Skip to main content
Top
Published in: Strahlentherapie und Onkologie 2/2015

Open Access 01-02-2015 | Original article

Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer

Authors: Mark K.H. Chan, M.Sc., Rene Werner, Ph.D., Miriam Ayadi, Ph.D., Oliver Blanck, Ph.D.

Published in: Strahlentherapie und Onkologie | Issue 2/2015

Login to get access

Abstract

Purpose

To investigate the adequacy of three-dimensional (3D) Monte Carlo (MC) optimization (3DMCO) and the potential of four-dimensional (4D) dose renormalization (4DMCrenorm) and optimization (4DMCO) for CyberKnife (Accuray Inc., Sunnyvale, CA) radiotherapy planning in lung cancer.

Materials and methods

For 20 lung tumors, 3DMCO and 4DMCO plans were generated with planning target volume (PTV5 mm) = gross tumor volume (GTV) plus 5 mm, assuming 3 mm for tracking errors (PTV3 mm) and 2 mm for residual organ deformations. Three fractions of 60 Gy were prescribed to ≥ 95 % of the PTV5 mm. Each 3DMCO plan was recalculated by 4D MC dose calculation (4DMCrecal) to assess the dosimetric impact of organ deformations. The 4DMCrecal plans were renormalized (4DMCrenorm) to 95 % dose coverage of the PTV5 mm for comparisons with the 4DMCO plans. A 3DMCO plan was considered adequate if the 4DMCrecal plan showed ≥ 95 % of the PTV3 mm receiving 60 Gy and doses to other organs at risk (OARs) were below the limits.

Results

In seven lesions, 3DMCO was inadequate, providing < 95 % dose coverage to the PTV3 mm. Comparison of 4DMCrecal and 3DMCO plans showed that organ deformations resulted in lower OAR doses. Renormalizing the 4DMCrecal plans could produce OAR doses higher than the tolerances in some 4DMCrenorm plans. Dose conformity of the 4DMCrenorm plans was inferior to that of the 3DMCO and 4DMCO plans. The 4DMCO plans did not always achieve OAR dose reductions compared to 3DMCO and 4DMCrenorm plans.

Conclusion

This study indicates that 3DMCO with 2 mm margins for organ deformations may be inadequate for Cyberknife-based lung stereotactic body radiotherapy (SBRT). Renormalizing the 4DMCrecal plans could produce degraded dose conformity and increased OAR doses; 4DMCO can resolve this problem.
Appendix
Available only for authorised users
Literature
1.
go back to reference Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900CrossRef Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33:3874–3900CrossRef
2.
go back to reference Dieterich S, Cleary K, D’souza W et al (2008) Locating and targeting moving tumors with radiation beams. Med Phys 35:5684–5694CrossRef Dieterich S, Cleary K, D’souza W et al (2008) Locating and targeting moving tumors with radiation beams. Med Phys 35:5684–5694CrossRef
3.
go back to reference Kilby W, Dooley JR, Kuduvalli G et al (2010) The CyberKnife® Robotic radiosurgery system in 2010. Technol Cancer Res Treat 9:431–538CrossRef Kilby W, Dooley JR, Kuduvalli G et al (2010) The CyberKnife® Robotic radiosurgery system in 2010. Technol Cancer Res Treat 9:431–538CrossRef
4.
go back to reference Suh Y, Weiss E, Zhong H et al (2008) A deliverable four-dimensional intensity-modulated radiation therapy-planning method for dynamic multileaf collimator tumor tracking delivery. Int J Radiat Oncol Biol Phys 71:1526–1536CrossRef Suh Y, Weiss E, Zhong H et al (2008) A deliverable four-dimensional intensity-modulated radiation therapy-planning method for dynamic multileaf collimator tumor tracking delivery. Int J Radiat Oncol Biol Phys 71:1526–1536CrossRef
5.
go back to reference Söhn M, Weinmann M, Alber M (2009) Intensity-modulated radiotherapy optimization in a quasi-periodically deforming patient model. Int J Radiat Oncol Biol Phys 75:906–914CrossRef Söhn M, Weinmann M, Alber M (2009) Intensity-modulated radiotherapy optimization in a quasi-periodically deforming patient model. Int J Radiat Oncol Biol Phys 75:906–914CrossRef
6.
go back to reference West J, Park J, Dooley J et al (2007) 4D treatment optimization and planning for radiosurgery with respiratory motion tracking. In: Kresl JJ, Luketich JD, Papiez L, Timmerman R, Schulz RA (eds) Treating tumors that move with respiration. Springer, New York, pp 249–264CrossRef West J, Park J, Dooley J et al (2007) 4D treatment optimization and planning for radiosurgery with respiratory motion tracking. In: Kresl JJ, Luketich JD, Papiez L, Timmerman R, Schulz RA (eds) Treating tumors that move with respiration. Springer, New York, pp 249–264CrossRef
7.
go back to reference Chan MKH, Kwong DLW, Ng SCY et al (2012) Investigation of four-dimensional (4D) monte carlo dose calculation in real-time tumor tracking stereotatic body radiotherapy for lung cancers. Med Phys 39:5479–5487CrossRef Chan MKH, Kwong DLW, Ng SCY et al (2012) Investigation of four-dimensional (4D) monte carlo dose calculation in real-time tumor tracking stereotatic body radiotherapy for lung cancers. Med Phys 39:5479–5487CrossRef
8.
go back to reference Chan MKH, Kwong DLW, Tong A et al (2013) Evaluation of dose prediction error and optimization convergence error in four-dimensional inverse planning of robotic stereotactic lung radiotherapy. J Appl Clin Med Phys 14:4270PubMed Chan MKH, Kwong DLW, Tong A et al (2013) Evaluation of dose prediction error and optimization convergence error in four-dimensional inverse planning of robotic stereotactic lung radiotherapy. J Appl Clin Med Phys 14:4270PubMed
9.
go back to reference Van Der Voort Van Zyp NC, Prévost J-B, Hoogeman MS et al (2009) Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 91:296–300CrossRef Van Der Voort Van Zyp NC, Prévost J-B, Hoogeman MS et al (2009) Stereotactic radiotherapy with real-time tumor tracking for non-small cell lung cancer: clinical outcome. Radiother Oncol 91:296–300CrossRef
10.
go back to reference Chen VJ, Oermann E, Vahdat S et al (2012) CyberKnife with tumor tracking:an effective treatment for high-risk surgical patients with stage I non-small cell lung cancer. Front Oncol 2:9PubMedPubMedCentral Chen VJ, Oermann E, Vahdat S et al (2012) CyberKnife with tumor tracking:an effective treatment for high-risk surgical patients with stage I non-small cell lung cancer. Front Oncol 2:9PubMedPubMedCentral
11.
go back to reference Brown WT, Fayad F, Hevezi J et al (2011) Individualized higher dose of 70–75 Gy using five-fraction robotic stereotactic radiotherapy for non-small-cell lung cancer: a feasibility study. Computer Aided Surgery 16:1–10CrossRef Brown WT, Fayad F, Hevezi J et al (2011) Individualized higher dose of 70–75 Gy using five-fraction robotic stereotactic radiotherapy for non-small-cell lung cancer: a feasibility study. Computer Aided Surgery 16:1–10CrossRef
12.
go back to reference Bibault J-E, Prevost B, Dansin E et al (2012) Image-guided robotic stereotactic radiation therapy with fiducial-free tumor tracking for lung cancer. Radiat Oncol 7:102CrossRef Bibault J-E, Prevost B, Dansin E et al (2012) Image-guided robotic stereotactic radiation therapy with fiducial-free tumor tracking for lung cancer. Radiat Oncol 7:102CrossRef
13.
go back to reference Pepin EW, Wu H, Zhang Y et al (2011) Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system. Med Phys 38:4036CrossRef Pepin EW, Wu H, Zhang Y et al (2011) Correlation and prediction uncertainties in the CyberKnife Synchrony respiratory tracking system. Med Phys 38:4036CrossRef
14.
go back to reference Seppenwoolde Y, Berbeco RI, Nishioka S et al (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34:2774–2784CrossRef Seppenwoolde Y, Berbeco RI, Nishioka S et al (2007) Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study. Med Phys 34:2774–2784CrossRef
15.
go back to reference Lu X-Q, Shanmugham LN, Mahadevan A et al (2008) Organ deformation and dose coverage in robotic respiratory-tracking radiotherapy. Int J Radiat Oncol Biol Phys 71:281–289CrossRef Lu X-Q, Shanmugham LN, Mahadevan A et al (2008) Organ deformation and dose coverage in robotic respiratory-tracking radiotherapy. Int J Radiat Oncol Biol Phys 71:281–289CrossRef
16.
go back to reference Hurkmans CW, Cuijpers JP, Lagerwaard FJ et al (2009) Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study. Radiat Oncol 4:1CrossRef Hurkmans CW, Cuijpers JP, Lagerwaard FJ et al (2009) Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study. Radiat Oncol 4:1CrossRef
17.
go back to reference Timmerman RD, Michalski J, Fowler J et al (2006) A phase II trial of stereotactic body radiation therapy (SBRT) in the treatment of patients with medically inoperable stage I/II non-small cell lung cancer, Protocol 0236. Philadelphia: RTOG. http://www.rtog.org. Accessed 01 Mar 2014 Timmerman RD, Michalski J, Fowler J et al (2006) A phase II trial of stereotactic body radiation therapy (SBRT) in the treatment of patients with medically inoperable stage I/II non-small cell lung cancer, Protocol 0236. Philadelphia: RTOG. http://​www.​rtog.​org. Accessed 01 Mar 2014
18.
go back to reference Van Der Voort Van Zyp NC, Van Der Holt B, Van Klaveren RJ et al (2010) Stereotactic body radiotherapy using real-time tumor tracking in octogenarians with non-small cell lung cancer. Lung Cancer 69:296–301CrossRef Van Der Voort Van Zyp NC, Van Der Holt B, Van Klaveren RJ et al (2010) Stereotactic body radiotherapy using real-time tumor tracking in octogenarians with non-small cell lung cancer. Lung Cancer 69:296–301CrossRef
19.
go back to reference Ma CM, Li JS, Deng J et al (2008) Implementation of monte carlo dose calculation for cyberknife treatment planning. J Phys Conf Ser 102:012–016CrossRef Ma CM, Li JS, Deng J et al (2008) Implementation of monte carlo dose calculation for cyberknife treatment planning. J Phys Conf Ser 102:012–016CrossRef
20.
go back to reference Schlaefer A, Fisseler J, Dieterich S et al (2005) Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys 32:3786–3792CrossRef Schlaefer A, Fisseler J, Dieterich S et al (2005) Feasibility of four-dimensional conformal planning for robotic radiosurgery. Med Phys 32:3786–3792CrossRef
21.
go back to reference Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35:2094–2103CrossRef Schlaefer A, Schweikard A (2008) Stepwise multi-criteria optimization for robotic radiosurgery. Med Phys 35:2094–2103CrossRef
22.
go back to reference Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93:219–222CrossRef Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 93:219–222CrossRef
23.
go back to reference Ohri N, Werner-Wasik M, Grills IS et al (2012) Modeling local control after hypofractionated stereotactic body radiation therapy for stage I non-small cell lung cancer: a report from the elekta collaborative lung research group. Int J Radiat Oncol Biol Phys 84:e379–e384CrossRef Ohri N, Werner-Wasik M, Grills IS et al (2012) Modeling local control after hypofractionated stereotactic body radiation therapy for stage I non-small cell lung cancer: a report from the elekta collaborative lung research group. Int J Radiat Oncol Biol Phys 84:e379–e384CrossRef
24.
go back to reference Borst G, Ishikawa M, Nijkamp J et al (2010) Radiation penumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603CrossRef Borst G, Ishikawa M, Nijkamp J et al (2010) Radiation penumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. Int J Radiat Oncol Biol Phys 77:1596–1603CrossRef
25.
go back to reference Guckenberger M, Wulf J, Mueller G et al (2009) Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: Relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 74:47–54CrossRef Guckenberger M, Wulf J, Mueller G et al (2009) Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: Relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 74:47–54CrossRef
26.
go back to reference Werner R, Ehrhardt J, Schmidt-Richberg A et al (2011) Towards accurate dose accumulation for step- & -shoot IMRT: impact of weighting schemes and temporal image resolution on the estimation of dosimetric motion effects. Z Med Phys 22:109–122CrossRef Werner R, Ehrhardt J, Schmidt-Richberg A et al (2011) Towards accurate dose accumulation for step- & -shoot IMRT: impact of weighting schemes and temporal image resolution on the estimation of dosimetric motion effects. Z Med Phys 22:109–122CrossRef
27.
go back to reference Matsugi K, Narita Y, Sawada A et al (2009) Measurement of interfraction variations in position and size of target volumes in stereotactic body radiotherapy for lung cancer Int J Radiat Oncol Biol Phys 75:543–548CrossRef Matsugi K, Narita Y, Sawada A et al (2009) Measurement of interfraction variations in position and size of target volumes in stereotactic body radiotherapy for lung cancer Int J Radiat Oncol Biol Phys 75:543–548CrossRef
28.
go back to reference Chan MKH, Kwong DLW, Tam E et al (2013) Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers. J Appl Clin Med Phys 14:140–152CrossRef Chan MKH, Kwong DLW, Tam E et al (2013) Quantifying variability of intrafractional target motion in stereotactic body radiotherapy for lung cancers. J Appl Clin Med Phys 14:140–152CrossRef
Metadata
Title
Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer
Authors
Mark K.H. Chan, M.Sc.
Rene Werner, Ph.D.
Miriam Ayadi, Ph.D.
Oliver Blanck, Ph.D.
Publication date
01-02-2015
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 2/2015
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-014-0747-5

Other articles of this Issue 2/2015

Strahlentherapie und Onkologie 2/2015 Go to the issue