Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies

Authors: Giovanni Fattori, Sairos Safai, Pablo Fernández Carmona, Marta Peroni, Rosalind Perrin, Damien Charles Weber, Antony John Lomax

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Motion monitoring is essential when treating non-static tumours with pencil beam scanned protons. 4D medical imaging typically relies on the detected body surface displacement, considered as a surrogate of the patient's anatomical changes, a concept similarly applied by most motion mitigation techniques. In this study, we investigate benefits and pitfalls of optical and electromagnetic tracking, key technologies for non-invasive surface motion monitoring, in the specific environment of image-guided, gantry-based proton therapy.

Methods

Polaris SPECTRA optical tracking system and the Aurora V3 electromagnetic tracking system from Northern Digital Inc. (NDI, Waterloo, CA) have been compared both technically, by measuring tracking errors and system latencies under laboratory conditions, and clinically, by assessing their practicalities and sensitivities when used with imaging devices and PBS treatment gantries. Additionally, we investigated the impact of using different surrogate signals, from different systems, on the reconstructed 4D CT images.

Results

Even though in controlled laboratory conditions both technologies allow for the localization of static fiducials with sub-millimetre jitter and low latency (31.6 ± 1 msec worst case), significant dynamic and environmental distortions limit the potential of the electromagnetic approach in a clinical setting. The measurement error in case of close proximity to a CT scanner is up to 10.5 mm and precludes its use for the monitoring of respiratory motion during 4DCT acquisitions. Similarly, the motion of the treatment gantry distorts up to 22 mm the tracking result.

Conclusions

Despite the line of sight requirement, the optical solution offers the best potential, being the most robust against environmental factors and providing the highest spatial accuracy. The significant difference in the temporal location of the reconstructed phase points is used to speculate on the need to apply the same monitoring system for imaging and treatment to ensure the consistency of detected phases.
Literature
1.
go back to reference Durante M, Paganetti H. Nuclear physics in particle therapy: a review. Rep Prog Phys. 2016;79:096702.CrossRefPubMed Durante M, Paganetti H. Nuclear physics in particle therapy: a review. Rep Prog Phys. 2016;79:096702.CrossRefPubMed
3.
go back to reference Knopf A, Stützer K, Richter C, Rucinski A, da Silva J, Phillips J, Engelsman M, Shimizu S, Werner R, Jakobi A. Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015. Phys Medica. 2016;32:874–82.CrossRef Knopf A, Stützer K, Richter C, Rucinski A, da Silva J, Phillips J, Engelsman M, Shimizu S, Werner R, Jakobi A. Required transition from research to clinical application: Report on the 4D treatment planning workshops 2014 and 2015. Phys Medica. 2016;32:874–82.CrossRef
4.
go back to reference Dou TH, Thomas DH, O'Connell DP, Lamb JM, Lee P, Low DA. A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique. Int J Radiat Oncol Biol Phys. 2015;93:925–33.CrossRefPubMedPubMedCentral Dou TH, Thomas DH, O'Connell DP, Lamb JM, Lee P, Low DA. A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique. Int J Radiat Oncol Biol Phys. 2015;93:925–33.CrossRefPubMedPubMedCentral
5.
go back to reference Rit S, Wolthaus JW, van Herk M, Sonke J. On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion. Med Phys. 2009;36:2283–96.CrossRefPubMed Rit S, Wolthaus JW, van Herk M, Sonke J. On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion. Med Phys. 2009;36:2283–96.CrossRefPubMed
6.
go back to reference Keall P, Starkschall G, Shukla H, Forster K, Ortiz V, Stevens C, Vedam S, George R, Guerrero T, Mohan R. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol. 2004;49:2053.CrossRefPubMed Keall P, Starkschall G, Shukla H, Forster K, Ortiz V, Stevens C, Vedam S, George R, Guerrero T, Mohan R. Acquiring 4D thoracic CT scans using a multislice helical method. Phys Med Biol. 2004;49:2053.CrossRefPubMed
7.
go back to reference Persson GF, Josipovic M, Nygaard DE, Recke P, Aznar M, Juhler-Nøttrup T, Rosenschöld PM, Korreman S, Specht L. Percutaneously implanted markers in peripheral lung tumours: Report of complications. Acta Oncol. 2013;52:1225–8.CrossRefPubMed Persson GF, Josipovic M, Nygaard DE, Recke P, Aznar M, Juhler-Nøttrup T, Rosenschöld PM, Korreman S, Specht L. Percutaneously implanted markers in peripheral lung tumours: Report of complications. Acta Oncol. 2013;52:1225–8.CrossRefPubMed
8.
go back to reference Shah AP, Kupelian PA, Waghorn BJ, Willoughby TR, Rineer JM, Mañon RR, Vollenweider MA, Meeks SL. Real-time tumor tracking in the lung using an electromagnetic tracking system. Int J Radiat Oncol Biol Phys. 2013;86:477–83.CrossRefPubMed Shah AP, Kupelian PA, Waghorn BJ, Willoughby TR, Rineer JM, Mañon RR, Vollenweider MA, Meeks SL. Real-time tumor tracking in the lung using an electromagnetic tracking system. Int J Radiat Oncol Biol Phys. 2013;86:477–83.CrossRefPubMed
9.
go back to reference Gurney-Champion OJ, Lens E, van der Horst A, Houweling AC, Klaassen R, van Hooft JE, Stoker J, van Tienhoven G, Nederveen AJ, Bel A. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys. 2015;42:2638–47.CrossRefPubMed Gurney-Champion OJ, Lens E, van der Horst A, Houweling AC, Klaassen R, van Hooft JE, Stoker J, van Tienhoven G, Nederveen AJ, Bel A. Visibility and artifacts of gold fiducial markers used for image guided radiation therapy of pancreatic cancer on MRI. Med Phys. 2015;42:2638–47.CrossRefPubMed
10.
go back to reference Zhu X, Bourland J, Yuan Y, Zhuang T, O'Daniel J, Thongphiew D, Wu Q, Das S, Yoo S, Yin F. Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment. Phys Med Biol. 2009;54:N393.CrossRefPubMed Zhu X, Bourland J, Yuan Y, Zhuang T, O'Daniel J, Thongphiew D, Wu Q, Das S, Yoo S, Yin F. Tradeoffs of integrating real-time tracking into IGRT for prostate cancer treatment. Phys Med Biol. 2009;54:N393.CrossRefPubMed
11.
go back to reference Newhauser W, Fontenot J, Koch N, Dong L, Lee A, Zheng Y, Waters L, Mohan R. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Phys Med Biol. 2007;52:2937.CrossRefPubMed Newhauser W, Fontenot J, Koch N, Dong L, Lee A, Zheng Y, Waters L, Mohan R. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Phys Med Biol. 2007;52:2937.CrossRefPubMed
12.
go back to reference Dolney D, McDonough J, Vapiwala N, Metz JM. Dose perturbations by electromagnetic transponders in the proton environment. Phys Med Biol. 2013;58:1495.CrossRefPubMed Dolney D, McDonough J, Vapiwala N, Metz JM. Dose perturbations by electromagnetic transponders in the proton environment. Phys Med Biol. 2013;58:1495.CrossRefPubMed
13.
go back to reference Matsuura T, Maeda K, Sutherland K, Takayanagi T, Shimizu S, Takao S, Miyamoto N, Nihongi H, Toramatsu C, Nagamine Y. Biological effect of dose distortion by fiducial markers in spot-scanning proton therapy with a limited number of fields: a simulation study. Med Phys. 2012;39:5584–91.CrossRefPubMed Matsuura T, Maeda K, Sutherland K, Takayanagi T, Shimizu S, Takao S, Miyamoto N, Nihongi H, Toramatsu C, Nagamine Y. Biological effect of dose distortion by fiducial markers in spot-scanning proton therapy with a limited number of fields: a simulation study. Med Phys. 2012;39:5584–91.CrossRefPubMed
14.
go back to reference Lomax AJ, Böhringer T, Bolsi A, Coray D, Emert F, Goitein G, Jermann M, Lin S, Pedroni E, Rutz H. Treatment planning and verification of proton therapy using spot scanning: initial experiences. Med Phys. 2004;31:3150–7.CrossRefPubMed Lomax AJ, Böhringer T, Bolsi A, Coray D, Emert F, Goitein G, Jermann M, Lin S, Pedroni E, Rutz H. Treatment planning and verification of proton therapy using spot scanning: initial experiences. Med Phys. 2004;31:3150–7.CrossRefPubMed
15.
go back to reference Lomax AJ, Bolsi A, Albertini A, Weber DC. In: Das IJ, Paganetti H, editors. Treatment Planning for Pencil Beam Scanning. Chapter of Principles and Practice of Proton Beam Therapy Madison. WI: Medical Physics Publishing; 2015. Lomax AJ, Bolsi A, Albertini A, Weber DC. In: Das IJ, Paganetti H, editors. Treatment Planning for Pencil Beam Scanning. Chapter of Principles and Practice of Proton Beam Therapy Madison. WI: Medical Physics Publishing; 2015.
16.
go back to reference Pedroni E, Meer D, Bula C, Safai S, Zenklusen S. Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results. Eur Phys J Plus. 2011;126:1–27.CrossRef Pedroni E, Meer D, Bula C, Safai S, Zenklusen S. Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results. Eur Phys J Plus. 2011;126:1–27.CrossRef
17.
go back to reference Kurz C, Nijhuis R, Reiner M, Ganswindt U, Thieke C, Belka C, Parodi K, Landry G. Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images. Radiat Oncol. 2016;11:1.CrossRef Kurz C, Nijhuis R, Reiner M, Ganswindt U, Thieke C, Belka C, Parodi K, Landry G. Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images. Radiat Oncol. 2016;11:1.CrossRef
18.
go back to reference Veiga C, Janssens G, Teng C, Baudier T, Hotoiu L, McClelland JR, Royle G, Lin L, Yin L, Metz J. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer. Int J Radiat Oncol Biol Phys. 2016;95:549–59.CrossRefPubMed Veiga C, Janssens G, Teng C, Baudier T, Hotoiu L, McClelland JR, Royle G, Lin L, Yin L, Metz J. First Clinical Investigation of Cone Beam Computed Tomography and Deformable Registration for Adaptive Proton Therapy for Lung Cancer. Int J Radiat Oncol Biol Phys. 2016;95:549–59.CrossRefPubMed
19.
go back to reference Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38:4036–44.CrossRefPubMedPubMedCentral Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys. 2011;38:4036–44.CrossRefPubMedPubMedCentral
20.
go back to reference Depuydt T, Poels K, Verellen D, Engels B, Collen C, Buleteanu M, Van den Begin R, Boussaer M, Duchateau M, Gevaert T. Treating patients with real-time tumor tracking using the Vero gimbaled linac system: Implementation and first review. Radiother Oncol. 2014;112:343–51.CrossRefPubMed Depuydt T, Poels K, Verellen D, Engels B, Collen C, Buleteanu M, Van den Begin R, Boussaer M, Duchateau M, Gevaert T. Treating patients with real-time tumor tracking using the Vero gimbaled linac system: Implementation and first review. Radiother Oncol. 2014;112:343–51.CrossRefPubMed
21.
go back to reference Jin J, Yin F. Time delay measurement for linac based treatment delivery in synchronized respiratory gating radiotherapy. Med Phys. 2005;32:1293–6.CrossRefPubMed Jin J, Yin F. Time delay measurement for linac based treatment delivery in synchronized respiratory gating radiotherapy. Med Phys. 2005;32:1293–6.CrossRefPubMed
22.
go back to reference Fattori G, Saito N, Seregni M, Kaderka R, Pella A, Constantinescu A, Riboldi M, Steidl P, Cerveri P, Bert C, Durante M, Baroni G. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring. Technol Cancer Res Treat. 2014;13:517–28.PubMedPubMedCentral Fattori G, Saito N, Seregni M, Kaderka R, Pella A, Constantinescu A, Riboldi M, Steidl P, Cerveri P, Bert C, Durante M, Baroni G. Commissioning of an integrated platform for time-resolved treatment delivery in scanned ion beam therapy by means of optical motion monitoring. Technol Cancer Res Treat. 2014;13:517–28.PubMedPubMedCentral
23.
go back to reference Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L. Electromagnetic tracking in medicine—a review of technology, validation, and applications. IEEE Trans Med Imaging. 2014;33:1702–25.CrossRefPubMed Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L. Electromagnetic tracking in medicine—a review of technology, validation, and applications. IEEE Trans Med Imaging. 2014;33:1702–25.CrossRefPubMed
24.
go back to reference Maier-Hein L, Franz A, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer H. Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys. 2012;39:3424–34.CrossRefPubMed Maier-Hein L, Franz A, Birkfellner W, Hummel J, Gergel I, Wegner I, Meinzer H. Standardized assessment of new electromagnetic field generators in an interventional radiology setting. Med Phys. 2012;39:3424–34.CrossRefPubMed
25.
go back to reference Khadem R, Yeh CC, Sadeghi‐Tehrani M, Bax MR, Johnson JA, Welch JN, Wilkinson EP, Shahidi R. Comparative tracking error analysis of five different optical tracking systems. Computer Aided Surg. 2000;5:98–107.CrossRef Khadem R, Yeh CC, Sadeghi‐Tehrani M, Bax MR, Johnson JA, Welch JN, Wilkinson EP, Shahidi R. Comparative tracking error analysis of five different optical tracking systems. Computer Aided Surg. 2000;5:98–107.CrossRef
27.
go back to reference Northern Digital Inc. Passive Polaris Spectra User Guide. Revision 6. 2012. 732 Q7 Part Num: IL-1070116. Northern Digital Inc. Passive Polaris Spectra User Guide. Revision 6. 2012. 732 Q7 Part Num: IL-1070116.
28.
go back to reference Press WH, Teukolsky SA. Savitzky‐Golay Smoothing Filters. Comput Phys. 1990;4:669–72.CrossRef Press WH, Teukolsky SA. Savitzky‐Golay Smoothing Filters. Comput Phys. 1990;4:669–72.CrossRef
29.
go back to reference Safai S, Bula C, Meer D, Pedroni E. Improving the precision and performance of proton pencil beam scanning. Transl Cancer Res. 2012;1:196–206. Safai S, Bula C, Meer D, Pedroni E. Improving the precision and performance of proton pencil beam scanning. Transl Cancer Res. 2012;1:196–206.
30.
go back to reference Perrin RL, Zakova M, Peroni M, Bernatowicz K, Bikis S, Knopf AK, Safai S, Fernandez Carmona P, Tscharner N, Weber DC, Parkel TC, Lomax AJ. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy. Phys Med Biol. 2017;62:2486–04. Perrin RL, Zakova M, Peroni M, Bernatowicz K, Bikis S, Knopf AK, Safai S, Fernandez Carmona P, Tscharner N, Weber DC, Parkel TC, Lomax AJ. An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy. Phys Med Biol. 2017;62:2486–04.
31.
go back to reference Lu H, Brett R, Sharp G, Safai S, Jiang S, Flanz J, Kooy H. A respiratory-gated treatment system for proton therapy. Med Phys. 2007;34:3273–8.CrossRefPubMed Lu H, Brett R, Sharp G, Safai S, Jiang S, Flanz J, Kooy H. A respiratory-gated treatment system for proton therapy. Med Phys. 2007;34:3273–8.CrossRefPubMed
32.
go back to reference Otani Y, Fukuda I, Tsukamoto N, Kumazaki Y, Sekine H, Imabayashi E, Kawaguchi O, Nose T, Teshima T, Dokiya T. A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy. Med Phys. 2010;37:6178–86.CrossRefPubMed Otani Y, Fukuda I, Tsukamoto N, Kumazaki Y, Sekine H, Imabayashi E, Kawaguchi O, Nose T, Teshima T, Dokiya T. A comparison of the respiratory signals acquired by different respiratory monitoring systems used in respiratory gated radiotherapy. Med Phys. 2010;37:6178–86.CrossRefPubMed
33.
go back to reference Poels K, Dhont J, Verellen D, Blanck O, Ernst F, Vandemeulebroucke J, Depuydt T, Storme G, De Ridder M. A comparison of two clinical correlation models used for real-time tumor tracking of semi-periodic motion: A focus on geometrical accuracy in lung and liver cancer patients. Radiother Oncol. 2015;115:419–24.CrossRefPubMed Poels K, Dhont J, Verellen D, Blanck O, Ernst F, Vandemeulebroucke J, Depuydt T, Storme G, De Ridder M. A comparison of two clinical correlation models used for real-time tumor tracking of semi-periodic motion: A focus on geometrical accuracy in lung and liver cancer patients. Radiother Oncol. 2015;115:419–24.CrossRefPubMed
34.
go back to reference Kauweloa KI, Ruan D, Park JC, Sandhu A, Kim GY, Pawlicki T, Watkins WT, Song B, Song WY. GateCT™ surface tracking system for respiratory signal reconstruction in 4DCT imaging. Med Phys. 2012;39:492–502.CrossRefPubMed Kauweloa KI, Ruan D, Park JC, Sandhu A, Kim GY, Pawlicki T, Watkins WT, Song B, Song WY. GateCT™ surface tracking system for respiratory signal reconstruction in 4DCT imaging. Med Phys. 2012;39:492–502.CrossRefPubMed
35.
go back to reference Langen KM, Willoughby TR, Meeks SL, Santhanam A, Cunningham A, Levine L, Kupelian PA. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008;71:1084–90.CrossRefPubMed Langen KM, Willoughby TR, Meeks SL, Santhanam A, Cunningham A, Levine L, Kupelian PA. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys. 2008;71:1084–90.CrossRefPubMed
36.
go back to reference Franz A, Schmitt D, Seitel A, Chatrasingh M, Echner G, Oelfke U, Nill S, Birkfellner W, Maier-Hein L. Standardized accuracy assessment of the calypso wireless transponder tracking system. Phys Med Biol. 2014;59(22):6797.CrossRefPubMed Franz A, Schmitt D, Seitel A, Chatrasingh M, Echner G, Oelfke U, Nill S, Birkfellner W, Maier-Hein L. Standardized accuracy assessment of the calypso wireless transponder tracking system. Phys Med Biol. 2014;59(22):6797.CrossRefPubMed
37.
go back to reference Vásquez A, Runz A, Echner G, Sroka-Perez G, Karger C. Comparison of two respiration monitoring systems for 4D imaging with a Siemens CT using a new dynamic breathing phantom. Phys Med Biol. 2012;57(9):N131.CrossRefPubMed Vásquez A, Runz A, Echner G, Sroka-Perez G, Karger C. Comparison of two respiration monitoring systems for 4D imaging with a Siemens CT using a new dynamic breathing phantom. Phys Med Biol. 2012;57(9):N131.CrossRefPubMed
Metadata
Title
Monitoring of breathing motion in image-guided PBS proton therapy: comparative analysis of optical and electromagnetic technologies
Authors
Giovanni Fattori
Sairos Safai
Pablo Fernández Carmona
Marta Peroni
Rosalind Perrin
Damien Charles Weber
Antony John Lomax
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0797-9

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue