Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Computed Tomography | Research

Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas – an automated analysis of follow up CT scans

Authors: Christina Schröder, Rita Engenhart-Cabillic, Sven Kirschner, Eyck Blank, André Buchali

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

An objective way to qualify the effect of radiotherapy (RT) on lung tissue is the analysis of CT scans after RT. In this analysis we focused on the changes in Hounsfield units (ΔHU) and the correlation with the corresponding radiation dose after RT.

Methods

Pre- and post-RT CT scans were matched and ΔHU was calculated using customized research software. ΔHU was calculated in 5-Gy-intervals and the correlation between ΔHU and the corresponding dose was calculated as well as the regression coefficients. Additionally the mean ΔHU and ΔHU in 5-Gy-intervals were calculated for each tumor entity.

Results

The mean density changes at 12 weeks and 6 months post RT were 28,16 HU and 32,83 HU. The correlation coefficient between radiation dose and ΔHU at 12 weeks and 6 months were 0,166 (p = 0,000) and 0,158 (p = 0,000). The resulting regression coefficient were 1439 HU/Gy (p = 0,000) and 1612 HU/Gy (p = 0,000). The individual regression coefficients for each patient range from − 2,23 HU/Gy to 7,46 HU/Gy at 12 weeks and − 0,45 HU/Gy to 10,51 HU/Gy at 6 months. When looking at the three tumor entities individually the highest ΔHU at 12 weeks was seen in patients with SCLC (38,13 HU) and at 6 month in those with esophageal carcinomas (40,98 HU).

Conclusion

For most dose intervals there was an increase of ΔHU with an increased radiation dose. This is reflected by a statistically significant, although low correlation coefficient. The regression coefficients of all patients show large interindividual differences.
Literature
8.
go back to reference Graham MV, Purdy JA, Emami B, Harms W. Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45:323–9.CrossRef Graham MV, Purdy JA, Emami B, Harms W. Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys. 1999;45:323–9.CrossRef
13.
go back to reference Bernchou U, Schytte T, Bertelsen A, Bentzen SM. Time evolution of regional CT density changes in normal lung after IMRT for NSCLC. Radiother Oncol. 2013;109:89–94.CrossRef Bernchou U, Schytte T, Bertelsen A, Bentzen SM. Time evolution of regional CT density changes in normal lung after IMRT for NSCLC. Radiother Oncol. 2013;109:89–94.CrossRef
20.
go back to reference Seppenwoolde Y, Muller SH, Theuws J, et al. Radiation dose-effect relations and local recovery in perfusion for patients with non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;47:681–90.CrossRef Seppenwoolde Y, Muller SH, Theuws J, et al. Radiation dose-effect relations and local recovery in perfusion for patients with non–small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2000;47:681–90.CrossRef
Metadata
Title
Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas – an automated analysis of follow up CT scans
Authors
Christina Schröder
Rita Engenhart-Cabillic
Sven Kirschner
Eyck Blank
André Buchali
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1276-2

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue