Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer

Authors: Konstantina Karava, Stefanie Ehrbar, Oliver Riesterer, Johannes Roesch, Stefan Glatz, Stephan Klöck, Matthias Guckenberger, Stephanie Tanadini-Lang

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Radiotherapy for pancreatic cancer has two major challenges: (I) the tumor is adjacent to several critical organs and, (II) the mobility of both, the tumor and its surrounding organs at risk (OARs). A treatment planning study simulating stereotactic body radiation therapy (SBRT) for pancreatic tumors with both the internal target volume (ITV) concept and the tumor tracking approach was performed. The two respiratory motion-management techniques were compared in terms of doses to the target volume and organs at risk.

Methods and Materials

Two volumetric-modulated arc therapy (VMAT) treatment plans (5 × 5 Gy) were created for each of the 12 previously treated pancreatic cancer patients, one using the ITV concept and one the tumor tracking approach. To better evaluate the overall dose delivered to the moving tumor volume, 4D dose calculations were performed on four-dimensional computed tomography (4DCT) scans. The resulting planning target volume (PTV) size for each technique was analyzed. Target and OAR dose parameters were reported and analyzed for both 3D and 4D dose calculation.

Results

Tumor motion ranged from 1.3 to 11.2 mm. Tracking led to a reduction of PTV size (max. 39.2%) accompanied with significant better tumor coverage (p<0.05, paired Wilcoxon signed rank test) both in 3D and 4D dose calculations and improved organ at risk sparing. Especially for duodenum, stomach and liver, the mean dose was significantly reduced (p<0.05) with tracking for 3D and 4D dose calculations.

Conclusions

By using an adaptive tumor tracking approach for respiratory-induced pancreatic motion management, a significant reduction in PTV size can be achieved, which subsequently facilitates treatment planning, and improves organ dose sparing. The dosimetric benefit of tumor tracking is organ and patient-specific.
Literature
1.
go back to reference Malvezzi M, Bertuccio P, Rosso T, Rota M, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann Oncol. 2015; 26(4):779–86.CrossRefPubMed Malvezzi M, Bertuccio P, Rosso T, Rota M, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2015: does lung cancer have the highest death rate in EU women? Ann Oncol. 2015; 26(4):779–86.CrossRefPubMed
2.
go back to reference Petrelli F, Comito T, Ghidini A, Torri V, Scorsetti M, Barni S. Stereotactic body radiation therapy for locally advanced pancreatic cancer: a systematic review and pooled analysis of 19 trials. Int J Radiat Oncol Biol Phys. 2017; 97:313–22.CrossRefPubMed Petrelli F, Comito T, Ghidini A, Torri V, Scorsetti M, Barni S. Stereotactic body radiation therapy for locally advanced pancreatic cancer: a systematic review and pooled analysis of 19 trials. Int J Radiat Oncol Biol Phys. 2017; 97:313–22.CrossRefPubMed
3.
go back to reference Trakul N, Koong AC, Chang DT. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol. 2014; 24:140–7.CrossRefPubMed Trakul N, Koong AC, Chang DT. Stereotactic body radiotherapy in the treatment of pancreatic cancer. Semin Radiat Oncol. 2014; 24:140–7.CrossRefPubMed
4.
go back to reference Casamassima F, Cavedon C, Francescon P, Stancanello J, Avanzo M, Cora S, et al.Use of motion tracking in stereotactic body radiotherapy: Evaluation of uncertainty in off-target dose distribution and optimization strategies. Acta Oncol. 2006; 45:943–7.CrossRefPubMed Casamassima F, Cavedon C, Francescon P, Stancanello J, Avanzo M, Cora S, et al.Use of motion tracking in stereotactic body radiotherapy: Evaluation of uncertainty in off-target dose distribution and optimization strategies. Acta Oncol. 2006; 45:943–7.CrossRefPubMed
5.
go back to reference Panje C, Andratschke N, Brunner TB, Niyazi M, Guckenberger M. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer: literature review and practice recommendations of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol. 2016; 192:875–5.CrossRefPubMed Panje C, Andratschke N, Brunner TB, Niyazi M, Guckenberger M. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer: literature review and practice recommendations of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol. 2016; 192:875–5.CrossRefPubMed
6.
go back to reference Pollom EL, Alagappan M, von Eyben R, Kunz PL, Fisher GA, Ford JA, et al. Single- versus multifraction stereotactic body radiation therapy for pancreatic adenocarcinoma: outcomes and toxicity. Int J Radiat Oncol Biol Phys. 2014; 90:918–25.CrossRefPubMed Pollom EL, Alagappan M, von Eyben R, Kunz PL, Fisher GA, Ford JA, et al. Single- versus multifraction stereotactic body radiation therapy for pancreatic adenocarcinoma: outcomes and toxicity. Int J Radiat Oncol Biol Phys. 2014; 90:918–25.CrossRefPubMed
7.
go back to reference Mellon EA, Hoffe SE, Springett GM, Frakes JM, Strom TJ, Hodul PJ, et al. Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015; 69:979–85.CrossRef Mellon EA, Hoffe SE, Springett GM, Frakes JM, Strom TJ, Hodul PJ, et al. Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015; 69:979–85.CrossRef
8.
go back to reference Chuong MD, Springett GM, Freilich JM, Park CK, Weber JM, Mellon EA, et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys. 2013; 86:516–22.CrossRefPubMed Chuong MD, Springett GM, Freilich JM, Park CK, Weber JM, Mellon EA, et al. Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys. 2013; 86:516–22.CrossRefPubMed
9.
go back to reference Feng M, Balter JM, Normolle D, Adusumili S, Cao Y, Chenevert TL, et al. Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys. 2009; 74:884–91.CrossRefPubMedPubMedCentral Feng M, Balter JM, Normolle D, Adusumili S, Cao Y, Chenevert TL, et al. Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. Int J Radiat Oncol Biol Phys. 2009; 74:884–91.CrossRefPubMedPubMedCentral
10.
go back to reference Bussels B, Goethals L, Feron M, Bielen D, Dymarkowski S, Suetens P, et al. Respiration-induced movement of the upper abdominal organs: a pitfall for the three-dimensional conformal radiation treatment of pancreatic cancer. Radiother Oncol. 2003; 68:69–74.CrossRefPubMed Bussels B, Goethals L, Feron M, Bielen D, Dymarkowski S, Suetens P, et al. Respiration-induced movement of the upper abdominal organs: a pitfall for the three-dimensional conformal radiation treatment of pancreatic cancer. Radiother Oncol. 2003; 68:69–74.CrossRefPubMed
11.
go back to reference Goldstein SD, Ford EC, Duhon M, McNutt T, Wong J, Herman JM. Use of respiratory-correlated four-dimensional computed tomography to determine acceptable treatment margins for locally advanced pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys. 2010; 76:597–602.CrossRefPubMed Goldstein SD, Ford EC, Duhon M, McNutt T, Wong J, Herman JM. Use of respiratory-correlated four-dimensional computed tomography to determine acceptable treatment margins for locally advanced pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys. 2010; 76:597–602.CrossRefPubMed
12.
go back to reference Cattaneo GM, Passoni P, Sangalli G, Slim N, Longobardi B, Mancosu P, et al. Internal target volume defined by contrast-enhanced 4D-CT scan in unresectable pancreatic tumour: Evaluation and reproducibility. Radiother Oncol. 2010; 97:525–29.CrossRefPubMed Cattaneo GM, Passoni P, Sangalli G, Slim N, Longobardi B, Mancosu P, et al. Internal target volume defined by contrast-enhanced 4D-CT scan in unresectable pancreatic tumour: Evaluation and reproducibility. Radiother Oncol. 2010; 97:525–29.CrossRefPubMed
13.
go back to reference Shiinoki T, Shibuya K, Nakamura M, Nakamura A, Matsuo Y, Sawada A, et al. Interfractional reproducibility in pancreatic position based on four-dimensional computed tomography. Radiat Oncol Biol Phys. 2011; 80:1567–72.CrossRef Shiinoki T, Shibuya K, Nakamura M, Nakamura A, Matsuo Y, Sawada A, et al. Interfractional reproducibility in pancreatic position based on four-dimensional computed tomography. Radiat Oncol Biol Phys. 2011; 80:1567–72.CrossRef
14.
go back to reference Hallman JL, Mori S, Sharp GC, Lu HM, Hong TS, Chen GT. A four-dimensional computed tomography analysis of multiorgan abdominal motion. Int J Radiat Oncol Biol Phys. 2012; 83:435–1.CrossRefPubMed Hallman JL, Mori S, Sharp GC, Lu HM, Hong TS, Chen GT. A four-dimensional computed tomography analysis of multiorgan abdominal motion. Int J Radiat Oncol Biol Phys. 2012; 83:435–1.CrossRefPubMed
15.
go back to reference Ohira S, Isono M, Ueda Y, Hirata T, Ashida R, Takahashi H, et al. Assessment with cone-beam computed tomography of intrafractional motion and interfractional position changes of resectable and borderline resectable pancreatic tumours with implanted fiducial marker. Br J Radiol. 2017; 90:20160815.CrossRefPubMed Ohira S, Isono M, Ueda Y, Hirata T, Ashida R, Takahashi H, et al. Assessment with cone-beam computed tomography of intrafractional motion and interfractional position changes of resectable and borderline resectable pancreatic tumours with implanted fiducial marker. Br J Radiol. 2017; 90:20160815.CrossRefPubMed
16.
go back to reference Gierga DP, Chen GT, Kung JH, Betke M, Lombardi J, Willett CG. Quantification of respiration-induced abdominal tumor motion and its impact on imrt dose distributions. Int J Radiat Oncol Biol Phys. 2004; 58:1584–95.CrossRefPubMed Gierga DP, Chen GT, Kung JH, Betke M, Lombardi J, Willett CG. Quantification of respiration-induced abdominal tumor motion and its impact on imrt dose distributions. Int J Radiat Oncol Biol Phys. 2004; 58:1584–95.CrossRefPubMed
17.
go back to reference Bhasin DK, Rana SS, Jahagirdar S, Nagi B. Does the pancreas move with respiration?Gastroenterol Hepatol. 2006; 21:1424–27. Bhasin DK, Rana SS, Jahagirdar S, Nagi B. Does the pancreas move with respiration?Gastroenterol Hepatol. 2006; 21:1424–27.
18.
go back to reference Suramo I, Päivänsalo M, Myllylä V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol Diagn (Stockh). 1984; 25:129–31.CrossRef Suramo I, Päivänsalo M, Myllylä V. Cranio-caudal movements of the liver, pancreas and kidneys in respiration. Acta Radiol Diagn (Stockh). 1984; 25:129–31.CrossRef
19.
go back to reference Moningi S, Marciscano AE, Rosati L, Sook Ng K, Teboh Forbang R, Jackson J, et al. Stereotactic body radiation therapy in pancreatic cancer: the new frontier. Expert Rev Anticancer Ther. 2014; 14:1461–75.CrossRefPubMed Moningi S, Marciscano AE, Rosati L, Sook Ng K, Teboh Forbang R, Jackson J, et al. Stereotactic body radiation therapy in pancreatic cancer: the new frontier. Expert Rev Anticancer Ther. 2014; 14:1461–75.CrossRefPubMed
20.
go back to reference Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys. 2006; 33:3874–900.CrossRefPubMed Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM task group 76. Med Phys. 2006; 33:3874–900.CrossRefPubMed
22.
go back to reference Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001; 51:1410–21.CrossRefPubMed Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001; 51:1410–21.CrossRefPubMed
23.
go back to reference Murray B, Forster K, Timmerman R. Frame-based immobilization and targeting for stereotactic body radiation therapy. Med Dosim. 2007; 32:86–91.CrossRefPubMed Murray B, Forster K, Timmerman R. Frame-based immobilization and targeting for stereotactic body radiation therapy. Med Dosim. 2007; 32:86–91.CrossRefPubMed
24.
go back to reference Taniguchi CM, Murphy JD, Eclov N, Atwood TF, Kielar KN, Christman-Skieller C, et al. Dosimetric analysis of organs at risk during expiratory gating in stereotactic body radiation therapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013; 85:1090–5.CrossRefPubMed Taniguchi CM, Murphy JD, Eclov N, Atwood TF, Kielar KN, Christman-Skieller C, et al. Dosimetric analysis of organs at risk during expiratory gating in stereotactic body radiation therapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013; 85:1090–5.CrossRefPubMed
25.
go back to reference Ehrbar S, Jöhl A, Tartas A, Stark LS, Riesterer O, Klöck S, et al. Itv, mid-ventilation, gating or couch tracking - a comparison of respiratory motion-management techniques based on 4D dose calculations. Radiother Oncol. 2017; 124:80–8.CrossRefPubMed Ehrbar S, Jöhl A, Tartas A, Stark LS, Riesterer O, Klöck S, et al. Itv, mid-ventilation, gating or couch tracking - a comparison of respiratory motion-management techniques based on 4D dose calculations. Radiother Oncol. 2017; 124:80–8.CrossRefPubMed
26.
go back to reference Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer C R J. The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010; 9:433–52.CrossRefPubMed Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer C R J. The CyberKnife robotic radiosurgery system in 2010. Technol Cancer Res Treat. 2010; 9:433–52.CrossRefPubMed
27.
go back to reference Depuydt T, Verellen D, Haas O, Gevaert T, Linthout N, Duchateau M, et al. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011; 98:365–72.CrossRefPubMed Depuydt T, Verellen D, Haas O, Gevaert T, Linthout N, Duchateau M, et al. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radiother Oncol. 2011; 98:365–72.CrossRefPubMed
28.
go back to reference Keall PJ, Colvill E, O’Brien R, Ng JA, Poulsen PR, Eade T, et al. The first clinical implementation of electromagnetic transponder-guided MLC tracking. Med Phys. 2014; 41:0207702. Keall PJ, Colvill E, O’Brien R, Ng JA, Poulsen PR, Eade T, et al. The first clinical implementation of electromagnetic transponder-guided MLC tracking. Med Phys. 2014; 41:0207702.
29.
go back to reference Lang S, Zeimetz J, Ochsner G, Schmid Daners M, Riesterer O, Klöck S. Development and evaluation of a prototype tracking system using the treatment couch. Med Phys. 2014; 41:021720.CrossRefPubMed Lang S, Zeimetz J, Ochsner G, Schmid Daners M, Riesterer O, Klöck S. Development and evaluation of a prototype tracking system using the treatment couch. Med Phys. 2014; 41:021720.CrossRefPubMed
30.
go back to reference D’Souza WD, Naqvi SA, Yu CX. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys med Biol. 2005; 50:4021–33.CrossRefPubMed D’Souza WD, Naqvi SA, Yu CX. Real-time intra-fraction-motion tracking using the treatment couch: a feasibility study. Phys med Biol. 2005; 50:4021–33.CrossRefPubMed
31.
go back to reference Papalazarou C, Klop GJ, Milder MTW, Marijnissen JPA, Gupta V, Heijmen BJM, et al. CyberKnife with integrated CT-on-rails: System description and first clinical application for pancreas SBRT. Med Phys. 2017; 44:4816–27.CrossRefPubMed Papalazarou C, Klop GJ, Milder MTW, Marijnissen JPA, Gupta V, Heijmen BJM, et al. CyberKnife with integrated CT-on-rails: System description and first clinical application for pancreas SBRT. Med Phys. 2017; 44:4816–27.CrossRefPubMed
32.
go back to reference Malinowski K, McAvoy TJ, George R, Dieterich S, D’Souza WD. Online monitoring and error detection of real-time tumor displacement prediction accuracy using control limits on respiratory surrogate statistics. Med Phys. 2012; 39:2042–8.CrossRefPubMedPubMedCentral Malinowski K, McAvoy TJ, George R, Dieterich S, D’Souza WD. Online monitoring and error detection of real-time tumor displacement prediction accuracy using control limits on respiratory surrogate statistics. Med Phys. 2012; 39:2042–8.CrossRefPubMedPubMedCentral
33.
go back to reference Malinowski K, McAvoy TJ, George R, Dieterich S, D’Souza WD. Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys. 2012; 82:1665–73.CrossRefPubMed Malinowski K, McAvoy TJ, George R, Dieterich S, D’Souza WD. Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys. 2012; 82:1665–73.CrossRefPubMed
35.
go back to reference Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005; 61:1535–50.CrossRefPubMed Rietzel E, Chen GT, Choi NC, Willet CG. Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys. 2005; 61:1535–50.CrossRefPubMed
36.
go back to reference Schlaefer A, Fisseler J, Dieterich S, Shiomi H, Cleary K, Schweikard A. Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys. 2005; 32:3786–92.CrossRefPubMed Schlaefer A, Fisseler J, Dieterich S, Shiomi H, Cleary K, Schweikard A. Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys. 2005; 32:3786–92.CrossRefPubMed
37.
go back to reference Chan MK, Kwong DL, Ng SC, Tam EK, Tong AS. Investigation of four-dimensional (4D) Monte Carlo dose calculation in real-time tumor tracking stereotactic body radiotherapy for lung cancers. Med Phys. 2012; 90:5479–87.CrossRef Chan MK, Kwong DL, Ng SC, Tam EK, Tong AS. Investigation of four-dimensional (4D) Monte Carlo dose calculation in real-time tumor tracking stereotactic body radiotherapy for lung cancers. Med Phys. 2012; 90:5479–87.CrossRef
38.
go back to reference Gkika E, Adebahr S, Kirste S, Schimek-Jasch T, Wiehle R, Claus R, et al. Stereotactic body radiotherapy (SBRT) in recurrent or oligometastatic pancreatic cancer: A toxicity review of simultaneous integrated protection (SIP) versus conventional SBRT. Strahlenther Onkol. 2017; 193:433–3.CrossRefPubMed Gkika E, Adebahr S, Kirste S, Schimek-Jasch T, Wiehle R, Claus R, et al. Stereotactic body radiotherapy (SBRT) in recurrent or oligometastatic pancreatic cancer: A toxicity review of simultaneous integrated protection (SIP) versus conventional SBRT. Strahlenther Onkol. 2017; 193:433–3.CrossRefPubMed
39.
go back to reference Ehrbar S, Lang S, Stieb S, Riesterer O, Stark LS, Guckenberger M, et al. Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypo-fractionated treatments. J Med Phys. 2016; 26:45–53. Ehrbar S, Lang S, Stieb S, Riesterer O, Stark LS, Guckenberger M, et al. Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypo-fractionated treatments. J Med Phys. 2016; 26:45–53.
41.
go back to reference Tai A, Liang Z, Erickson B, Li XA. Management of respiration-induced motion with 4-dimensional computed tomography (4DCT) for pancreas irradiation. Int J Radiat Oncol Biol Phys. 2013; 86:908–13.CrossRefPubMed Tai A, Liang Z, Erickson B, Li XA. Management of respiration-induced motion with 4-dimensional computed tomography (4DCT) for pancreas irradiation. Int J Radiat Oncol Biol Phys. 2013; 86:908–13.CrossRefPubMed
42.
go back to reference Lens E, Van der Horst A, Kroon PS, van Hooft JE, Fajardo RD, Fockens P, et al. Differences in respiratory induced pancreatic tumor motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncol. 2014; 53:1257–64.CrossRefPubMed Lens E, Van der Horst A, Kroon PS, van Hooft JE, Fajardo RD, Fockens P, et al. Differences in respiratory induced pancreatic tumor motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncol. 2014; 53:1257–64.CrossRefPubMed
43.
go back to reference Minn AY, Schellenberg D, Maxim P, Suh Y, McKenna S, Cox B, et al. Pancreatic tumor motion on a single planning 4D-CT does not correlate with intrafraction tumor motion during treatment. Am J Clin Oncol. 2009; 32:364–8.CrossRefPubMed Minn AY, Schellenberg D, Maxim P, Suh Y, McKenna S, Cox B, et al. Pancreatic tumor motion on a single planning 4D-CT does not correlate with intrafraction tumor motion during treatment. Am J Clin Oncol. 2009; 32:364–8.CrossRefPubMed
44.
go back to reference Lens E, van der Horst A, Versteijne E, van Tienhoven G, Bel A. Dosimetric advantages of midventilation compared with internal target volume for radiation therapy of pancreatic cancer. Int J Radiat Oncol Biol Phys. 2015; 92:675–82.CrossRefPubMed Lens E, van der Horst A, Versteijne E, van Tienhoven G, Bel A. Dosimetric advantages of midventilation compared with internal target volume for radiation therapy of pancreatic cancer. Int J Radiat Oncol Biol Phys. 2015; 92:675–82.CrossRefPubMed
45.
go back to reference Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 69:276–85.CrossRefPubMed Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007; 69:276–85.CrossRefPubMed
46.
go back to reference Chan M, Grehn M, Cremers F, Siebert FA, Wurster S, Huttenlocher S, et al. Dosimetric implications of residual tracking errors during robotic SBRT of liver metastases. Int J Radiat Oncol Biol Phys. 2017; 97:839–48.CrossRefPubMed Chan M, Grehn M, Cremers F, Siebert FA, Wurster S, Huttenlocher S, et al. Dosimetric implications of residual tracking errors during robotic SBRT of liver metastases. Int J Radiat Oncol Biol Phys. 2017; 97:839–48.CrossRefPubMed
47.
go back to reference Chan MK, Werner R, Ayadi M, Blanck O. Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer. Strahlenther Onkol. 2015; 191:161–71.CrossRefPubMed Chan MK, Werner R, Ayadi M, Blanck O. Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer. Strahlenther Onkol. 2015; 191:161–71.CrossRefPubMed
Metadata
Title
Potential dosimetric benefits of adaptive tumor tracking over the internal target volume concept for stereotactic body radiation therapy of pancreatic cancer
Authors
Konstantina Karava
Stefanie Ehrbar
Oliver Riesterer
Johannes Roesch
Stefan Glatz
Stephan Klöck
Matthias Guckenberger
Stephanie Tanadini-Lang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0906-9

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue