Skip to main content
Top
Published in: Fluids and Barriers of the CNS 1/2015

Open Access 01-12-2015 | Research

Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells

Authors: Hannah K Wilson, Scott G Canfield, Michael K Hjortness, Sean P Palecek, Eric V Shusta

Published in: Fluids and Barriers of the CNS | Issue 1/2015

Login to get access

Abstract

Background

Brain microvascular-like endothelial cells (BMECs) derived from human pluripotent stem cells (hPSCs) have significant promise as tools for drug screening and studying the structure and function of the BBB in health and disease. The density of hPSCs is a key factor in regulating cell fate and yield during differentiation. Prior reports of hPSC differentiation to BMECs have seeded hPSCs in aggregates, leading to non-uniform cell densities that may result in differentiation heterogeneity. Here we report a singularized-cell seeding approach compatible with hPSC-derived BMEC differentiation protocols and evaluate the effects of initial hPSC seeding density on the subsequent differentiation, yield, and blood–brain barrier (BBB) phenotype.

Methods

A range of densities of hPSCs was seeded and differentiated, with the resultant endothelial cell yield quantified via VE-cadherin flow cytometry. Barrier phenotype of purified hPSC-derived BMECs was measured via transendothelial electrical resistance (TEER), and purification protocols were subsequently optimized to maximize TEER. Expression of characteristic vascular markers, tight junction proteins, and transporters was confirmed by immunocytochemistry and quantified by flow cytometry. P-glycoprotein and MRP-family transporter activity was assessed by intracellular accumulation assay.

Results

The initial hPSC seeding density of approximately 30,000 cells/cm2 served to maximize the yield of VE-cadherin+ BMECs per input hPSC. BMECs displayed the highest TEER (>2,000 Ω × cm2) within this same range of initial seeding densities, although optimization of the BMEC purification method could minimize the seeding density dependence for some lines. Localization and expression levels of tight junction proteins as well as efflux transporter activity were largely independent of hPSC seeding density. Finally, the utility of the singularized-cell seeding approach was demonstrated by scaling the differentiation and purification process down from 6-well to 96-well culture without impacting BBB phenotype.

Conclusions

Given the yield and barrier dependence on initial seeding density, the singularized-cell seeding approach reported here should enhance the reproducibility and scalability of hPSC-derived BBB models, particularly for the application to new pluripotent stem cell lines.
Appendix
Available only for authorised users
Literature
2.
go back to reference Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.CrossRefPubMed Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.CrossRefPubMed
3.
go back to reference Mizee MR, Wooldrik D, Lakeman KAM, van het Hof B, Drexhage JAR, Geerts D, et al. Retinoic acid induces blood–brain barrier development. J Neurosci. 2013;33:1660–71.CrossRefPubMed Mizee MR, Wooldrik D, Lakeman KAM, van het Hof B, Drexhage JAR, Geerts D, et al. Retinoic acid induces blood–brain barrier development. J Neurosci. 2013;33:1660–71.CrossRefPubMed
4.
go back to reference Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, et al. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 2008;106:1855–65.PubMedCentralPubMed Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, et al. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 2008;106:1855–65.PubMedCentralPubMed
5.
go back to reference Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ, et al. Wnt Activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. Plos One. 2013;8:e70233.CrossRefPubMedCentralPubMed Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ, et al. Wnt Activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. Plos One. 2013;8:e70233.CrossRefPubMedCentralPubMed
6.
go back to reference McCarthy RC, Kosman DJ. Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux. J Biol Chem. 2013;288:17932–40.CrossRefPubMedCentralPubMed McCarthy RC, Kosman DJ. Ferroportin and exocytoplasmic ferroxidase activity are required for brain microvascular endothelial cell iron efflux. J Biol Chem. 2013;288:17932–40.CrossRefPubMedCentralPubMed
7.
go back to reference Hoque MT, Robillard KR, Bendayan R. Regulation of breast cancer resistant protein by peroxisome proliferator-activated receptor alpha in human brain microvessel endothelial cells. Mol Pharmacol. 2012;81:598–609.CrossRef Hoque MT, Robillard KR, Bendayan R. Regulation of breast cancer resistant protein by peroxisome proliferator-activated receptor alpha in human brain microvessel endothelial cells. Mol Pharmacol. 2012;81:598–609.CrossRef
8.
go back to reference Tai LM, Loughlin AJ, Male DK, Romero IA. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metabol. 2009;29:1079–83.CrossRef Tai LM, Loughlin AJ, Male DK, Romero IA. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta. J Cereb Blood Flow Metabol. 2009;29:1079–83.CrossRef
9.
go back to reference Basivireddy J, Somvanshi RK, Romero IA, Weksler BB, Couraud P-O, Oger J, et al. Somatostatin preserved blood brain barrier against cytokine induced alterations: possible role in multiple sclerosis. Biochem Pharmacol. 2013;86:497–507.CrossRef Basivireddy J, Somvanshi RK, Romero IA, Weksler BB, Couraud P-O, Oger J, et al. Somatostatin preserved blood brain barrier against cytokine induced alterations: possible role in multiple sclerosis. Biochem Pharmacol. 2013;86:497–507.CrossRef
10.
go back to reference Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, et al. Pattern of P450 expression at the human blood–brain barrier: roles of epileptic condition and laminar flow. Epilepsia. 2010;51:1408–17.CrossRefPubMedCentralPubMed Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, et al. Pattern of P450 expression at the human blood–brain barrier: roles of epileptic condition and laminar flow. Epilepsia. 2010;51:1408–17.CrossRefPubMedCentralPubMed
11.
go back to reference Cecchelli R, Aday S, Sevin E, Almeida C, Culot M, Dehouck L, et al. A stable and reproducible human blood–brain barrier model derived from hematopoietic stem cells. PLoS One. 2014;9:e99733.CrossRefPubMedCentralPubMed Cecchelli R, Aday S, Sevin E, Almeida C, Culot M, Dehouck L, et al. A stable and reproducible human blood–brain barrier model derived from hematopoietic stem cells. PLoS One. 2014;9:e99733.CrossRefPubMedCentralPubMed
12.
go back to reference Boyer-Di Ponio J, El-Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood–brain barrier and arterial phenotypes. PLoS One. 2014;9:e84179.CrossRefPubMed Boyer-Di Ponio J, El-Ayoubi F, Glacial F, Ganeshamoorthy K, Driancourt C, Godet M, et al. Instruction of circulating endothelial progenitors in vitro towards specialized blood–brain barrier and arterial phenotypes. PLoS One. 2014;9:e84179.CrossRefPubMed
13.
go back to reference Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.CrossRefPubMed
14.
go back to reference Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.CrossRefPubMedCentralPubMed Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, et al. Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol. 2012;30:783–91.CrossRefPubMedCentralPubMed
15.
go back to reference Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.CrossRefPubMedCentralPubMed Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci Rep. 2014;4:4160.CrossRefPubMedCentralPubMed
16.
go back to reference Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.CrossRefPubMedCentralPubMed Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood–brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.CrossRefPubMedCentralPubMed
17.
go back to reference Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 2007;26:4744–55.CrossRefPubMedCentralPubMed Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 2007;26:4744–55.CrossRefPubMedCentralPubMed
18.
go back to reference Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.CrossRefPubMedCentralPubMed Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.CrossRefPubMedCentralPubMed
19.
go back to reference Selekman JA, Grundl NJ, Kolz JM, Palecek SP. Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Eng Part C Methods. 2013;19:949–60.CrossRefPubMedCentralPubMed Selekman JA, Grundl NJ, Kolz JM, Palecek SP. Efficient generation of functional epithelial and epidermal cells from human pluripotent stem cells under defined conditions. Tissue Eng Part C Methods. 2013;19:949–60.CrossRefPubMedCentralPubMed
20.
go back to reference Lippmann ES, Estevez-Silva MC, Ashton RS. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells. 2014;32:1032–42.CrossRefPubMed Lippmann ES, Estevez-Silva MC, Ashton RS. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells. 2014;32:1032–42.CrossRefPubMed
21.
go back to reference Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.CrossRefPubMed Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–6.CrossRefPubMed
22.
go back to reference Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33.CrossRefPubMedCentralPubMed Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013;10:33.CrossRefPubMedCentralPubMed
23.
go back to reference Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA. 2013;110:E5039–48.CrossRefPubMedCentralPubMed Lei Y, Schaffer DV. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci USA. 2013;110:E5039–48.CrossRefPubMedCentralPubMed
Metadata
Title
Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells
Authors
Hannah K Wilson
Scott G Canfield
Michael K Hjortness
Sean P Palecek
Eric V Shusta
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Fluids and Barriers of the CNS / Issue 1/2015
Electronic ISSN: 2045-8118
DOI
https://doi.org/10.1186/s12987-015-0007-9

Other articles of this Issue 1/2015

Fluids and Barriers of the CNS 1/2015 Go to the issue