Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | NSCLC | Research

Calculating the individualized fraction regime in stereotactic body radiotherapy for non-small cell lung cancer based on uncomplicated tumor control probability function

Authors: Jia-Yang Lu, Pei-Xian Lin, Bao-Tian Huang

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

To calculate the individualized fraction regime (IFR) in stereotactic body radiotherapy (SBRT) for non-small cell lung cancer (NSCLC) patients using the uncomplicated tumor control probability (UTCP, P+) function.

Methods

Thirty-three patients with peripheral lung cancer or lung metastases who had undergone SBRT were analyzed. Treatment planning was performed using the dose regime of 48 Gy in 4 fractions. Dose volume histogram (DVH) data for the gross tumor volume (GTV), lung, chest wall (CW) and rib were exported and the dose bin was multiplied by a certain percentage of the dose in that bin which ranged from 1 to 200% in steps of 1%. For each dose fraction, P+ values were calculated by considering the tumor control probability (TCP), radiation-induced pneumonitis (RIP), chest wall pain (CWP) and radiation-induced rib fracture (RIRF). UTCP values as a function of physical dose were plotted and the maximum P+ values corresponded to the optimal therapeutic gain. The IFR in 3 fractions was also calculated with the same method by converting the dose using the linear quadratic (LQ) model.

Results

Thirty-three patients attained an IFR using the introduced methods. All the patients achieved a TCP value higher than 92.0%. The IFR ranged from 3 × 10.8 Gy to 3 × 12.5 Gy for 3 fraction regimes and from 4 × 9.2 Gy to 4 × 10.7 Gy for 4 fraction regimes. Four patients with typical tumor characteristics demonstrated that the IFR was patient-specific and could maximize the therapeutic gain. Patients with a large tumor had a lower TCP and UTCP and a smaller fractional dose than patients with a small tumor. Patients with a tumor adjacent to the organ at risk (OAR) or at a high risk of RIP had a lower UTCP and a smaller fractional dose compared with patients with a tumor located distant from the OAR.

Conclusions

The proposed method is capable of predicting the IFR for NSCLC patients undergoing SBRT. Further validation in clinical samples is required.
Literature
1.
go back to reference Baumann P, Nyman J, Hoyer M, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy [J]. J Clin Oncol. 2009;27(20):3290–6.CrossRef Baumann P, Nyman J, Hoyer M, et al. Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy [J]. J Clin Oncol. 2009;27(20):3290–6.CrossRef
2.
go back to reference Bonfili P, Di Staso M, Gravina GL, et al. Hypofractionated radical radiotherapy in elderly patients with medically inoperable stage I-II non-small-cell lung cancer [J]. Lung Cancer. 2010;67(1):81–5.CrossRef Bonfili P, Di Staso M, Gravina GL, et al. Hypofractionated radical radiotherapy in elderly patients with medically inoperable stage I-II non-small-cell lung cancer [J]. Lung Cancer. 2010;67(1):81–5.CrossRef
3.
go back to reference Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer [J]. JAMA. 2010;303(11):1070–6.CrossRef Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer [J]. JAMA. 2010;303(11):1070–6.CrossRef
4.
go back to reference Xia T, Li H, Sun Q, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer [J]. Int J Radiat Oncol Biol Phys. 2006;66(1):117–25.CrossRef Xia T, Li H, Sun Q, et al. Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable stage I/II non-small-cell lung cancer [J]. Int J Radiat Oncol Biol Phys. 2006;66(1):117–25.CrossRef
5.
go back to reference Solda F, Lodge M, Ashley S, et al. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort [J]. Radiother Oncol. 2013;109(1):1–7.CrossRef Solda F, Lodge M, Ashley S, et al. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort [J]. Radiother Oncol. 2013;109(1):1–7.CrossRef
6.
go back to reference Zhang B, Zhu F, Ma X, et al. Matched-pair comparisons of stereotactic body radiotherapy (SBRT) versus surgery for the treatment of early stage non-small cell lung cancer: a systematic review and meta-analysis [J]. Radiother Oncol. 2014;112(2):250–5.CrossRef Zhang B, Zhu F, Ma X, et al. Matched-pair comparisons of stereotactic body radiotherapy (SBRT) versus surgery for the treatment of early stage non-small cell lung cancer: a systematic review and meta-analysis [J]. Radiother Oncol. 2014;112(2):250–5.CrossRef
7.
go back to reference Zheng X, Schipper M, Kidwell K, et al. Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis [J]. Int J Radiat Oncol Biol Phys. 2014;90(3):603–11.CrossRef Zheng X, Schipper M, Kidwell K, et al. Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis [J]. Int J Radiat Oncol Biol Phys. 2014;90(3):603–11.CrossRef
8.
go back to reference Barriger RB, Forquer JA, Brabham JG, et al. A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy [J]. Int J Radiat Oncol Biol Phys. 2012;82(1):457–62.CrossRef Barriger RB, Forquer JA, Brabham JG, et al. A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy [J]. Int J Radiat Oncol Biol Phys. 2012;82(1):457–62.CrossRef
9.
go back to reference Baker R, Han G, Sarangkasiri S, et al. Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung [J]. Int J Radiat Oncol Biol Phys. 2013;85(1):190–5.CrossRef Baker R, Han G, Sarangkasiri S, et al. Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung [J]. Int J Radiat Oncol Biol Phys. 2013;85(1):190–5.CrossRef
10.
go back to reference Chang JY, Liu H, Balter P, et al. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer [J]. Radiat Oncol. 2012;7:152.CrossRef Chang JY, Liu H, Balter P, et al. Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer [J]. Radiat Oncol. 2012;7:152.CrossRef
11.
go back to reference Harder EM, Park HS, Chen ZJ, Decker RH. Pulmonary dose-volume predictors of radiation pneumonitis following stereotactic body radiation therapy [J]. Practical Radiat Oncol. 2016;6(6):e353–9.CrossRef Harder EM, Park HS, Chen ZJ, Decker RH. Pulmonary dose-volume predictors of radiation pneumonitis following stereotactic body radiation therapy [J]. Practical Radiat Oncol. 2016;6(6):e353–9.CrossRef
12.
go back to reference Matsuo Y, Shibuya K, Nakamura M, et al. Dose-volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer [J]. Int J Radiat Oncol Biol Phys. 2012;83(4):e545–9.CrossRef Matsuo Y, Shibuya K, Nakamura M, et al. Dose-volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer [J]. Int J Radiat Oncol Biol Phys. 2012;83(4):e545–9.CrossRef
13.
go back to reference Nakamura M, Nishimura H, Nakayama M, et al. Dosimetric factors predicting radiation pneumonitis after cyberknife stereotactic body radiotherapy for peripheral lung cancer [J]. Br J Radiol. 2016;89(1068):20160560.CrossRef Nakamura M, Nishimura H, Nakayama M, et al. Dosimetric factors predicting radiation pneumonitis after cyberknife stereotactic body radiotherapy for peripheral lung cancer [J]. Br J Radiol. 2016;89(1068):20160560.CrossRef
14.
go back to reference Shi S, Zeng Z, Ye L, Huang Y, He J. Risk factors associated with symptomatic radiation pneumonitis after stereotactic body radiation therapy for stage I non-small cell lung cancer [J]. Technol Cancer Res Treat. 2017;16(3):316–20.CrossRef Shi S, Zeng Z, Ye L, Huang Y, He J. Risk factors associated with symptomatic radiation pneumonitis after stereotactic body radiation therapy for stage I non-small cell lung cancer [J]. Technol Cancer Res Treat. 2017;16(3):316–20.CrossRef
15.
go back to reference Yamamoto T, Kadoya N, Sato Y, et al. Prognostic value of radiation pneumonitis after stereotactic body radiotherapy: effect of pulmonary emphysema quantitated using CT images [J]. Clin Lung Cancer. 2018;19(1):e85–90.CrossRef Yamamoto T, Kadoya N, Sato Y, et al. Prognostic value of radiation pneumonitis after stereotactic body radiotherapy: effect of pulmonary emphysema quantitated using CT images [J]. Clin Lung Cancer. 2018;19(1):e85–90.CrossRef
16.
go back to reference Dunlap NE, Cai J, Biedermann GB, et al. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy [J]. Int J Radiat Oncol Biol Phys. 2010;76(3):796–801.CrossRef Dunlap NE, Cai J, Biedermann GB, et al. Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy [J]. Int J Radiat Oncol Biol Phys. 2010;76(3):796–801.CrossRef
17.
go back to reference Mutter RW, Liu F, Abreu A, et al. Dose-volume parameters predict for the development of chest wall pain after stereotactic body radiation for lung cancer [J]. Int J Radiat Oncol Biol Phys. 2012;82(5):1783–90.CrossRef Mutter RW, Liu F, Abreu A, et al. Dose-volume parameters predict for the development of chest wall pain after stereotactic body radiation for lung cancer [J]. Int J Radiat Oncol Biol Phys. 2012;82(5):1783–90.CrossRef
18.
go back to reference Din SU, Williams EL, Jackson A, et al. Impact of fractionation and dose in a multivariate model for radiation-induced chest wall pain [J]. Int J Radiat Oncol Biol Phys. 2015;93(2):418–24.CrossRef Din SU, Williams EL, Jackson A, et al. Impact of fractionation and dose in a multivariate model for radiation-induced chest wall pain [J]. Int J Radiat Oncol Biol Phys. 2015;93(2):418–24.CrossRef
19.
go back to reference Murray L, Karakaya E, Hinsley S, et al. Lung stereotactic ablative radiotherapy (SABR): Dosimetric considerations for chest wall toxicity [J]. Br J Radiol. 2016;89(1058):20150628.CrossRef Murray L, Karakaya E, Hinsley S, et al. Lung stereotactic ablative radiotherapy (SABR): Dosimetric considerations for chest wall toxicity [J]. Br J Radiol. 2016;89(1058):20150628.CrossRef
20.
go back to reference Woody NM, Videtic GM, Stephans KL, et al. Predicting chest wall pain from lung stereotactic body radiotherapy for different fractionation schemes [J]. Int J Radiat Oncol Biol Phys. 2012;83(1):427–34.CrossRef Woody NM, Videtic GM, Stephans KL, et al. Predicting chest wall pain from lung stereotactic body radiotherapy for different fractionation schemes [J]. Int J Radiat Oncol Biol Phys. 2012;83(1):427–34.CrossRef
21.
go back to reference Thibault I, Chiang A, Erler D, et al. Predictors of chest wall toxicity after lung stereotactic ablative radiotherapy [J]. Clin Oncol (R Coll Radiol). 2016;28(1):28–35.CrossRef Thibault I, Chiang A, Erler D, et al. Predictors of chest wall toxicity after lung stereotactic ablative radiotherapy [J]. Clin Oncol (R Coll Radiol). 2016;28(1):28–35.CrossRef
22.
go back to reference Asai K, Shioyama Y, Nakamura K, et al. Radiation-induced rib fractures after hypofractionated stereotactic body radiation therapy: risk factors and dose-volume relationship [J]. Int J Radiat Oncol Biol Phys. 2012;84(3):768–73.CrossRef Asai K, Shioyama Y, Nakamura K, et al. Radiation-induced rib fractures after hypofractionated stereotactic body radiation therapy: risk factors and dose-volume relationship [J]. Int J Radiat Oncol Biol Phys. 2012;84(3):768–73.CrossRef
23.
go back to reference Stam B, van der Bijl E, Peulen H, et al. Dose-effect analysis of radiation induced rib fractures after thoracic SBRT [J]. Radiother Oncol. 2017;123(2):176–81.CrossRef Stam B, van der Bijl E, Peulen H, et al. Dose-effect analysis of radiation induced rib fractures after thoracic SBRT [J]. Radiother Oncol. 2017;123(2):176–81.CrossRef
24.
go back to reference Coroller TP, Mak RH, Lewis JH, et al. Low incidence of chest wall pain with a risk-adapted lung stereotactic body radiation therapy approach using three or five fractions based on chest wall dosimetry [J]. PLoS One. 2014;9(4):e94859.CrossRef Coroller TP, Mak RH, Lewis JH, et al. Low incidence of chest wall pain with a risk-adapted lung stereotactic body radiation therapy approach using three or five fractions based on chest wall dosimetry [J]. PLoS One. 2014;9(4):e94859.CrossRef
25.
go back to reference Bongers EM, Haasbeek CJ, Lagerwaard FJ, Slotman BJ, Senan S. Incidence and risk factors for chest wall toxicity after risk-adapted stereotactic radiotherapy for early-stage lung cancer [J]. J Thorac Oncol. 2011;6(12):2052–7.CrossRef Bongers EM, Haasbeek CJ, Lagerwaard FJ, Slotman BJ, Senan S. Incidence and risk factors for chest wall toxicity after risk-adapted stereotactic radiotherapy for early-stage lung cancer [J]. J Thorac Oncol. 2011;6(12):2052–7.CrossRef
26.
go back to reference Videtic GM, Hu C, Singh AK, et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927) [J]. Int J Radiat Oncol Biol Phys. 2015;93(4):757–64.CrossRef Videtic GM, Hu C, Singh AK, et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927) [J]. Int J Radiat Oncol Biol Phys. 2015;93(4):757–64.CrossRef
27.
go back to reference Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus [J]. Int J Radiat Oncol Biol Phys. 2011;81(5):1442–57.CrossRef Kong FM, Ritter T, Quint DJ, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus [J]. Int J Radiat Oncol Biol Phys. 2011;81(5):1442–57.CrossRef
28.
go back to reference Martin A, Gaya A. Stereotactic body radiotherapy: a review [J]. Clin Oncol (R Coll Radiol). 2010;22(3):157–72.CrossRef Martin A, Gaya A. Stereotactic body radiotherapy: a review [J]. Clin Oncol (R Coll Radiol). 2010;22(3):157–72.CrossRef
29.
go back to reference Liu F, Tai A, Lee P, et al. Tumor control probability modelling for stereotactic body radiation therapy of early-stage lung cancer using multiple bio-physical models [J]. Radiother Oncol. 2017;122(2):286–94.CrossRef Liu F, Tai A, Lee P, et al. Tumor control probability modelling for stereotactic body radiation therapy of early-stage lung cancer using multiple bio-physical models [J]. Radiother Oncol. 2017;122(2):286–94.CrossRef
30.
go back to reference Wennberg BM, Baumann P, Gagliardi G, et al. NTCP modelling of lung toxicity after sbrt comparing the universal survival curve and the linear quadratic model for fractionation correction [J]. Acta Oncol. 2011;50(4):518–27.CrossRef Wennberg BM, Baumann P, Gagliardi G, et al. NTCP modelling of lung toxicity after sbrt comparing the universal survival curve and the linear quadratic model for fractionation correction [J]. Acta Oncol. 2011;50(4):518–27.CrossRef
31.
go back to reference Agren A, Brahme A, Turesson I. Optimization of uncomplicated control for head and neck tumors [J]. Int J Radiat Oncol Biol Phys. 1990;19(4):1077–85.CrossRef Agren A, Brahme A, Turesson I. Optimization of uncomplicated control for head and neck tumors [J]. Int J Radiat Oncol Biol Phys. 1990;19(4):1077–85.CrossRef
32.
go back to reference Pizarro F, Hernandez A. Optimization of radiotherapy fractionation schedules based on radiobiological functions [J]. Br J Radiol. 2017;90(1079):20170400.CrossRef Pizarro F, Hernandez A. Optimization of radiotherapy fractionation schedules based on radiobiological functions [J]. Br J Radiol. 2017;90(1079):20170400.CrossRef
33.
go back to reference Ruggieri R, Stavrev P, Naccarato S, et al. Optimal dose and fraction number in SBRT of lung tumours: a radiobiological analysis [J]. Phys Med. 2017;44:188–95.CrossRef Ruggieri R, Stavrev P, Naccarato S, et al. Optimal dose and fraction number in SBRT of lung tumours: a radiobiological analysis [J]. Phys Med. 2017;44:188–95.CrossRef
34.
go back to reference Park S, Urm S, Cho H. Analysis of biologically equivalent dose of stereotactic body radiotherapy for primary and metastatic lung tumors [J]. Cancer Res Treat. 2014;46(4):403–10.CrossRef Park S, Urm S, Cho H. Analysis of biologically equivalent dose of stereotactic body radiotherapy for primary and metastatic lung tumors [J]. Cancer Res Treat. 2014;46(4):403–10.CrossRef
35.
go back to reference Guckenberger M, Wulf J, Mueller G, et al. Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation [J]. Int J Radiat Oncol Biol Phys. 2009;74(1):47–54.CrossRef Guckenberger M, Wulf J, Mueller G, et al. Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation [J]. Int J Radiat Oncol Biol Phys. 2009;74(1):47–54.CrossRef
36.
go back to reference Kestin L, Grills I, Guckenberger M, et al. Dose-response relationship with clinical outcome for lung stereotactic body radiotherapy (SBRT) delivered via online image guidance [J]. Radiother Oncol. 2014;110(3):499–504.CrossRef Kestin L, Grills I, Guckenberger M, et al. Dose-response relationship with clinical outcome for lung stereotactic body radiotherapy (SBRT) delivered via online image guidance [J]. Radiother Oncol. 2014;110(3):499–504.CrossRef
37.
go back to reference Lee S, Song SY, Kim SS, et al. Feasible optimization of stereotactic ablative radiotherapy dose by tumor size for stage I non-small-cell lung cancer [J]. Clin Lung Cancer. 2018;19(2):e253–61.CrossRef Lee S, Song SY, Kim SS, et al. Feasible optimization of stereotactic ablative radiotherapy dose by tumor size for stage I non-small-cell lung cancer [J]. Clin Lung Cancer. 2018;19(2):e253–61.CrossRef
38.
go back to reference Koshy M, Malik R, Weichselbaum RR, Sher DJ. Increasing radiation therapy dose is associated with improved survival in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer [J]. Int J Radiat Oncol Biol Phys. 2015;91(2):344–50.CrossRef Koshy M, Malik R, Weichselbaum RR, Sher DJ. Increasing radiation therapy dose is associated with improved survival in patients undergoing stereotactic body radiation therapy for stage I non-small-cell lung cancer [J]. Int J Radiat Oncol Biol Phys. 2015;91(2):344–50.CrossRef
39.
go back to reference Zhang J, Yang F, Li B, et al. Which is the optimal biologically effective dose of stereotactic body radiotherapy for stage I non-small-cell lung cancer? A meta-analysis [J]. Int J Radiat Oncol Biol Phys. 2011;81(4):e305–16.CrossRef Zhang J, Yang F, Li B, et al. Which is the optimal biologically effective dose of stereotactic body radiotherapy for stage I non-small-cell lung cancer? A meta-analysis [J]. Int J Radiat Oncol Biol Phys. 2011;81(4):e305–16.CrossRef
40.
go back to reference Guckenberger M, Klement RJ, Allgauer M, et al. Applicability of the linear-quadratic formalism for modelling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer [J]. Radiother Oncol. 2013;109(1):13–20.CrossRef Guckenberger M, Klement RJ, Allgauer M, et al. Applicability of the linear-quadratic formalism for modelling local tumor control probability in high dose per fraction stereotactic body radiotherapy for early stage non-small cell lung cancer [J]. Radiother Oncol. 2013;109(1):13–20.CrossRef
41.
go back to reference Santiago A, Barczyk S, Jelen U, Engenhart-Cabillic R, Wittig A. Challenges in radiobiological modelling: can we decide between LQ and LQ-L models based on reviewed clinical nsclc treatment outcome data? [J]. Radiat Oncol. 2016;11:67.CrossRef Santiago A, Barczyk S, Jelen U, Engenhart-Cabillic R, Wittig A. Challenges in radiobiological modelling: can we decide between LQ and LQ-L models based on reviewed clinical nsclc treatment outcome data? [J]. Radiat Oncol. 2016;11:67.CrossRef
42.
go back to reference Guckenberger M, Klement RJ, Allgauer M, et al. Local tumor control probability modelling of primary and secondary lung tumors in stereotactic body radiotherapy [J]. Radiother Oncol. 2016;118(3):485–91.CrossRef Guckenberger M, Klement RJ, Allgauer M, et al. Local tumor control probability modelling of primary and secondary lung tumors in stereotactic body radiotherapy [J]. Radiother Oncol. 2016;118(3):485–91.CrossRef
43.
go back to reference Shuryak I, Carlson DJ, Brown JM, Brenner DJ. High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients [J]. Radiother Oncol. 2015;115(3):327–34.CrossRef Shuryak I, Carlson DJ, Brown JM, Brenner DJ. High-dose and fractionation effects in stereotactic radiation therapy: analysis of tumor control data from 2965 patients [J]. Radiother Oncol. 2015;115(3):327–34.CrossRef
44.
go back to reference Scheenstra AE, Rossi MM, Belderbos JS, et al. Alpha/beta ratio for normal lung tissue as estimated from lung cancer patients treated with stereotactic body and conventionally fractionated radiation therapy [J]. Int J Radiat Oncol Biol Phys. 2014;88(1):224–8.CrossRef Scheenstra AE, Rossi MM, Belderbos JS, et al. Alpha/beta ratio for normal lung tissue as estimated from lung cancer patients treated with stereotactic body and conventionally fractionated radiation therapy [J]. Int J Radiat Oncol Biol Phys. 2014;88(1):224–8.CrossRef
45.
go back to reference Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy [J]. Int J Radiat Oncol Biol Phys. 2008;70(3):847–52.CrossRef Park C, Papiez L, Zhang S, Story M, Timmerman RD. Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy [J]. Int J Radiat Oncol Biol Phys. 2008;70(3):847–52.CrossRef
46.
go back to reference Nambu A, Onishi H, Aoki S, et al. Rib fracture after stereotactic radiotherapy for primary lung cancer: prevalence, degree of clinical symptoms, and risk factors [J]. BMC Cancer. 2013;13:68.CrossRef Nambu A, Onishi H, Aoki S, et al. Rib fracture after stereotactic radiotherapy for primary lung cancer: prevalence, degree of clinical symptoms, and risk factors [J]. BMC Cancer. 2013;13:68.CrossRef
47.
go back to reference Ueyama T, Arimura T, Takumi K, et al. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio [J]. Br J Radiol. 2018;91(1086):20170453.CrossRef Ueyama T, Arimura T, Takumi K, et al. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumours: clinical usefulness of the planning target volume to total lung volume ratio [J]. Br J Radiol. 2018;91(1086):20170453.CrossRef
Metadata
Title
Calculating the individualized fraction regime in stereotactic body radiotherapy for non-small cell lung cancer based on uncomplicated tumor control probability function
Authors
Jia-Yang Lu
Pei-Xian Lin
Bao-Tian Huang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1318-9

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue