Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2018

Open Access 01-12-2018 | Review

Benchmarking in vitro tissue-engineered blood–brain barrier models

Authors: Jackson G. DeStefano, John J. Jamieson, Raleigh M. Linville, Peter C. Searson

Published in: Fluids and Barriers of the CNS | Issue 1/2018

Login to get access

Abstract

The blood–brain barrier (BBB) plays a key role in regulating transport into and out of the brain. With increasing interest in the role of the BBB in health and disease, there have been significant advances in the development of in vitro models. The value of these models to the research community is critically dependent on recapitulating characteristics of the BBB in humans or animal models. However, benchmarking in vitro models is surprisingly difficult since much of our knowledge of the structure and function of the BBB comes from in vitro studies. Here we describe a set of parameters that we consider a starting point for benchmarking and validation. These parameters are associated with structure (ultrastructure, wall shear stress, geometry), microenvironment (basement membrane and extracellular matrix), barrier function (transendothelial electrical resistance, permeability, efflux transport), cell function (expression of BBB markers, turnover), and co-culture with other cell types (astrocytes and pericytes). In suggesting benchmarks, we rely primarily on imaging or direct measurements in humans and animal models.
Literature
1.
2.
3.
go back to reference Wilson HK, et al. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids Barriers CNS. 2015;12:13.CrossRefPubMedPubMedCentral Wilson HK, et al. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids Barriers CNS. 2015;12:13.CrossRefPubMedPubMedCentral
4.
go back to reference Katt ME, et al. Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood–brain barrier phenotype. PLoS ONE. 2016;11(4):e0152105.CrossRefPubMedPubMedCentral Katt ME, et al. Human brain microvascular endothelial cells derived from the BC1 iPS cell line exhibit a blood–brain barrier phenotype. PLoS ONE. 2016;11(4):e0152105.CrossRefPubMedPubMedCentral
5.
go back to reference Mantle JL, Min L, Lee KH. Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood–brain barrier model. Mol Pharm. 2016;13(12):4191–8.CrossRefPubMed Mantle JL, Min L, Lee KH. Minimum transendothelial electrical resistance thresholds for the study of small and large molecule drug transport in a human in vitro blood–brain barrier model. Mol Pharm. 2016;13(12):4191–8.CrossRefPubMed
6.
go back to reference Patel R, Alahmad AJ. Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS. 2016;13:6.CrossRefPubMedPubMedCentral Patel R, Alahmad AJ. Growth-factor reduced Matrigel source influences stem cell derived brain microvascular endothelial cell barrier properties. Fluids Barriers CNS. 2016;13:6.CrossRefPubMedPubMedCentral
7.
go back to reference Page S, Munsell A, Al-Ahmad AJ. Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS. 2016;13:16.CrossRefPubMedPubMedCentral Page S, Munsell A, Al-Ahmad AJ. Cerebral hypoxia/ischemia selectively disrupts tight junctions complexes in stem cell-derived human brain microvascular endothelial cells. Fluids Barriers CNS. 2016;13:16.CrossRefPubMedPubMedCentral
8.
go back to reference Gallagher E, et al. In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). Fluids Barriers CNS. 2016;13(1):10.CrossRefPubMedPubMedCentral Gallagher E, et al. In vitro characterization of pralidoxime transport and acetylcholinesterase reactivation across MDCK cells and stem cell-derived human brain microvascular endothelial cells (BC1-hBMECs). Fluids Barriers CNS. 2016;13(1):10.CrossRefPubMedPubMedCentral
9.
go back to reference Appelt-Menzel A, et al. Establishment of a human blood–brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 2017;8(4):894–906.CrossRef Appelt-Menzel A, et al. Establishment of a human blood–brain barrier co-culture model mimicking the neurovascular unit using induced pluri- and multipotent stem cells. Stem Cell Rep. 2017;8(4):894–906.CrossRef
10.
go back to reference Hollmann EK, et al. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.CrossRefPubMedPubMedCentral Hollmann EK, et al. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14:9.CrossRefPubMedPubMedCentral
11.
go back to reference Al-Ahmad AJ. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. Am J Physiol Cell Physiol. 2017;313(4):C421–9.CrossRefPubMedPubMedCentral Al-Ahmad AJ. Comparative study of expression and activity of glucose transporters between stem cell-derived brain microvascular endothelial cells and hCMEC/D3 cells. Am J Physiol Cell Physiol. 2017;313(4):C421–9.CrossRefPubMedPubMedCentral
12.
go back to reference Kim BJ, et al. Modeling group B Streptococcus and blood–brain barrier interaction by using induced pluripotent stem cell-derived brain endothelial cells. Msphere. 2017;2(6):e00398-17.CrossRefPubMedPubMedCentral Kim BJ, et al. Modeling group B Streptococcus and blood–brain barrier interaction by using induced pluripotent stem cell-derived brain endothelial cells. Msphere. 2017;2(6):e00398-17.CrossRefPubMedPubMedCentral
13.
go back to reference Kokubu Y, Yamaguchi T, Kawabata K. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells. Biochem Biophys Res Commun. 2017;486:577–83.CrossRefPubMed Kokubu Y, Yamaguchi T, Kawabata K. In vitro model of cerebral ischemia by using brain microvascular endothelial cells derived from human induced pluripotent stem cells. Biochem Biophys Res Commun. 2017;486:577–83.CrossRefPubMed
14.
go back to reference Lim RG, et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood–brain barrier deficits. Cell Rep. 2017;19(7):1365–77.CrossRefPubMedPubMedCentral Lim RG, et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood–brain barrier deficits. Cell Rep. 2017;19(7):1365–77.CrossRefPubMedPubMedCentral
15.
go back to reference Canfield SG, et al. An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017;140(6):874–88.CrossRefPubMedPubMedCentral Canfield SG, et al. An isogenic blood–brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem. 2017;140(6):874–88.CrossRefPubMedPubMedCentral
16.
go back to reference Vatine GD, et al. Modeling psychomotor retardation using iPSCs from MCT8-deficient patients indicates a prominent role for the blood–brain barrier. Cell Stem Cell. 2017;20(6):p. 831-+.CrossRef Vatine GD, et al. Modeling psychomotor retardation using iPSCs from MCT8-deficient patients indicates a prominent role for the blood–brain barrier. Cell Stem Cell. 2017;20(6):p. 831-+.CrossRef
17.
go back to reference Wang YI, Abaci HE, Shuler ML. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114(1):184–94.CrossRefPubMed Wang YI, Abaci HE, Shuler ML. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017;114(1):184–94.CrossRefPubMed
18.
go back to reference Patel R, Page S, Al-Ahmad AJ. Isogenic blood–brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem. 2017;142(1):74–88.CrossRefPubMed Patel R, Page S, Al-Ahmad AJ. Isogenic blood–brain barrier models based on patient-derived stem cells display inter-individual differences in cell maturation and functionality. J Neurochem. 2017;142(1):74–88.CrossRefPubMed
19.
20.
go back to reference Hollmann EK, et al. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14(1):9.CrossRefPubMedPubMedCentral Hollmann EK, et al. Accelerated differentiation of human induced pluripotent stem cells to blood–brain barrier endothelial cells. Fluids Barriers CNS. 2017;14(1):9.CrossRefPubMedPubMedCentral
21.
go back to reference Ribecco-Lutkiewicz M, et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 2018;8:1873.CrossRefPubMedPubMedCentral Ribecco-Lutkiewicz M, et al. A novel human induced pluripotent stem cell blood–brain barrier model: applicability to study antibody-triggered receptor-mediated transcytosis. Sci Rep. 2018;8:1873.CrossRefPubMedPubMedCentral
22.
go back to reference Stebbins MJ, et al. Activation of RAR, RAR, or RXR increases barrier tightness in human induced pluripotent stem cell-derived brain endothelial cells. Biotechnol J. 2018;13(2):1700093.CrossRef Stebbins MJ, et al. Activation of RAR, RAR, or RXR increases barrier tightness in human induced pluripotent stem cell-derived brain endothelial cells. Biotechnol J. 2018;13(2):1700093.CrossRef
23.
go back to reference Katt ME, et al. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS. 2018;15:7.CrossRefPubMedPubMedCentral Katt ME, et al. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS. 2018;15:7.CrossRefPubMedPubMedCentral
24.
go back to reference Linville RL, et al. Human iPSC-derived blood–brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials. 2019;190–191:24–37.CrossRefPubMed Linville RL, et al. Human iPSC-derived blood–brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials. 2019;190–191:24–37.CrossRefPubMed
25.
go back to reference Al-Ahmad AJ, et al. Hyaluronan impairs the barrier integrity of brain microvascular endothelial cells through a CD44-dependent pathway. J Cereb Blood Flow Metab. 2018:271678X18767748. Al-Ahmad AJ, et al. Hyaluronan impairs the barrier integrity of brain microvascular endothelial cells through a CD44-dependent pathway. J Cereb Blood Flow Metab. 2018:271678X18767748.
26.
go back to reference Chiou B, et al. Endothelial cells are critical regulators of iron transport in a model of the human blood–brain barrier. J Cereb Blood Flow Metab. 2018:271678X18783372. Chiou B, et al. Endothelial cells are critical regulators of iron transport in a model of the human blood–brain barrier. J Cereb Blood Flow Metab. 2018:271678X18783372.
29.
go back to reference Chou BK, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.CrossRefPubMedPubMedCentral Chou BK, et al. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;21(3):518–29.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Neuwelt E, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7(1):84–96.CrossRefPubMed Neuwelt E, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7(1):84–96.CrossRefPubMed
32.
go back to reference Helms HC, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–90.CrossRefPubMedPubMedCentral Helms HC, et al. In vitro models of the blood–brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 2016;36(5):862–90.CrossRefPubMedPubMedCentral
33.
34.
35.
go back to reference Bogorad MI, et al. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation. 2017;24:e12360.CrossRef Bogorad MI, et al. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation. 2017;24:e12360.CrossRef
36.
go back to reference Brown JA, et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015;9(5):054124.CrossRefPubMedPubMedCentral Brown JA, et al. Recreating blood–brain barrier physiology and structure on chip: a novel neurovascular microfluidic bioreactor. Biomicrofluidics. 2015;9(5):054124.CrossRefPubMedPubMedCentral
37.
go back to reference Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood–brain barrier (mu BBB). Lab Chip. 2012;12(10):1784–92.CrossRefPubMed Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood–brain barrier (mu BBB). Lab Chip. 2012;12(10):1784–92.CrossRefPubMed
38.
go back to reference Yeon JH, et al. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevice. 2012;14(6):1141–8.CrossRef Yeon JH, et al. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevice. 2012;14(6):1141–8.CrossRef
40.
go back to reference Adriani G, et al. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab Chip. 2017;17(3):448–59.CrossRefPubMed Adriani G, et al. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood–brain barrier. Lab Chip. 2017;17(3):448–59.CrossRefPubMed
41.
go back to reference Wevers NR, et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15(1):23.CrossRefPubMedPubMedCentral Wevers NR, et al. A perfused human blood–brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS. 2018;15(1):23.CrossRefPubMedPubMedCentral
43.
go back to reference Herland A, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11(3):e0150360.CrossRefPubMedPubMedCentral Herland A, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood–brain barrier on a chip. PLoS ONE. 2016;11(3):e0150360.CrossRefPubMedPubMedCentral
44.
go back to reference Partyka PP, et al. Mechanical stress regulates transport in a compliant 3D model of the blood–brain barrier. Biomaterials. 2017;115:30–9.CrossRefPubMed Partyka PP, et al. Mechanical stress regulates transport in a compliant 3D model of the blood–brain barrier. Biomaterials. 2017;115:30–9.CrossRefPubMed
45.
go back to reference Campisi M, et al. 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117–29.CrossRefPubMedPubMedCentral Campisi M, et al. 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117–29.CrossRefPubMedPubMedCentral
46.
go back to reference Bang S, et al. A low permeability microfluidic blood–brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep. 2017;7:8083.CrossRefPubMedPubMedCentral Bang S, et al. A low permeability microfluidic blood–brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci Rep. 2017;7:8083.CrossRefPubMedPubMedCentral
47.
go back to reference Syvanen S, et al. Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.CrossRefPubMed Syvanen S, et al. Species differences in blood–brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.CrossRefPubMed
48.
go back to reference Watase K, Zoghbi HY. Modelling brain diseases in mice: the challenges of design and analysis. Nat Rev Genet. 2003;4(4):296–307.CrossRefPubMed Watase K, Zoghbi HY. Modelling brain diseases in mice: the challenges of design and analysis. Nat Rev Genet. 2003;4(4):296–307.CrossRefPubMed
49.
go back to reference Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28(4):202–8.CrossRefPubMed Zlokovic BV. Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 2005;28(4):202–8.CrossRefPubMed
51.
go back to reference Duvernoy H, Delon S, Vannson JL. The vascularization of the human cerebellar cortex. Brain Res Bull. 1983;11(4):419–80.CrossRefPubMed Duvernoy H, Delon S, Vannson JL. The vascularization of the human cerebellar cortex. Brain Res Bull. 1983;11(4):419–80.CrossRefPubMed
52.
go back to reference Schlageter KE, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58(3):312–28.CrossRefPubMed Schlageter KE, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58(3):312–28.CrossRefPubMed
53.
go back to reference Risser L, et al. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. Int J Dev Neurosci. 2009;27(2):185–96.CrossRefPubMed Risser L, et al. A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level. Int J Dev Neurosci. 2009;27(2):185–96.CrossRefPubMed
54.
go back to reference Risser L, et al. From homogeneous to fractal normal and tumorous microvascular networks in the brain. J Cereb Blood Flow Metab. 2007;27(2):293–303.CrossRefPubMed Risser L, et al. From homogeneous to fractal normal and tumorous microvascular networks in the brain. J Cereb Blood Flow Metab. 2007;27(2):293–303.CrossRefPubMed
55.
go back to reference Heinzer S, et al. Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. Neuroimage. 2008;39(4):1549–58.CrossRefPubMed Heinzer S, et al. Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. Neuroimage. 2008;39(4):1549–58.CrossRefPubMed
56.
go back to reference Meyer EP, et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci USA. 2008;105(9):3587–92.CrossRefPubMedPubMedCentral Meyer EP, et al. Altered morphology and 3D architecture of brain vasculature in a mouse model for Alzheimer’s disease. Proc Natl Acad Sci USA. 2008;105(9):3587–92.CrossRefPubMedPubMedCentral
58.
go back to reference Abbott NJ, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.CrossRefPubMed Abbott NJ, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.CrossRefPubMed
59.
go back to reference Garcia JH, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144(1):188–99.PubMedPubMedCentral Garcia JH, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144(1):188–99.PubMedPubMedCentral
61.
go back to reference Kienast Y, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16(1):116–22.CrossRefPubMed Kienast Y, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16(1):116–22.CrossRefPubMed
62.
go back to reference Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett. 2011;585(23):3770–80.CrossRefPubMed Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett. 2011;585(23):3770–80.CrossRefPubMed
63.
go back to reference Holman DW, Klein RS, Ransohoff RM. The blood–brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–30.CrossRefPubMed Holman DW, Klein RS, Ransohoff RM. The blood–brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–30.CrossRefPubMed
64.
go back to reference Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol Rev. 2012;248:228–39.CrossRefPubMedPubMedCentral Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol Rev. 2012;248:228–39.CrossRefPubMedPubMedCentral
65.
go back to reference Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21.CrossRefPubMed Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008;67(12):1113–21.CrossRefPubMed
66.
go back to reference Kristensson K, et al. African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions. Prog Neurobiol. 2010;91(2):152–71.CrossRefPubMed Kristensson K, et al. African trypanosome infections of the nervous system: parasite entry and effects on sleep and synaptic functions. Prog Neurobiol. 2010;91(2):152–71.CrossRefPubMed
70.
go back to reference Farkas E, Luiten PGM. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.CrossRefPubMed Farkas E, Luiten PGM. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol. 2001;64(6):575–611.CrossRefPubMed
71.
go back to reference Nag S. Studies of cerebral vessels by transmission electron microscopy and morphometry. In: Nag S, editor. The blood–brain barrier: biological and research protocols. New York City: Humana Press; 2003. p. 37–50.CrossRef Nag S. Studies of cerebral vessels by transmission electron microscopy and morphometry. In: Nag S, editor. The blood–brain barrier: biological and research protocols. New York City: Humana Press; 2003. p. 37–50.CrossRef
73.
go back to reference Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2(4):285–93.CrossRefPubMed Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2(4):285–93.CrossRefPubMed
74.
go back to reference Rodriguez-Baeza A, et al. Perivascular structures in corrosion casts of the human central nervous system: a confocal laser and scanning electron microscope study. Anat Rec. 1998;252(2):176–84.CrossRefPubMed Rodriguez-Baeza A, et al. Perivascular structures in corrosion casts of the human central nervous system: a confocal laser and scanning electron microscope study. Anat Rec. 1998;252(2):176–84.CrossRefPubMed
75.
go back to reference Wolburg H, Liebner S, Lippoldt A. Freeze-fracture studies of cerebral endothelial tight junctions. Methods Mol Med. 2003;89:51–66.PubMed Wolburg H, Liebner S, Lippoldt A. Freeze-fracture studies of cerebral endothelial tight junctions. Methods Mol Med. 2003;89:51–66.PubMed
76.
go back to reference DeStefano JG, et al. Real-time quantification of endothelial response to shear stress and vascular modulators. Integr Biol. 2017;9(4):362–74.CrossRef DeStefano JG, et al. Real-time quantification of endothelial response to shear stress and vascular modulators. Integr Biol. 2017;9(4):362–74.CrossRef
77.
79.
go back to reference Garcia-Polite F, et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab. 2017;37(7):2614–25.CrossRefPubMed Garcia-Polite F, et al. Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium. J Cereb Blood Flow Metab. 2017;37(7):2614–25.CrossRefPubMed
81.
go back to reference Dolan JM, Kolega J, Meng H. High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng. 2013;41(7):1411–27.CrossRefPubMed Dolan JM, Kolega J, Meng H. High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng. 2013;41(7):1411–27.CrossRefPubMed
82.
go back to reference Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.CrossRefPubMed Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.CrossRefPubMed
83.
84.
go back to reference Gould IG, et al. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab. 2017;37(1):52–68.CrossRefPubMed Gould IG, et al. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J Cereb Blood Flow Metab. 2017;37(1):52–68.CrossRefPubMed
85.
go back to reference Kleinfeld D, et al. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci. 1998;95(26):15741–6.CrossRefPubMedPubMedCentral Kleinfeld D, et al. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci. 1998;95(26):15741–6.CrossRefPubMedPubMedCentral
87.
go back to reference Unekawa M, et al. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Brain Res. 2010;1320:69–73.CrossRefPubMed Unekawa M, et al. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Brain Res. 2010;1320:69–73.CrossRefPubMed
88.
go back to reference Hudetz AG. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation. 1997;4(2):233–52.CrossRefPubMed Hudetz AG. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation. 1997;4(2):233–52.CrossRefPubMed
89.
go back to reference Villringer A, et al. Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res. 1994;75(1):55–62.CrossRefPubMed Villringer A, et al. Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study. Circ Res. 1994;75(1):55–62.CrossRefPubMed
90.
go back to reference Ivanov K, Kalinina M, Levkovich YI. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc Res. 1981;22(2):143–55.CrossRefPubMed Ivanov K, Kalinina M, Levkovich YI. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc Res. 1981;22(2):143–55.CrossRefPubMed
91.
go back to reference Ma Y, et al. On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat. Microvasc Res. 1974;8(1):1–13.CrossRefPubMed Ma Y, et al. On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat. Microvasc Res. 1974;8(1):1–13.CrossRefPubMed
92.
go back to reference Turitto VT. Blood viscosity, mass transport, and thrombogenesis. Prog Hemost Thromb. 1982;6:139–77.PubMed Turitto VT. Blood viscosity, mass transport, and thrombogenesis. Prog Hemost Thromb. 1982;6:139–77.PubMed
93.
go back to reference Drake CT, Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang. 2007;102(2):141–52.CrossRefPubMed Drake CT, Iadecola C. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang. 2007;102(2):141–52.CrossRefPubMed
94.
go back to reference Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.CrossRefPubMed Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100(1):328–35.CrossRefPubMed
95.
go back to reference Lauritzen M. Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J Cereb Blood Flow Metab. 2001;21(12):1367–83.CrossRefPubMed Lauritzen M. Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J Cereb Blood Flow Metab. 2001;21(12):1367–83.CrossRefPubMed
96.
97.
go back to reference Chen BR, et al. High-speed vascular dynamics of the hemodynamic response. Neuroimage. 2011;54(2):1021–30.CrossRefPubMed Chen BR, et al. High-speed vascular dynamics of the hemodynamic response. Neuroimage. 2011;54(2):1021–30.CrossRefPubMed
98.
go back to reference Shih AY, et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 2012;32(7):1277–309.CrossRefPubMedPubMedCentral Shih AY, et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 2012;32(7):1277–309.CrossRefPubMedPubMedCentral
99.
go back to reference Koutsiaris AG, et al. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology. 2007;44(5–6):375–86.PubMed Koutsiaris AG, et al. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology. 2007;44(5–6):375–86.PubMed
100.
go back to reference Santisakultarm TP, et al. In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice. Am J Physiol Heart Circ Physiol. 2012;302(7):H1367–77.CrossRefPubMedPubMedCentral Santisakultarm TP, et al. In vivo two-photon excited fluorescence microscopy reveals cardiac- and respiration-dependent pulsatile blood flow in cortical blood vessels in mice. Am J Physiol Heart Circ Physiol. 2012;302(7):H1367–77.CrossRefPubMedPubMedCentral
101.
go back to reference Errico C, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527(7579):499.CrossRefPubMed Errico C, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527(7579):499.CrossRefPubMed
102.
go back to reference Gangoda SVS, et al. Pulsatile stretch as a novel modulator of amyloid precursor protein processing and associated inflammatory markers in human cerebral endothelial cells. Sci Rep. 2018;8(1):1689.CrossRefPubMedPubMedCentral Gangoda SVS, et al. Pulsatile stretch as a novel modulator of amyloid precursor protein processing and associated inflammatory markers in human cerebral endothelial cells. Sci Rep. 2018;8(1):1689.CrossRefPubMedPubMedCentral
104.
go back to reference Tilling T, et al. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 2002;310(1):19–29.CrossRefPubMed Tilling T, et al. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 2002;310(1):19–29.CrossRefPubMed
105.
go back to reference Tilling T, et al. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem. 1998;71(3):1151–7.CrossRefPubMed Tilling T, et al. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem. 1998;71(3):1151–7.CrossRefPubMed
106.
go back to reference Hartmann C, et al. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res. 2007;313(7):1318–25.CrossRefPubMed Hartmann C, et al. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res. 2007;313(7):1318–25.CrossRefPubMed
107.
108.
go back to reference Iozzo RV, et al. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994;302(Pt 3):625.CrossRefPubMedPubMedCentral Iozzo RV, et al. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994;302(Pt 3):625.CrossRefPubMedPubMedCentral
109.
110.
go back to reference Dermietzel R, Krause D. Molecular anatomy of the blood–brain-barrier as defined by immunocytochemistry. Int Rev Cytol. 1991;127:57–109.CrossRefPubMed Dermietzel R, Krause D. Molecular anatomy of the blood–brain-barrier as defined by immunocytochemistry. Int Rev Cytol. 1991;127:57–109.CrossRefPubMed
111.
112.
113.
go back to reference Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA. 2006;103(14):5567–72.CrossRefPubMedPubMedCentral Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci USA. 2006;103(14):5567–72.CrossRefPubMedPubMedCentral
114.
go back to reference Thorne RG, Hrabetova S, Nicholson C. Diffusion measurements for drug design. Nat Mater. 2005;4(10):713.CrossRefPubMed Thorne RG, Hrabetova S, Nicholson C. Diffusion measurements for drug design. Nat Mater. 2005;4(10):713.CrossRefPubMed
115.
go back to reference Kroeger D, et al. Activity-dependent layer-specific changes in the extracellular chloride concentration and chloride driving force in the rat hippocampus. J Neurophysiol. 2010;103(4):1905–14.CrossRefPubMed Kroeger D, et al. Activity-dependent layer-specific changes in the extracellular chloride concentration and chloride driving force in the rat hippocampus. J Neurophysiol. 2010;103(4):1905–14.CrossRefPubMed
116.
go back to reference Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 2008;130(4):635–53.CrossRefPubMed Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol. 2008;130(4):635–53.CrossRefPubMed
117.
go back to reference Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci. 2000;57(2):276–89.CrossRefPubMed Yamaguchi Y. Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci. 2000;57(2):276–89.CrossRefPubMed
118.
go back to reference Sanes JR. Extracellular-matrix molecules that influence neural development. Annu Rev Neurosci. 1989;12:491–516.CrossRefPubMed Sanes JR. Extracellular-matrix molecules that influence neural development. Annu Rev Neurosci. 1989;12:491–516.CrossRefPubMed
119.
go back to reference Luissint AC, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23.CrossRefPubMedPubMedCentral Luissint AC, et al. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012;9(1):23.CrossRefPubMedPubMedCentral
120.
go back to reference Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4(3):225–36.CrossRefPubMed Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol. 2003;4(3):225–36.CrossRefPubMed
121.
122.
go back to reference Ohtsuki S, et al. mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem. 2008;104(1):147–54.PubMed Ohtsuki S, et al. mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem. 2008;104(1):147–54.PubMed
123.
go back to reference Weksler BB, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(13):1872–4.CrossRefPubMed Weksler BB, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(13):1872–4.CrossRefPubMed
124.
go back to reference Bernas MJ, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood–brain barrier. Nat Protoc. 2010;5(7):1265–72.CrossRefPubMedPubMedCentral Bernas MJ, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood–brain barrier. Nat Protoc. 2010;5(7):1265–72.CrossRefPubMedPubMedCentral
125.
go back to reference Goodall EF, et al. Age-associated changes in the blood–brain barrier: comparative studies in human and mouse. Neuropathol Appl Neurobiol. 2018;44(3):328–40.CrossRefPubMed Goodall EF, et al. Age-associated changes in the blood–brain barrier: comparative studies in human and mouse. Neuropathol Appl Neurobiol. 2018;44(3):328–40.CrossRefPubMed
126.
go back to reference Errede M, et al. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development. Front Neurosci. 2014;8:324.CrossRefPubMedPubMedCentral Errede M, et al. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development. Front Neurosci. 2014;8:324.CrossRefPubMedPubMedCentral
127.
go back to reference Gaillard PJ, de Boer AG. Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000;12(2):95–102.CrossRefPubMed Gaillard PJ, de Boer AG. Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000;12(2):95–102.CrossRefPubMed
128.
go back to reference Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49–55.CrossRefPubMed Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49–55.CrossRefPubMed
129.
go back to reference Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.CrossRefPubMedPubMedCentral Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.CrossRefPubMedPubMedCentral
130.
go back to reference Butt AM, Jones HC. Effect of histamine and antagonists on electrical-resistance across the blood–brain-barrier in rat brain-surface microvessels. Brain Res. 1992;569(1):100–5.CrossRefPubMed Butt AM, Jones HC. Effect of histamine and antagonists on electrical-resistance across the blood–brain-barrier in rat brain-surface microvessels. Brain Res. 1992;569(1):100–5.CrossRefPubMed
131.
go back to reference Smith QR, Rapoport SI. Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem. 1986;46(6):1732–42.CrossRefPubMed Smith QR, Rapoport SI. Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem. 1986;46(6):1732–42.CrossRefPubMed
132.
go back to reference Eigenmann DE, et al. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10(1):33.CrossRefPubMedPubMedCentral Eigenmann DE, et al. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10(1):33.CrossRefPubMedPubMedCentral
133.
go back to reference Daniels BP, et al. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. J Neurosci Methods. 2013;212(1):173–9.CrossRefPubMed Daniels BP, et al. Immortalized human cerebral microvascular endothelial cells maintain the properties of primary cells in an in vitro model of immune migration across the blood brain barrier. J Neurosci Methods. 2013;212(1):173–9.CrossRefPubMed
134.
go back to reference Khan NA. Novel in vitro and in vivo models to study central nervous system infections due to Acanthamoeba spp. Exp Parasitol. 2010;126(1):69–72.CrossRefPubMed Khan NA. Novel in vitro and in vivo models to study central nervous system infections due to Acanthamoeba spp. Exp Parasitol. 2010;126(1):69–72.CrossRefPubMed
135.
go back to reference Saunders NR, et al. The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history. Front Neurosci. 2014;8:404.CrossRefPubMedPubMedCentral Saunders NR, et al. The rights and wrongs of blood–brain barrier permeability studies: a walk through 100 years of history. Front Neurosci. 2014;8:404.CrossRefPubMedPubMedCentral
136.
go back to reference Ribatti D, et al. Development of the blood–brain barrier: a historical point of view. Anat Rec B New Anat. 2006;289(1):3–8.CrossRefPubMed Ribatti D, et al. Development of the blood–brain barrier: a historical point of view. Anat Rec B New Anat. 2006;289(1):3–8.CrossRefPubMed
138.
go back to reference Jeong JY, et al. Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull. 2008;75(5):619–28.CrossRefPubMed Jeong JY, et al. Functional and developmental analysis of the blood–brain barrier in zebrafish. Brain Res Bull. 2008;75(5):619–28.CrossRefPubMed
139.
go back to reference Yuan W, et al. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc Res. 2009;77(2):166–73.CrossRefPubMed Yuan W, et al. Non-invasive measurement of solute permeability in cerebral microvessels of the rat. Microvasc Res. 2009;77(2):166–73.CrossRefPubMed
140.
go back to reference Shi L, et al. Quantification of blood–brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng. 2014;136(3):031005.CrossRefPubMed Shi L, et al. Quantification of blood–brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng. 2014;136(3):031005.CrossRefPubMed
141.
go back to reference Nag S. Blood–brain barrier permeability using tracers and immunohistochemistry. In: Nag S, editor. The blood–brain barrier: biological and research protocols. New York City: Humana Press; 2003. p. 133–44.CrossRef Nag S. Blood–brain barrier permeability using tracers and immunohistochemistry. In: Nag S, editor. The blood–brain barrier: biological and research protocols. New York City: Humana Press; 2003. p. 133–44.CrossRef
142.
go back to reference Honig G, et al. Blood–brain barrier deterioration and hippocampal gene expression in polymicrobial sepsis: an evaluation of endothelial MyD88 and the vagus nerve. PLoS ONE. 2016;11(1):e0144215.CrossRefPubMedPubMedCentral Honig G, et al. Blood–brain barrier deterioration and hippocampal gene expression in polymicrobial sepsis: an evaluation of endothelial MyD88 and the vagus nerve. PLoS ONE. 2016;11(1):e0144215.CrossRefPubMedPubMedCentral
143.
go back to reference Wulkersdorfer B, et al. Using positron emission tomography to study transporter-mediated drug–drug interactions in tissues. Clin Pharmacol Ther. 2014;96(2):206–13.CrossRefPubMedPubMedCentral Wulkersdorfer B, et al. Using positron emission tomography to study transporter-mediated drug–drug interactions in tissues. Clin Pharmacol Ther. 2014;96(2):206–13.CrossRefPubMedPubMedCentral
144.
go back to reference Dauchy S, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.CrossRefPubMed Dauchy S, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood–brain barrier. J Neurochem. 2008;107(6):1518–28.CrossRefPubMed
145.
go back to reference Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; Importance for CNS drug discovery and development. Pharm Res. 2007;24(9):1745–58.CrossRefPubMed Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; Importance for CNS drug discovery and development. Pharm Res. 2007;24(9):1745–58.CrossRefPubMed
146.
go back to reference Summerfield SG, et al. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther. 2007;322(1):205–13.CrossRefPubMed Summerfield SG, et al. Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther. 2007;322(1):205–13.CrossRefPubMed
147.
go back to reference Bauer M, et al. Approaching complete inhibition of P-glycoprotein at the human blood–brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab. 2015;35(5):743–6.CrossRefPubMedPubMedCentral Bauer M, et al. Approaching complete inhibition of P-glycoprotein at the human blood–brain barrier: an (R)-[11C]verapamil PET study. J Cereb Blood Flow Metab. 2015;35(5):743–6.CrossRefPubMedPubMedCentral
148.
go back to reference Polli JW, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos. 2009;37(2):439–42.CrossRefPubMed Polli JW, et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos. 2009;37(2):439–42.CrossRefPubMed
149.
150.
go back to reference Spaet TH, Lejnieks I. Mitotic activity of rabbit blood vessels. Proc Soc Exp Biol Med. 1967;125(4):1197–201.CrossRefPubMed Spaet TH, Lejnieks I. Mitotic activity of rabbit blood vessels. Proc Soc Exp Biol Med. 1967;125(4):1197–201.CrossRefPubMed
151.
go back to reference Tannock IF, Hayashi S. The proliferation of capillary endothelial cells. Cancer Res. 1972;32(1):77–82.PubMed Tannock IF, Hayashi S. The proliferation of capillary endothelial cells. Cancer Res. 1972;32(1):77–82.PubMed
152.
go back to reference Cudmore RH, Dougherty SE, Linden DJ. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise (vol 37, pg 3725, 2017). J Cereb Blood Flow Metab. 2017;37(12):3824.CrossRef Cudmore RH, Dougherty SE, Linden DJ. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise (vol 37, pg 3725, 2017). J Cereb Blood Flow Metab. 2017;37(12):3824.CrossRef
153.
go back to reference Harb R, et al. In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab. 2013;33(1):146–56.CrossRefPubMed Harb R, et al. In vivo imaging of cerebral microvascular plasticity from birth to death. J Cereb Blood Flow Metab. 2013;33(1):146–56.CrossRefPubMed
154.
go back to reference Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.CrossRefPubMed Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.CrossRefPubMed
155.
156.
go back to reference Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci. 2011;33(4):577–88.CrossRefPubMed Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci. 2011;33(4):577–88.CrossRefPubMed
157.
go back to reference Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.CrossRefPubMed Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.CrossRefPubMed
159.
go back to reference Mathiisen TM, et al. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58(9):1094–103.CrossRefPubMed Mathiisen TM, et al. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia. 2010;58(9):1094–103.CrossRefPubMed
160.
go back to reference Ridet JL, et al. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20(12):570–7.CrossRefPubMed Ridet JL, et al. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20(12):570–7.CrossRefPubMed
161.
164.
go back to reference Placone AL, Quinones-Hinojosa A, Searson PC. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol. 2016;37(1):61–9.CrossRefPubMed Placone AL, Quinones-Hinojosa A, Searson PC. The role of astrocytes in the progression of brain cancer: complicating the picture of the tumor microenvironment. Tumour Biol. 2016;37(1):61–9.CrossRefPubMed
165.
go back to reference Puschmann TB, et al. Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia. 2013;61(3):432–40.CrossRefPubMed Puschmann TB, et al. Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia. 2013;61(3):432–40.CrossRefPubMed
167.
go back to reference Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.CrossRef Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc Pharmacol. 2002;38(6):323–37.CrossRef
168.
go back to reference Nicchia GP, et al. The role of aquaporin-4 in the blood–brain barrier development and integrity: studies in animal and cell culture models. Neuroscience. 2004;129(4):935–45.CrossRefPubMed Nicchia GP, et al. The role of aquaporin-4 in the blood–brain barrier development and integrity: studies in animal and cell culture models. Neuroscience. 2004;129(4):935–45.CrossRefPubMed
169.
go back to reference Levy AF, et al. Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D. PLoS ONE. 2014;9(3):e92165.CrossRefPubMedPubMedCentral Levy AF, et al. Influence of basement membrane proteins and endothelial cell-derived factors on the morphology of human fetal-derived astrocytes in 2D. PLoS ONE. 2014;9(3):e92165.CrossRefPubMedPubMedCentral
170.
go back to reference Placone AL, et al. Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials. 2015;42:134–43.CrossRefPubMed Placone AL, et al. Human astrocytes develop physiological morphology and remain quiescent in a novel 3D matrix. Biomaterials. 2015;42:134–43.CrossRefPubMed
171.
go back to reference Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.CrossRefPubMed Armulik A, Genove G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215.CrossRefPubMed
172.
go back to reference Hartmann DA, et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics. 2015;2(4):041402.CrossRefPubMedPubMedCentral Hartmann DA, et al. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics. 2015;2(4):041402.CrossRefPubMedPubMedCentral
173.
go back to reference Hill RA, et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95–110.CrossRefPubMedPubMedCentral Hill RA, et al. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95–110.CrossRefPubMedPubMedCentral
174.
go back to reference Damisah EC, et al. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci. 2017;20(7):p. 1023-+.CrossRef Damisah EC, et al. A fluoro-Nissl dye identifies pericytes as distinct vascular mural cells during in vivo brain imaging. Nat Neurosci. 2017;20(7):p. 1023-+.CrossRef
176.
177.
go back to reference Frank RN, Dutta S, Mancini MA. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci. 1987;28(7):1086–91.PubMed Frank RN, Dutta S, Mancini MA. Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. Invest Ophthalmol Vis Sci. 1987;28(7):1086–91.PubMed
180.
go back to reference Crisan M, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.CrossRefPubMed Crisan M, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.CrossRefPubMed
181.
go back to reference Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14(16):1581–93.CrossRefPubMed Dore-Duffy P. Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 2008;14(16):1581–93.CrossRefPubMed
182.
go back to reference Correa D, et al. Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer. 2016;138(2):417–27.CrossRefPubMed Correa D, et al. Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer. 2016;138(2):417–27.CrossRefPubMed
183.
go back to reference Blocki A, et al. Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev. 2013;22(17):2347–55.CrossRefPubMedPubMedCentral Blocki A, et al. Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis. Stem Cells Dev. 2013;22(17):2347–55.CrossRefPubMedPubMedCentral
184.
185.
go back to reference Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15–23.CrossRefPubMed Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003;314(1):15–23.CrossRefPubMed
188.
go back to reference Hayashi K, et al. Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept. 2004;123(1):77–83.CrossRefPubMed Hayashi K, et al. Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept. 2004;123(1):77–83.CrossRefPubMed
189.
go back to reference Nakagawa S, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54(3–4):253–63.CrossRefPubMed Nakagawa S, et al. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009;54(3–4):253–63.CrossRefPubMed
190.
go back to reference Nakagawa S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27(6):687–94.CrossRefPubMed Nakagawa S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27(6):687–94.CrossRefPubMed
191.
go back to reference Siddharthan V, et al. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.CrossRefPubMedPubMedCentral Siddharthan V, et al. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res. 2007;1147:39–50.CrossRefPubMedPubMedCentral
192.
go back to reference Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood–brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS ONE. 2015;10(8):e0134765.CrossRefPubMedPubMedCentral Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood–brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS ONE. 2015;10(8):e0134765.CrossRefPubMedPubMedCentral
193.
go back to reference Malina KCK, Cooper I, Teichberg VI. Closing the gap between the in vivo and in vitro blood–brain barrier tightness. Brain Res. 2009;1284:12–21.CrossRef Malina KCK, Cooper I, Teichberg VI. Closing the gap between the in vivo and in vitro blood–brain barrier tightness. Brain Res. 2009;1284:12–21.CrossRef
194.
go back to reference Yang T, Roder KE, Abbruscato TJ. Evaluation of bEnd5 cell line as an in vitro model for the blood–brain barrier under normal and hypoxic/aglycemic conditions. J Pharm Sci. 2007;96(12):3196–213.CrossRefPubMed Yang T, Roder KE, Abbruscato TJ. Evaluation of bEnd5 cell line as an in vitro model for the blood–brain barrier under normal and hypoxic/aglycemic conditions. J Pharm Sci. 2007;96(12):3196–213.CrossRefPubMed
195.
go back to reference Hatherell K, et al. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation transwell models. J Neurosci Methods. 2011;199(2):223–9.CrossRefPubMed Hatherell K, et al. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation transwell models. J Neurosci Methods. 2011;199(2):223–9.CrossRefPubMed
196.
go back to reference Hori S, et al. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004;89(2):503–13.CrossRefPubMed Hori S, et al. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004;89(2):503–13.CrossRefPubMed
197.
go back to reference Weksler BB, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(11):1872–4.CrossRefPubMed Weksler BB, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19(11):1872–4.CrossRefPubMed
198.
go back to reference Thanabalasundaram G, et al. Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res. 2010;1347:1–10.CrossRefPubMed Thanabalasundaram G, et al. Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res. 2010;1347:1–10.CrossRefPubMed
199.
go back to reference Thanabalasundaram G, et al. The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011;43(9):1284–93.CrossRefPubMed Thanabalasundaram G, et al. The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011;43(9):1284–93.CrossRefPubMed
200.
go back to reference Lippmann ES, et al. Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011;119(3):507–20.CrossRefPubMedPubMedCentral Lippmann ES, et al. Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem. 2011;119(3):507–20.CrossRefPubMedPubMedCentral
201.
go back to reference Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood–brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS ONE. 2015;10(8):1–16.CrossRef Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood–brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS ONE. 2015;10(8):1–16.CrossRef
202.
203.
go back to reference Vanlandewijck M, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554(7693):475–80.CrossRefPubMed Vanlandewijck M, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554(7693):475–80.CrossRefPubMed
204.
go back to reference Linville RM, et al. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell Mol Bioeng. 2016;9(1):73–84.CrossRefPubMed Linville RM, et al. Physical and chemical signals that promote vascularization of capillary-scale channels. Cell Mol Bioeng. 2016;9(1):73–84.CrossRefPubMed
205.
go back to reference Maoz BM, et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018;36(9):865–74.CrossRefPubMed Maoz BM, et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat Biotechnol. 2018;36(9):865–74.CrossRefPubMed
206.
go back to reference Park J, et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. 2018;21(7):941–51.CrossRefPubMedPubMedCentral Park J, et al. A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci. 2018;21(7):941–51.CrossRefPubMedPubMedCentral
Metadata
Title
Benchmarking in vitro tissue-engineered blood–brain barrier models
Authors
Jackson G. DeStefano
John J. Jamieson
Raleigh M. Linville
Peter C. Searson
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2018
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-018-0117-2

Other articles of this Issue 1/2018

Fluids and Barriers of the CNS 1/2018 Go to the issue