Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Magnetic Resonance Imaging | Research

DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial brain tumors treated by radiosurgery with cyberknife

Authors: Rosa Morabito, Concetta Alafaci, Stefano Pergolizzi, Antonio Pontoriero, Giuseppe Iati’, Lilla Bonanno, Michele Gaeta, Francesco Maria Salpietro, Enricomaria Mormina, Marcello Longo, Francesca Granata

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

The differential diagnosis between radiation necrosis, tumor recurrence and tumor progression is crucial for the evaluation of treatment response and treatment planning.
The appearance of treatment-induced tissue necrosis on conventional Magnetic Resonance Imaging (MRI) is similar to brain tumor recurrence and it could be difficult to differentiate the two entities on follow-up MRI examinations.
Dynamic Susceptibility Contrast-enhanced (DSC) and Dynamic Contrast-Enhanced (DCE) are MRI perfusion techniques that use an exogenous, intravascular, non-diffusible gadolinium-based contrast agent.
The aim of this study was to compare the diagnostic accuracy of DSC and DCE perfusion MRI in the differential diagnosis between radiation necrosis and tumor recurrence, in the follow-up of primary and metastatic intra-axial brain tumors after Stereotactic RadioSurgery (SRS) performed with CyberKnife.

Methods

A total of 72 enhancing lesions (57 brain metastases and 15 primary brain tumors) were analyzed with DCE and DSC, by means of MRI acquisition performed by 1,5 Tesla MR scanner. The statistical relationship between the diagnosis of tumor recurrence or radiation necrosis, decided according to clinicoradiologically criteria, rCBV and Ktrans was evaluated by the point-biserial correlation coefficient respectively.

Results

The statistical analysis showed a correlation between the diagnosis of radiation necrosis or recurrent tumor with Ktrans (rpb = 0.54, p < 0.001) and with rCBV (rpb = 0.37, p = 0.002).
The ROC analysis of rCBV values demonstrated a good classification ability in differentiating radiation necrosis from tumour recurrence as well as the Ktrans. The optimal cut-off value for rCBV was k = 1.23 with 0.88 of sensitivity and 0.75 of specificity while for Ktrans was k = 28.76 with 0.89 of sensitivity and 0.97 of specificity.

Conclusions

MRI perfusion techniques, particularly DCE, help in the differential diagnosis by tumor recurrence and radiation necrosis during the follow-up after radiosurgery.
Literature
1.
go back to reference Guo L, Wang G, Feng Y, Yu T, Guo Y, Bai X, Ye Z. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors. Radiat Oncol. 2016;11(1):123.CrossRef Guo L, Wang G, Feng Y, Yu T, Guo Y, Bai X, Ye Z. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors. Radiat Oncol. 2016;11(1):123.CrossRef
2.
go back to reference Raimbault A, Cazals X, Lauvin MA, Destrieux C, Chapet S, Cottier JP. Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagn Interv Imaging. 2014;95(10):985–1000.CrossRef Raimbault A, Cazals X, Lauvin MA, Destrieux C, Chapet S, Cottier JP. Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagn Interv Imaging. 2014;95(10):985–1000.CrossRef
3.
go back to reference Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion and perfusion MRI to differentiate treatment related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol. 2015;36(5):877–85.CrossRef Prager AJ, Martinez N, Beal K, Omuro A, Zhang Z, Young RJ. Diffusion and perfusion MRI to differentiate treatment related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol. 2015;36(5):877–85.CrossRef
4.
go back to reference Fatterpekar GM, Galheigo D, Narayana A, Johnson G, Knopp E. Treatment related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum--use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 2012;198(1):19–26.CrossRef Fatterpekar GM, Galheigo D, Narayana A, Johnson G, Knopp E. Treatment related change versus tumor recurrence in high-grade gliomas: a diagnostic conundrum--use of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI. AJR Am J Roentgenol. 2012;198(1):19–26.CrossRef
5.
go back to reference Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21(5):901–9.PubMed Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol. 2000;21(5):901–9.PubMed
6.
go back to reference Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-Oncology. 2013;15(5):515–34.CrossRef Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro-Oncology. 2013;15(5):515–34.CrossRef
7.
go back to reference Shah R, Vattoth S, Jacob R, Manzil FF, O'Malley JP, Borghei P, Patel BN, Curé JK. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32(5):1343–59.CrossRef Shah R, Vattoth S, Jacob R, Manzil FF, O'Malley JP, Borghei P, Patel BN, Curé JK. Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics. 2012;32(5):1343–59.CrossRef
8.
go back to reference Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J RadiatOncolBiol Phys. 2010;77(4):996–1001. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J RadiatOncolBiol Phys. 2010;77(4):996–1001.
9.
go back to reference Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6(9):1215–28.CrossRef Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6(9):1215–28.CrossRef
10.
go back to reference Chamberline MC, Glantz MJ, Chalmers L, et al. Early necross following concurrent Temoal and radiotherapy in patients with glioblastoma. J Neuro-Oncol. 2007;82(1):81–3.CrossRef Chamberline MC, Glantz MJ, Chalmers L, et al. Early necross following concurrent Temoal and radiotherapy in patients with glioblastoma. J Neuro-Oncol. 2007;82(1):81–3.CrossRef
11.
go back to reference Lee AW, Kwong DL, Leung SF, Tung SY, Sze WM, Sham JS, et al. Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J RadiatOncolBiol Phys. 2002;53(1):75–85. Lee AW, Kwong DL, Leung SF, Tung SY, Sze WM, Sham JS, et al. Factors affecting risk of symptomatic temporal lobe necrosis: significance of fractional dose and treatment time. Int J RadiatOncolBiol Phys. 2002;53(1):75–85.
12.
go back to reference Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J RadiatOncolBiol Phys. 2000;47(2):291–8. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J RadiatOncolBiol Phys. 2000;47(2):291–8.
13.
go back to reference Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.CrossRef Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, et al. Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol. 2009;30(2):367–72.CrossRef
14.
go back to reference Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004;9(5):528–37.CrossRef Covarrubias DJ, Rosen BR, Lev MH. Dynamic magnetic resonance perfusion imaging of brain tumors. Oncologist. 2004;9(5):528–37.CrossRef
15.
go back to reference Hazle JD, Jackson EF, Schomer DF, Leeds NE. Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J MagnReson Imaging. 1997;7(6):1084–93.CrossRef Hazle JD, Jackson EF, Schomer DF, Leeds NE. Dynamic imaging of intracranial lesions using fast spin-echo imaging: differentiation of brain tumors and treatment effects. J MagnReson Imaging. 1997;7(6):1084–93.CrossRef
16.
go back to reference Thomas AA, Arevalo-Perez J, Kaley T, Lyo J, Peck KK, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neuro-Oncol. 2015;125(1):183–90.CrossRef Thomas AA, Arevalo-Perez J, Kaley T, Lyo J, Peck KK, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neuro-Oncol. 2015;125(1):183–90.CrossRef
17.
go back to reference Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol. 2011;21(2):147–56.CrossRef Cao Y. The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol. 2011;21(2):147–56.CrossRef
18.
go back to reference Wan B, Wang S, Tu M, Wu B, Han P, Xu H. The diagnostic performance of perfusion MRI for differentiating glioma recurrence frompseudopreogression: a meta-analysis. Medicine (Baltimore). 2017;96(11):e6333.CrossRef Wan B, Wang S, Tu M, Wu B, Han P, Xu H. The diagnostic performance of perfusion MRI for differentiating glioma recurrence frompseudopreogression: a meta-analysis. Medicine (Baltimore). 2017;96(11):e6333.CrossRef
19.
go back to reference Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, et al. Perfusion MRI: The five most frequently asked technical questions. AJR Am J Roentgenol. 2013;200(1):24–34.CrossRef Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, et al. Perfusion MRI: The five most frequently asked technical questions. AJR Am J Roentgenol. 2013;200(1):24–34.CrossRef
20.
go back to reference Nguyen TB, Cron GO, Perdrizet K, Bezzina K, Torres CH, Chakraborty S, et al. Comparison of the diagnostic accuracy of DSC- and dynamic contrast-enhanced MRI in the preoperative grading of Astrocytomas. AJNR Am J Neuroradiol. 2015;36(11):2017–22.CrossRef Nguyen TB, Cron GO, Perdrizet K, Bezzina K, Torres CH, Chakraborty S, et al. Comparison of the diagnostic accuracy of DSC- and dynamic contrast-enhanced MRI in the preoperative grading of Astrocytomas. AJNR Am J Neuroradiol. 2015;36(11):2017–22.CrossRef
21.
go back to reference Yankeelov TE, Gore JC. Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev. 2009;3(2):91–107.CrossRef Yankeelov TE, Gore JC. Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples. Curr Med Imaging Rev. 2009;3(2):91–107.CrossRef
22.
go back to reference O'Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96(2):189–95.CrossRef O'Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96(2):189–95.CrossRef
23.
go back to reference Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol. 2015;36(6):E41–51.CrossRef Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol. 2015;36(6):E41–51.CrossRef
24.
go back to reference Bisdas S, Naegele T, Ritz R, Dimostheni A, Pfannenberg C, Reimold M, Koh TS, Ernemann U. Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol. 2011;18(5):575–83.CrossRef Bisdas S, Naegele T, Ritz R, Dimostheni A, Pfannenberg C, Reimold M, Koh TS, Ernemann U. Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol. 2011;18(5):575–83.CrossRef
25.
go back to reference Narang J, Jain R, Arbab AS, Mikkelsen T, Scarpace L, Rosenblum ML, Hearshen D, Babajani-Feremi A. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro-Oncology. 2011;13(9):1037–46.CrossRef Narang J, Jain R, Arbab AS, Mikkelsen T, Scarpace L, Rosenblum ML, Hearshen D, Babajani-Feremi A. Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion. Neuro-Oncology. 2011;13(9):1037–46.CrossRef
26.
go back to reference Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol. 2000;21(5):891–9.PubMed Roberts HC, Roberts TP, Brasch RC, Dillon WP. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol. 2000;21(5):891–9.PubMed
27.
go back to reference Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253(2):486–96.CrossRef Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology. 2009;253(2):486–96.CrossRef
28.
go back to reference Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.CrossRef Hu LS, Baxter LC, Smith KA, Feuerstein BG, Karis JP, Eschbacher JM, et al. Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol. 2009;30(3):552–8.CrossRef
Metadata
Title
DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial brain tumors treated by radiosurgery with cyberknife
Authors
Rosa Morabito
Concetta Alafaci
Stefano Pergolizzi
Antonio Pontoriero
Giuseppe Iati’
Lilla Bonanno
Michele Gaeta
Francesco Maria Salpietro
Enricomaria Mormina
Marcello Longo
Francesca Granata
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1271-7

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue