Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Research

Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison

Authors: Thomas Tessonnier, Andrea Mairani, Wenjing Chen, Paola Sala, Francesco Cerutti, Alfredo Ferrari, Thomas Haberer, Jürgen Debus, Katia Parodi

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models.

Methods

Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps.

Results

In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue.

Conclusions

Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.
Appendix
Available only for authorised users
Literature
2.
go back to reference Castro JR, Petti PL, Blakely EA, Linstadt DE. Particle radiation therapy. Tech. Rep. LBL−36229. PA: W.B. Saunders Company; 1994. Castro JR, Petti PL, Blakely EA, Linstadt DE. Particle radiation therapy. Tech. Rep. LBL−36229. PA: W.B. Saunders Company; 1994.
3.
go back to reference Kaplan ID, Castro JR, Phillips TL. Helium charged particle radiotherapy for meningioma: experience at UCLBL. Int J Radiat Oncol Biol Phys. 1994;28(1):257–61.CrossRefPubMed Kaplan ID, Castro JR, Phillips TL. Helium charged particle radiotherapy for meningioma: experience at UCLBL. Int J Radiat Oncol Biol Phys. 1994;28(1):257–61.CrossRefPubMed
5.
6.
7.
go back to reference Vernimmen FJ, Harris JK, Wilson JA, Melvill R, Smit BJ, Slabbert JP. Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys. 2001;49(1):99–105.CrossRefPubMed Vernimmen FJ, Harris JK, Wilson JA, Melvill R, Smit BJ, Slabbert JP. Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys. 2001;49(1):99–105.CrossRefPubMed
11.
go back to reference Tessonnier T, Mairani A, Brons S, et al. Helium ions at the Heidelberg ion beam therapy Center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Phys Med Biol. 2017;62:6784–803.CrossRefPubMed Tessonnier T, Mairani A, Brons S, et al. Helium ions at the Heidelberg ion beam therapy Center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements. Phys Med Biol. 2017;62:6784–803.CrossRefPubMed
17.
go back to reference Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.CrossRefPubMed Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness (RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407–21.CrossRefPubMed
18.
go back to reference Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57(5):1159–72.CrossRefPubMed Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57(5):1159–72.CrossRefPubMed
20.
go back to reference Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94. Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol. 1989;62(740):679–94.
25.
go back to reference Ferrari A, Sala PR, Fassò A,Ranft J. FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773. Ferrari A, Sala PR, Fassò A,Ranft J. FLUKA: a multi-particle transport code, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773.
28.
go back to reference Bauer J, Sommerer F, Mairani A, Unholtz D, Farook R, Handrack J, Tessonnier T, et al. 2014. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys Med Biol. 2014;59(16):4635–59. https://doi.org/10.1088/0031-9155/59/16/4635. Bauer J, Sommerer F, Mairani A, Unholtz D, Farook R, Handrack J, Tessonnier T, et al. 2014. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy. Phys Med Biol. 2014;59(16):4635–59. https://​doi.​org/​10.​1088/​0031-9155/​59/​16/​4635.
34.
go back to reference Handrack J, Tessonnier T, Chen W et al. Sensitivity of post treatment positron-emission-tomography/computed-tomography to detect inter-fractional range variations in scanned ion beam therapy. Acta Oncol. 2017 (accepted). Handrack J, Tessonnier T, Chen W et al. Sensitivity of post treatment positron-emission-tomography/computed-tomography to detect inter-fractional range variations in scanned ion beam therapy. Acta Oncol. 2017 (accepted).
Metadata
Title
Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison
Authors
Thomas Tessonnier
Andrea Mairani
Wenjing Chen
Paola Sala
Francesco Cerutti
Alfredo Ferrari
Thomas Haberer
Jürgen Debus
Katia Parodi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0944-3

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue