Skip to main content
Top
Published in: Radiation Oncology 1/2019

Open Access 01-12-2019 | Radioimmunotherapy | Research

Overall survival according to immunotherapy and radiation treatment for metastatic non-small-cell lung cancer: a National Cancer Database analysis

Authors: Corey C. Foster, David J. Sher, Chad G. Rusthoven, Vivek Verma, Michael T. Spiotto, Ralph R. Weichselbaum, Matthew Koshy

Published in: Radiation Oncology | Issue 1/2019

Login to get access

Abstract

Background

Preclinical studies suggest enhanced anti-tumor activity with combined radioimmunotherapy. We hypothesized that radiation (RT) + immunotherapy would associate with improved overall survival (OS) compared to immunotherapy or chemotherapy alone for patients with newly diagnosed metastatic non-small-cell lung cancer (NSCLC).

Methods

The National Cancer Database was queried for patients with stage IV NSCLC receiving chemotherapy or immunotherapy from 2013 to 2014. RT modality was classified as stereotactic radiotherapy (SRT) to intra- and/or extracranial sites or non-SRT external beam RT (EBRT). OS was analyzed using the Kaplan-Meier method and Cox proportional hazards models.

Results

In total, 44,498 patients were included (13% immunotherapy, 46.8% EBRT, and 4.7% SRT). On multivariate analysis, immunotherapy (hazard ratio [HR]:0.81, 95% confidence interval [CI]:0.78–0.83) and SRT (HR:0.78, 95%CI:0.70–0.78) independently associated with improved OS; however, the interaction term for SRT + immunotherapy was insignificant (p = 0.89). For immunotherapy patients, the median OS for no RT, EBRT, and SRT was 14.5, 10.9, and 18.2 months, respectively (p < 0.0001), and EBRT (HR:1.37, 95%CI:1.29–1.46) and SRT (HR:0.78, 95%CI:0.66–0.93) associated with OS on multivariate analysis. In the SRT subset, median OS for immunotherapy and chemotherapy was 18.2 and 14.3 months, respectively (p = 0.004), with immunotherapy (HR:0.82, 95%CI:0.69–0.98) associating with OS on multivariate analysis. Furthermore, for patients receiving SRT, biologically effective dose (BED) > 60 Gy was independently associated with improved OS (HR:0.79, 95%CI:0.70–0.90, p < 0.0001) on multivariate analysis with a significant interaction between BED and systemic treatment (p = 0.008).

Conclusions

Treatment with SRT associated with improved OS for patients with metastatic NSCLC irrespective of systemic treatment. The high survival for patients receiving SRT + immunotherapy strongly argues for evaluation in randomized trials.
Literature
1.
go back to reference Seigel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef Seigel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef
2.
go back to reference Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.PubMed Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.PubMed
4.
go back to reference Gomez DR, Blumenschein GR, Lee JJ, et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016;17:1672–82.CrossRef Gomez DR, Blumenschein GR, Lee JJ, et al. Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol. 2016;17:1672–82.CrossRef
5.
go back to reference Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRef Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.CrossRef
6.
go back to reference Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.CrossRef Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.CrossRef
7.
go back to reference Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1 positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRef Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1 positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRef
8.
go back to reference Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;22:2078–92.CrossRef Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;22:2078–92.CrossRef
10.
go back to reference Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18:895–903.CrossRef Shaverdian N, Lisberg AE, Bornazyan K, et al. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017;18:895–903.CrossRef
11.
go back to reference Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.CrossRef Zeng J, See AP, Phallen J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86:343–9.CrossRef
12.
go back to reference Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Inves. 2014;124:687–95.CrossRef Deng L, Liang H, Burnette B, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Inves. 2014;124:687–95.CrossRef
13.
go back to reference Weichselbaum RR, Liang H, Deng L, et al. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017;14:365–79.CrossRef Weichselbaum RR, Liang H, Deng L, et al. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017;14:365–79.CrossRef
14.
go back to reference Boffa DJ, Rosen JE, Mallin K, et al. Using the National Cancer Database for outcomes research: a review. JAMA Oncol. 2017;3:1722–8.CrossRef Boffa DJ, Rosen JE, Mallin K, et al. Using the National Cancer Database for outcomes research: a review. JAMA Oncol. 2017;3:1722–8.CrossRef
17.
go back to reference Lin CC, Virgo KS, Robbins AS, et al. Comparison of comorbid medical conditions in the National Cancer Database and the SEER-Medicare database. Ann Surg Oncol. 2016;23:4139–48.CrossRef Lin CC, Virgo KS, Robbins AS, et al. Comparison of comorbid medical conditions in the National Cancer Database and the SEER-Medicare database. Ann Surg Oncol. 2016;23:4139–48.CrossRef
18.
go back to reference Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45:613–9.CrossRef Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45:613–9.CrossRef
19.
go back to reference Marconi R, Strolin S, Bossi G, et al. A meta-analysis of the abscopal effect in preclinical models: is the biologically effective dose a relevant physical trigger? PLoS One. 2017;12:e0171559.CrossRef Marconi R, Strolin S, Bossi G, et al. A meta-analysis of the abscopal effect in preclinical models: is the biologically effective dose a relevant physical trigger? PLoS One. 2017;12:e0171559.CrossRef
20.
go back to reference Lopes G, Wu YL, Kudaba I, et al. Pembrolizumab (pembro) versus platninum-based chemotherapy (chemo) as first-line therapy for advanced/metastatic NSCLC with a PD-L1 tumor proportion score (TPS) ≥1%: open-label, phase 3 KEYNOTE-042 study. J Clin Oncol. 2018;36:LBA4.CrossRef Lopes G, Wu YL, Kudaba I, et al. Pembrolizumab (pembro) versus platninum-based chemotherapy (chemo) as first-line therapy for advanced/metastatic NSCLC with a PD-L1 tumor proportion score (TPS) ≥1%: open-label, phase 3 KEYNOTE-042 study. J Clin Oncol. 2018;36:LBA4.CrossRef
21.
go back to reference Westover KD, Iyengar P, Sharma AN, et al. SABR for aggressive local therapy of metastatic cancer: a new paradigm for metastatic non-small cell lung cancer. Lung Cancer. 2015;89:87–93.CrossRef Westover KD, Iyengar P, Sharma AN, et al. SABR for aggressive local therapy of metastatic cancer: a new paradigm for metastatic non-small cell lung cancer. Lung Cancer. 2015;89:87–93.CrossRef
22.
go back to reference Iyengar P, Kavanagh BD, Wardak Z, et al. Phase II trial of stereotactic body radiation therapy combined with erlotinib for patients with limited but progressive metastatic non-small-cell lung cancer. J Clin Oncol. 2014;32:3824–30.CrossRef Iyengar P, Kavanagh BD, Wardak Z, et al. Phase II trial of stereotactic body radiation therapy combined with erlotinib for patients with limited but progressive metastatic non-small-cell lung cancer. J Clin Oncol. 2014;32:3824–30.CrossRef
23.
go back to reference Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13:5–13.CrossRef Ramalingam S, Belani C. Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist. 2008;13:5–13.CrossRef
24.
go back to reference Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRef Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRef
25.
go back to reference Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.CrossRef Gettinger SN, Horn L, Gandhi L, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33:2004–12.CrossRef
26.
go back to reference Theelen W, Peulen H, Lalezari F, et al. Randomized phase II study of pembrolizumab after stereotactic radiotherapy (SBRT) versus pembrolizumab alone in patients with advanced non-small lung cancer: the PEMBRO-RT study. J Clin Oncol. 2018;36:9023.CrossRef Theelen W, Peulen H, Lalezari F, et al. Randomized phase II study of pembrolizumab after stereotactic radiotherapy (SBRT) versus pembrolizumab alone in patients with advanced non-small lung cancer: the PEMBRO-RT study. J Clin Oncol. 2018;36:9023.CrossRef
27.
go back to reference Filatenkov A, Baker J, Mueller AM, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21:3727–39.CrossRef Filatenkov A, Baker J, Mueller AM, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res. 2015;21:3727–39.CrossRef
28.
go back to reference Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114:589–95.CrossRef Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114:589–95.CrossRef
29.
go back to reference Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2018;377:1919–29.CrossRef Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2018;377:1919–29.CrossRef
36.
go back to reference Cushman TR, Caetano MS, Welsh JW, et al. Overview of ongoing clinical trials investigating combined radiotherapy and immunotherapy. Immunotherapy. 2018;10:850–1.CrossRef Cushman TR, Caetano MS, Welsh JW, et al. Overview of ongoing clinical trials investigating combined radiotherapy and immunotherapy. Immunotherapy. 2018;10:850–1.CrossRef
37.
go back to reference Verma V, Cushman TR, Selek U, et al. Safety of combined immunotherapy and thoracic radiation therapy: analysis of 3 single-institutional phase I/II trials. Int J Radiat Oncol Biol Phys. 2018;101:1141–8.CrossRef Verma V, Cushman TR, Selek U, et al. Safety of combined immunotherapy and thoracic radiation therapy: analysis of 3 single-institutional phase I/II trials. Int J Radiat Oncol Biol Phys. 2018;101:1141–8.CrossRef
Metadata
Title
Overall survival according to immunotherapy and radiation treatment for metastatic non-small-cell lung cancer: a National Cancer Database analysis
Authors
Corey C. Foster
David J. Sher
Chad G. Rusthoven
Vivek Verma
Michael T. Spiotto
Ralph R. Weichselbaum
Matthew Koshy
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2019
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-019-1222-3

Other articles of this Issue 1/2019

Radiation Oncology 1/2019 Go to the issue