005;61:163–8.CrossRef Reznik J, Cicchetti MG, Degaspe B, Fitzgerald TJ. Analysis of axillary coverage during tangential radiation therapy to the breast. Int J Radiat Oncol Biol Phys. 2005;61:163–8.CrossRef
38.
go back to reference Thorsen LB, Thomsen MS, Berg M, et al. CT-planned internal mammary node radiotherapy in the DBCG-IMN study: benefit versus potentially harmful effects. Acta Oncol. 2014;53:1027–34.CrossRef Thorsen LB, Thomsen MS, Berg M, et al. CT-planned internal mammary node radiotherapy in the DBCG-IMN study: benefit versus potentially harmful effects. Acta Oncol. 2014;53:1027–34.CrossRef
39.
go back to reference Jatoi I, Benson JR, Kunkler I. Hypothesis: can the abscopal effect explain the impact of adjuvant radiotherapy on breast cancer mortality? NPJ Breast Cancer. 2018;4:8.CrossRef Jatoi I, Benson JR, Kunkler I. Hypothesis: can the abscopal effect explain the impact of adjuvant radiotherapy on breast cancer mortality? NPJ Breast Cancer. 2018;4:8.CrossRef
40.
go back to reference Sjostrom M, Lundstedt D, Hartman L, et al. Response to radiotherapy after breast-conserving surgery in different breast Cancer subtypes in the Swedish breast Cancer group 91 radiotherapy randomized clinical trial. J Clin Oncol. 2017;35:3222–9.CrossRef Sjostrom M, Lundstedt D, Hartman L, et al. Response to radiotherapy after breast-conserving surgery in different breast Cancer subtypes in the Swedish breast Cancer group 91 radiotherapy randomized clinical trial. J Clin Oncol. 2017;35:3222–9.CrossRef
41.
go back to reference Liu FF, Shi W, Done SJ, et al. Identification of a low-risk luminal a breast Cancer cohort that may not benefit from breast radiotherapy. J Clin Oncol. 2015;33:2035–40.CrossRef Liu FF, Shi W, Done SJ, et al. Identification of a low-risk luminal a breast Cancer cohort that may not benefit from breast radiotherapy. J Clin Oncol. 2015;33:2035–40.CrossRef
42.
go back to reference Scott JG, Berglund A, Schell MJ, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017;18:202–11.CrossRef Scott JG, Berglund A, Schell MJ, et al. A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol. 2017;18:202–11.CrossRef
43.
go back to reference Mignot F, Loirat D, Dureau S, et al. Disseminated tumor cells predict efficacy of regional nodal irradiation in early stage breast cancer. Int J Radiat Oncol Biol Phys. 2018. Mignot F, Loirat D, Dureau S, et al. Disseminated tumor cells predict efficacy of regional nodal irradiation in early stage breast cancer. Int J Radiat Oncol Biol Phys. 2018.
44.
go back to reference Goodman CR, Seagle BL, Friedl TWP, et al. Association of Circulating Tumor Cell Status with Benefit of radiotherapy and survival in early-stage breast Cancer. JAMA Oncol. 2018;4:e180163.CrossRef Goodman CR, Seagle BL, Friedl TWP, et al. Association of Circulating Tumor Cell Status with Benefit of radiotherapy and survival in early-stage breast Cancer. JAMA Oncol. 2018;4:e180163.CrossRef
45.
go back to reference McDuff SGR, Mina AI, Brunelle CL, et al. Timing of lymphedema following treatment for breast Cancer: when are patients Most at-risk? Int J Radiat Oncol Biol Phys. 2018. McDuff SGR, Mina AI, Brunelle CL, et al. Timing of lymphedema following treatment for breast Cancer: when are patients Most at-risk? Int J Radiat Oncol Biol Phys. 2018.
Metadata
Title
Which target volume should be considered when irradiating the regional nodes in breast cancer? Results of a network-meta-analysis
Authors
Jan Haussmann
Wilfried Budach
Balint Tamaskovics
Edwin Bölke
Stefanie Corradini
Freddy-Joel Djiepmo-Njanang
Kai Kammers
Christiane Matuschek
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1280-6

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue