Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2013

Open Access 01-12-2013 | Research

Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

Authors: Daniela E Eigenmann, Gongda Xue, Kwang S Kim, Ashlee V Moses, Matthias Hamburger, Mouhssin Oufir

Published in: Fluids and Barriers of the CNS | Issue 1/2013

Login to get access

Abstract

Background

Reliable human in vitro blood–brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness.

Methods

Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.
Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed.

Results

The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 μm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells.

Conclusions

Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pardridge WM: The blood–brain barrier: bottleneck in brain drug development. Neurotherapeutics. 2005, 2: 3-14. 10.1602/neurorx.2.1.3.CrossRef Pardridge WM: The blood–brain barrier: bottleneck in brain drug development. Neurotherapeutics. 2005, 2: 3-14. 10.1602/neurorx.2.1.3.CrossRef
2.
go back to reference Di L, Rong H, Feng B: Demystifying brain penetration in central nervous system drug discovery. J Med Chem. 2013, 56: A-K.CrossRef Di L, Rong H, Feng B: Demystifying brain penetration in central nervous system drug discovery. J Med Chem. 2013, 56: A-K.CrossRef
3.
go back to reference Nicolazzo JA, Charman SA, Charman WN: Methods to assess drug permeability across the blood–brain barrier. J Pharm Pharmacol. 2006, 58: 281-293. 10.1211/jpp.58.3.0001.PubMedCrossRef Nicolazzo JA, Charman SA, Charman WN: Methods to assess drug permeability across the blood–brain barrier. J Pharm Pharmacol. 2006, 58: 281-293. 10.1211/jpp.58.3.0001.PubMedCrossRef
5.
go back to reference Di L, Kerns EH, Bezar IF, Petusky SL, Huang Y: Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J Pharm Sci. 2009, 98: 1980-1991. 10.1002/jps.21580.PubMedCrossRef Di L, Kerns EH, Bezar IF, Petusky SL, Huang Y: Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J Pharm Sci. 2009, 98: 1980-1991. 10.1002/jps.21580.PubMedCrossRef
6.
go back to reference Abbott NJ: Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol. 2004, 1: 407-416. 10.1016/j.ddtec.2004.11.014.PubMedCrossRef Abbott NJ: Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol. 2004, 1: 407-416. 10.1016/j.ddtec.2004.11.014.PubMedCrossRef
7.
go back to reference Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck M-P, Fenart L: Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007, 6: 650-661. 10.1038/nrd2368.PubMedCrossRef Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck M-P, Fenart L: Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007, 6: 650-661. 10.1038/nrd2368.PubMedCrossRef
8.
go back to reference Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW: Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983, 14: 396-402. 10.1002/ana.410140403.PubMedCrossRef Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW: Brain microvessel endothelial cells in tissue culture: a model for study of blood–brain barrier permeability. Ann Neurol. 1983, 14: 396-402. 10.1002/ana.410140403.PubMedCrossRef
9.
10.
go back to reference Ogunshola OO: In vitro modeling of the blood–brain barrier: simplicity versus complexity. Curr Pharm Design. 2011, 17: 2755-2761. 10.2174/138161211797440159.CrossRef Ogunshola OO: In vitro modeling of the blood–brain barrier: simplicity versus complexity. Curr Pharm Design. 2011, 17: 2755-2761. 10.2174/138161211797440159.CrossRef
11.
go back to reference Dehouck M-P, Meresse S, Delorme P, Fruchart J-C, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.PubMedCrossRef Dehouck M-P, Meresse S, Delorme P, Fruchart J-C, Cecchelli R: An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J Neurochem. 1990, 54: 1798-1801. 10.1111/j.1471-4159.1990.tb01236.x.PubMedCrossRef
12.
go back to reference Abbott NJ, Rönnbäck L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.PubMedCrossRef Abbott NJ, Rönnbäck L, Hansson E: Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006, 7: 41-53. 10.1038/nrn1824.PubMedCrossRef
13.
go back to reference Siddharthan V, Kim YV, Liu S, Kim KS: Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human barin microvascular endothelial cells. Brain Res. 2007, 1147: 39-50.PubMedCentralPubMedCrossRef Siddharthan V, Kim YV, Liu S, Kim KS: Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human barin microvascular endothelial cells. Brain Res. 2007, 1147: 39-50.PubMedCentralPubMedCrossRef
14.
go back to reference Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F: A cell culture model of the blood–brain barrier. J Cell Biol. 1991, 115: 1725-1735. 10.1083/jcb.115.6.1725.PubMedCrossRef Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F: A cell culture model of the blood–brain barrier. J Cell Biol. 1991, 115: 1725-1735. 10.1083/jcb.115.6.1725.PubMedCrossRef
15.
go back to reference Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009, 54: 253-263. 10.1016/j.neuint.2008.12.002.PubMedCrossRef Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M: A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 2009, 54: 253-263. 10.1016/j.neuint.2008.12.002.PubMedCrossRef
16.
go back to reference Thanabalasundaram G, Schneidewind J, Pieper C, Galla H-J: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.PubMedCrossRef Thanabalasundaram G, Schneidewind J, Pieper C, Galla H-J: The impact of pericytes on the blood–brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol. 2011, 43: 1284-1293. 10.1016/j.biocel.2011.05.002.PubMedCrossRef
17.
go back to reference Deli MA: Blood–brain Barrier Models. Handbook of Neurochemistry and Molecular Neurobiology. Edited by: Lajtha A, Reith MEA. 2007, Berlin Heidelberg: Springer Verlag, 29-55. 3CrossRef Deli MA: Blood–brain Barrier Models. Handbook of Neurochemistry and Molecular Neurobiology. Edited by: Lajtha A, Reith MEA. 2007, Berlin Heidelberg: Springer Verlag, 29-55. 3CrossRef
18.
go back to reference Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.PubMedCrossRef Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T: Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem. 2011, 117: 333-345. 10.1111/j.1471-4159.2011.07208.x.PubMedCrossRef
19.
go back to reference Lundquist S, Renftel M: The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood–brain barrier in the pharmaceutical industry-Background and current status in the drug discovery process. Vascul Pharmacol. 2002, 38: 355-364. 10.1016/S1537-1891(02)00203-3.PubMedCrossRef Lundquist S, Renftel M: The use of in vitro cell culture models for mechanistic studies and as permeability screens for the blood–brain barrier in the pharmaceutical industry-Background and current status in the drug discovery process. Vascul Pharmacol. 2002, 38: 355-364. 10.1016/S1537-1891(02)00203-3.PubMedCrossRef
20.
go back to reference Reichel A, Begley DJ, Abbott NJ: An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med. 2003, 89: 307-324.PubMed Reichel A, Begley DJ, Abbott NJ: An overview of in vitro techniques for blood–brain barrier studies. Methods Mol Med. 2003, 89: 307-324.PubMed
21.
go back to reference Förster C, Burek M, Romero IA, Weksler B, Couraud P-O, Drenckhahn D: Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol. 2008, 586: 1937-1949. 10.1113/jphysiol.2007.146852.PubMedCentralPubMedCrossRef Förster C, Burek M, Romero IA, Weksler B, Couraud P-O, Drenckhahn D: Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol. 2008, 586: 1937-1949. 10.1113/jphysiol.2007.146852.PubMedCentralPubMedCrossRef
22.
go back to reference Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62.PubMedCentralPubMedCrossRef Butt AM, Jones HC, Abbott NJ: Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990, 429: 47-62.PubMedCentralPubMedCrossRef
23.
go back to reference Crone C, Olesen P: Electrical resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.PubMedCrossRef Crone C, Olesen P: Electrical resistance of brain microvascular endothelium. Brain Res. 1982, 241: 49-55. 10.1016/0006-8993(82)91227-6.PubMedCrossRef
24.
go back to reference Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud P-O: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.PubMed Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud P-O: Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005, 19: 1872-1874.PubMed
25.
go back to reference Stins MF, Badger J, Kim KS: Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathogenesis. 2001, 30: 19-28. 10.1006/mpat.2000.0406.CrossRef Stins MF, Badger J, Kim KS: Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb Pathogenesis. 2001, 30: 19-28. 10.1006/mpat.2000.0406.CrossRef
26.
go back to reference Maeda T, Sano Y, Abe M, Shimizu F, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Kanda T: Establishment and characterization of spinal cord microvascular endothelial cell lines. Clin Exp Neuroimmunol. in press Maeda T, Sano Y, Abe M, Shimizu F, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Ueda M, Kanda T: Establishment and characterization of spinal cord microvascular endothelial cell lines. Clin Exp Neuroimmunol. in press
27.
go back to reference Prudhomme JG, Sherman IW, Land KM, Moses AV, Stenglein S, Nelson JA: Studies of Plasmodium falciparum cytoadherence using immortalized human brain capillary endothelial cells. Int J Parasitol. 1996, 26: 647-655. 10.1016/0020-7519(96)00027-6.PubMedCrossRef Prudhomme JG, Sherman IW, Land KM, Moses AV, Stenglein S, Nelson JA: Studies of Plasmodium falciparum cytoadherence using immortalized human brain capillary endothelial cells. Int J Parasitol. 1996, 26: 647-655. 10.1016/0020-7519(96)00027-6.PubMedCrossRef
28.
go back to reference Major EO, Miller AE, Mourrain P, Traub RG, De Widt E, Sever J: Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc Natl Acad Sci U S A. 1985, 82: 1257-1261. 10.1073/pnas.82.4.1257.PubMedCentralPubMedCrossRef Major EO, Miller AE, Mourrain P, Traub RG, De Widt E, Sever J: Establishment of a line of human fetal glial cells that supports JC virus multiplication. Proc Natl Acad Sci U S A. 1985, 82: 1257-1261. 10.1073/pnas.82.4.1257.PubMedCentralPubMedCrossRef
29.
go back to reference Shimizu F, Sano Y, Abe M-A, Maeda T, Ohtsuki S, Terasaki T, Kanda T: Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol. 2010, 226: 255-266.CrossRef Shimizu F, Sano Y, Abe M-A, Maeda T, Ohtsuki S, Terasaki T, Kanda T: Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol. 2010, 226: 255-266.CrossRef
30.
go back to reference Wegener J, Abrams D, Willenbrink W, Galla H-J, Janshoff A: Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques. 2004, 37: 590-597.PubMed Wegener J, Abrams D, Willenbrink W, Galla H-J, Janshoff A: Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques. 2004, 37: 590-597.PubMed
31.
go back to reference Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer V, Duhem C, Lundquist S, Renftel M, Torpier G, Dehouck M-P: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliver Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.CrossRef Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer V, Duhem C, Lundquist S, Renftel M, Torpier G, Dehouck M-P: In vitro model for evaluating drug transport across the blood–brain barrier. Adv Drug Deliver Rev. 1999, 36: 165-178. 10.1016/S0169-409X(98)00083-0.CrossRef
32.
go back to reference Wuest DM, Wing AM, Lee KH: Membrane configuration optimization for a murine in vitro blood–brain barrier model. J Neurosci Meth. 2013, 212: 211-221. 10.1016/j.jneumeth.2012.10.016.CrossRef Wuest DM, Wing AM, Lee KH: Membrane configuration optimization for a murine in vitro blood–brain barrier model. J Neurosci Meth. 2013, 212: 211-221. 10.1016/j.jneumeth.2012.10.016.CrossRef
33.
go back to reference Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Kajiwara K, Fujii M, Suzuki M, Kanda T: Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. J Cell Physiol. 2010, 225: 519-528. 10.1002/jcp.22232.PubMedCrossRef Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Kajiwara K, Fujii M, Suzuki M, Kanda T: Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood–brain barrier function. J Cell Physiol. 2010, 225: 519-528. 10.1002/jcp.22232.PubMedCrossRef
34.
go back to reference Sano Y, Kashiwamura Y, Abe M, Dieu L-H, Huwyler J, Shimizu F, Haruki H, Maeda T, Saito K, Tasaki A, Kanda T: Stable human brain microvascular endothelial cell line retaining its barrier-specific nature independent of the passage number. Clin Exp Neuroimmunol. 2013, 4: 92-103. 10.1111/cen3.12001.CrossRef Sano Y, Kashiwamura Y, Abe M, Dieu L-H, Huwyler J, Shimizu F, Haruki H, Maeda T, Saito K, Tasaki A, Kanda T: Stable human brain microvascular endothelial cell line retaining its barrier-specific nature independent of the passage number. Clin Exp Neuroimmunol. 2013, 4: 92-103. 10.1111/cen3.12001.CrossRef
35.
36.
go back to reference Blume L-F, Denker M, Gieseler F, Kunze T: Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Pharmazie. 2010, 65: 19-24.PubMed Blume L-F, Denker M, Gieseler F, Kunze T: Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Pharmazie. 2010, 65: 19-24.PubMed
37.
go back to reference Bertrand CA, Durand DM, Saidel GM, Laboisse C, Hopfer U: System for dynamic measurements of membrane capacitance in intact epithelial monolayers. Biophys J. 1998, 75: 2743-2756. 10.1016/S0006-3495(98)77718-5.PubMedCentralPubMedCrossRef Bertrand CA, Durand DM, Saidel GM, Laboisse C, Hopfer U: System for dynamic measurements of membrane capacitance in intact epithelial monolayers. Biophys J. 1998, 75: 2743-2756. 10.1016/S0006-3495(98)77718-5.PubMedCentralPubMedCrossRef
38.
go back to reference Cole KS: Membranes, Ions and Impulses. 1968, Berkley: University of California Press, 1: Cole KS: Membranes, Ions and Impulses. 1968, Berkley: University of California Press, 1:
39.
go back to reference Deli MA, Abraham CS, Kataoka Y, Niwa M: Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005, 25: 59-127. 10.1007/s10571-004-1377-8.PubMedCrossRef Deli MA, Abraham CS, Kataoka Y, Niwa M: Permeability studies on in vitro blood–brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005, 25: 59-127. 10.1007/s10571-004-1377-8.PubMedCrossRef
40.
go back to reference Shi LZ, Zheng W: Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study. Brain Res. 2005, 1057: 37-48. 10.1016/j.brainres.2005.07.046.PubMedCentralPubMedCrossRef Shi LZ, Zheng W: Establishment of an in vitro brain barrier epithelial transport system for pharmacological and toxicological study. Brain Res. 2005, 1057: 37-48. 10.1016/j.brainres.2005.07.046.PubMedCentralPubMedCrossRef
41.
go back to reference Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck M-P, Berezowski V, Fenart L, Cecchelli R: An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol in Vitro. 2008, 22: 799-811. 10.1016/j.tiv.2007.12.016.PubMedCrossRef Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck M-P, Berezowski V, Fenart L, Cecchelli R: An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol in Vitro. 2008, 22: 799-811. 10.1016/j.tiv.2007.12.016.PubMedCrossRef
42.
go back to reference Youdim K, Avdeef A, Abbott NJ: In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today. 2003, 8: 997-1003. 10.1016/S1359-6446(03)02873-3.PubMedCrossRef Youdim K, Avdeef A, Abbott NJ: In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today. 2003, 8: 997-1003. 10.1016/S1359-6446(03)02873-3.PubMedCrossRef
43.
go back to reference Hellinger E, Veszelka S, Toth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Hada V, Nakagawa S, Duy TDH, Niwa M, Deli MA, Vastag M: Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood–brain barrier penetration models. Eur J Pharm Biopharm. 2012, 82: 340-351. 10.1016/j.ejpb.2012.07.020.PubMedCrossRef Hellinger E, Veszelka S, Toth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Hada V, Nakagawa S, Duy TDH, Niwa M, Deli MA, Vastag M: Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood–brain barrier penetration models. Eur J Pharm Biopharm. 2012, 82: 340-351. 10.1016/j.ejpb.2012.07.020.PubMedCrossRef
44.
go back to reference Hubatsch I, Ragnarsson EGE, Artursson P: Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007, 2: 2111-2119. 10.1038/nprot.2007.303.PubMedCrossRef Hubatsch I, Ragnarsson EGE, Artursson P: Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007, 2: 2111-2119. 10.1038/nprot.2007.303.PubMedCrossRef
45.
go back to reference Poller B, Gutmann H, Krähenbühl S, Weksler B, Romero I, Couraud P-O, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.PubMedCrossRef Poller B, Gutmann H, Krähenbühl S, Weksler B, Romero I, Couraud P-O, Tuffin G, Drewe J, Huwyler J: The human brain endothelial cell line hCMEC/D3 as a human blood–brain barrier model for drug transport studies. J Neurochem. 2008, 107: 1358-1368. 10.1111/j.1471-4159.2008.05730.x.PubMedCrossRef
46.
go back to reference Weksler B, Romero IA, Couraud P-O: The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013, 10: 16-25. 10.1186/2045-8118-10-16.PubMedCentralPubMedCrossRef Weksler B, Romero IA, Couraud P-O: The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013, 10: 16-25. 10.1186/2045-8118-10-16.PubMedCentralPubMedCrossRef
47.
go back to reference Cucullo L, Couraud P-O, Weksler B, Romero I-A, Hossain M, Rapp E, Janigro D: Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cerebr Blood F Met. 2008, 28: 312-328. 10.1038/sj.jcbfm.9600525.CrossRef Cucullo L, Couraud P-O, Weksler B, Romero I-A, Hossain M, Rapp E, Janigro D: Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cerebr Blood F Met. 2008, 28: 312-328. 10.1038/sj.jcbfm.9600525.CrossRef
48.
go back to reference Hatherell K, Couraud P-O, Romero IA, Weksler B, Pilkington GJ: Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Meth. 2011, 199: 223-229. 10.1016/j.jneumeth.2011.05.012.CrossRef Hatherell K, Couraud P-O, Romero IA, Weksler B, Pilkington GJ: Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Meth. 2011, 199: 223-229. 10.1016/j.jneumeth.2011.05.012.CrossRef
49.
go back to reference Kusch-Poddar M, Drewe J, Fux I, Gutmann H: Evaluation of the immortalized human brain capillary endothelial cell line BB19 as a human cell culture model for the blood–brain barrier. Brain Res. 2005, 1064: 21-31. 10.1016/j.brainres.2005.10.014.PubMedCrossRef Kusch-Poddar M, Drewe J, Fux I, Gutmann H: Evaluation of the immortalized human brain capillary endothelial cell line BB19 as a human cell culture model for the blood–brain barrier. Brain Res. 2005, 1064: 21-31. 10.1016/j.brainres.2005.10.014.PubMedCrossRef
50.
go back to reference Nitz T, Eisenblätter T, Psathaki K, Galla H-J: Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 2003, 981: 30-40. 10.1016/S0006-8993(03)02834-8.PubMedCrossRef Nitz T, Eisenblätter T, Psathaki K, Galla H-J: Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 2003, 981: 30-40. 10.1016/S0006-8993(03)02834-8.PubMedCrossRef
51.
go back to reference Gaillard PJ, De Boer AG: Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000, 12: 95-102. 10.1016/S0928-0987(00)00152-4.PubMedCrossRef Gaillard PJ, De Boer AG: Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci. 2000, 12: 95-102. 10.1016/S0928-0987(00)00152-4.PubMedCrossRef
53.
go back to reference Benson K, Cramer S, Galla H-J: Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 2013, 10: 5-15. 10.1186/2045-8118-10-5.PubMedCentralPubMedCrossRef Benson K, Cramer S, Galla H-J: Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 2013, 10: 5-15. 10.1186/2045-8118-10-5.PubMedCentralPubMedCrossRef
54.
go back to reference Grab DJ, Nikolskaia O, Kim YV, Londsdale-Eccles JD, Ito S, Hara T, Fukuma T, Nyarko E, Kim KJ, Stins MF, Delannoy MJ, Rodgers J, Kim KS: African trypanosome interactions with an in vitro model of the human blood–brain barrier. J Parasitol. 2004, 90: 970-979. 10.1645/GE-287R.PubMedCrossRef Grab DJ, Nikolskaia O, Kim YV, Londsdale-Eccles JD, Ito S, Hara T, Fukuma T, Nyarko E, Kim KJ, Stins MF, Delannoy MJ, Rodgers J, Kim KS: African trypanosome interactions with an in vitro model of the human blood–brain barrier. J Parasitol. 2004, 90: 970-979. 10.1645/GE-287R.PubMedCrossRef
55.
go back to reference Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds GM, Stamataki Z, Meredith LW, Rowe IA, Luo G, Lopez-Ramirez MA, Baumert TF, Weksler B, Couraud P-O, Kim KS, Romero IA, Jopling C, Morgello S, Balfe P, McKeating JA: Hepatitis C Virus Infects the Endothelial Cells of the Blood–brain Barrier. Gastroenterology. 2012, 142: 634-643. 10.1053/j.gastro.2011.11.028.PubMedCentralPubMedCrossRef Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds GM, Stamataki Z, Meredith LW, Rowe IA, Luo G, Lopez-Ramirez MA, Baumert TF, Weksler B, Couraud P-O, Kim KS, Romero IA, Jopling C, Morgello S, Balfe P, McKeating JA: Hepatitis C Virus Infects the Endothelial Cells of the Blood–brain Barrier. Gastroenterology. 2012, 142: 634-643. 10.1053/j.gastro.2011.11.028.PubMedCentralPubMedCrossRef
56.
go back to reference Buttmann M, Lorenz A, Weishaupt A, Rieckmann P: Atorvastatin partially prevents an inflammatory barrier breakdown of cultured human brain endothelial cells at a pharmacologically relevant concentration. J Neurochem. 2007, 102: 1001-1008. 10.1111/j.1471-4159.2007.04563.x.PubMedCrossRef Buttmann M, Lorenz A, Weishaupt A, Rieckmann P: Atorvastatin partially prevents an inflammatory barrier breakdown of cultured human brain endothelial cells at a pharmacologically relevant concentration. J Neurochem. 2007, 102: 1001-1008. 10.1111/j.1471-4159.2007.04563.x.PubMedCrossRef
57.
go back to reference Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M: Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLOS Pathog. 2010, 6: 1-15.CrossRef Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M: Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLOS Pathog. 2010, 6: 1-15.CrossRef
58.
go back to reference Palmela I, Sasaki H, Cardoso FL, Moutinho M, Kim KS, Brites D, Brito MA: Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood–brain barrier lining. Front Cell Neurosci. 2012, 6: 22-35.PubMedCentralPubMedCrossRef Palmela I, Sasaki H, Cardoso FL, Moutinho M, Kim KS, Brites D, Brito MA: Time-dependent dual effects of high levels of unconjugated bilirubin on the human blood–brain barrier lining. Front Cell Neurosci. 2012, 6: 22-35.PubMedCentralPubMedCrossRef
59.
go back to reference Khom S, Strommer B, Schöffmann A, Hintersteiner J, Baburin I, Erker T, Schwarz T, Schwarzer C, Zaugg J, Hamburger M, Hering S: GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochem Pharmacol. 2013, 85: 1827-1836. 10.1016/j.bcp.2013.04.017.PubMedCentralPubMedCrossRef Khom S, Strommer B, Schöffmann A, Hintersteiner J, Baburin I, Erker T, Schwarz T, Schwarzer C, Zaugg J, Hamburger M, Hering S: GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochem Pharmacol. 2013, 85: 1827-1836. 10.1016/j.bcp.2013.04.017.PubMedCentralPubMedCrossRef
Metadata
Title
Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies
Authors
Daniela E Eigenmann
Gongda Xue
Kwang S Kim
Ashlee V Moses
Matthias Hamburger
Mouhssin Oufir
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2013
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/2045-8118-10-33

Other articles of this Issue 1/2013

Fluids and Barriers of the CNS 1/2013 Go to the issue