Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Hepatitis B | Research

MHBSt167 induced autophagy promote cell proliferation and EMT by activating the immune response in L02 cells

Authors: Bin Cheng, Qiong Wang, Zhiqiang Wei, Yulin He, Ruiming Li, Guohua Liu, Shaobo Zeng, Zhongji Meng

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

Hepatitis B virus can induce hepatocellular carcinoma (HCC) by inducing a host immune response against infected hepatocytes. C-terminally truncated middle surface protein (MHBSt) has been reported to contribute to HCC through transcriptional activation in epidemiology studies, while the underlying mechanism of MHBSt-induced HCC is unknown.

Methods

In this study, a premature stop at codon 167 in MHBS (MHBSt167) was investigated into eukaryotic expression plasmid pcDNA3.1(-). MHBSt167 expressed plasmid was transfected into the L02 cell line, cell proliferation was analyzed by CCK-8 and high-content screening assays, the cell cycle was analyzed by flow cytometry, and epithelial-to-mesenchymal transition and autophagy were analyzed by immunoblotting and immunofluorescence. NF-κB activation and the MHBSt167-induced immune response were analyzed by immunoblotting and immunofluorescence. IFN-α, IFN-β and IL-1α expression were analyzed by qPCR. Autophagy inhibitors were used to analyze the relationship between the immune response and autophagy.

Results

The results showed that MHBSt167 promoted L02 cell proliferation, accelerated cell cycle progression from the S to G2 phase and promoted epithelial-to-mesenchymal transition through ER-stress, leading to autophagy and NF-κB activation and increased immune-related factor expression. The MHBSt167-induced acceleration of cell proliferation and the cell cycle was abolished by autophagy or NF-κB inhibitors.

Conclusion

In summary, MHBSt167 could promote cell proliferation, accelerate cell cycle progression, induce EMT and activate autophagy through ER-stress to induce the host immune response, supporting a potential role of MHBSt167 in contributing to carcinogenesis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer. 2019;19(1):707.CrossRef Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer. 2019;19(1):707.CrossRef
2.
go back to reference Hsieh Y-H, Su I-J, Yen C-J, Tsai T-F, Tsai H-W, Tsai H-N, et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses the pro-oncogenic effects induced by hepatitis B virus pre-S2 mutant oncoprotein and represents a potential chemopreventive agent in high-risk chronic HBV patients. Carcinogenesis. 2013;34(2):475–85.CrossRef Hsieh Y-H, Su I-J, Yen C-J, Tsai T-F, Tsai H-W, Tsai H-N, et al. Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses the pro-oncogenic effects induced by hepatitis B virus pre-S2 mutant oncoprotein and represents a potential chemopreventive agent in high-risk chronic HBV patients. Carcinogenesis. 2013;34(2):475–85.CrossRef
3.
go back to reference Liu S, Zhang H, Gu C, Yin J, He Y, Xie J, et al. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst. 2009;101(15):1066–82.CrossRef Liu S, Zhang H, Gu C, Yin J, He Y, Xie J, et al. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst. 2009;101(15):1066–82.CrossRef
4.
go back to reference Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, Wang JC, et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology. 2007;133(5):1466–74.CrossRef Chen CH, Hung CH, Lee CM, Hu TH, Wang JH, Wang JC, et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negative patients. Gastroenterology. 2007;133(5):1466–74.CrossRef
5.
go back to reference Pollicino T, Cacciola I, Saffioti F, Raimondo G. Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. J Hepatol. 2014;61(2):408–17.CrossRef Pollicino T, Cacciola I, Saffioti F, Raimondo G. Hepatitis B virus PreS/S gene variants: pathobiology and clinical implications. J Hepatol. 2014;61(2):408–17.CrossRef
6.
go back to reference Luan F, Liu H, Gao L, Liu J, Sun Z, Ju Y, et al. Hepatitis B virus protein preS2 potentially promotes HCC development via its transcriptional activation of hTERT. Gut. 2009;58(11):1528–37.CrossRef Luan F, Liu H, Gao L, Liu J, Sun Z, Ju Y, et al. Hepatitis B virus protein preS2 potentially promotes HCC development via its transcriptional activation of hTERT. Gut. 2009;58(11):1528–37.CrossRef
10.
go back to reference Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383(16):1564–76.CrossRef Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383(16):1564–76.CrossRef
11.
go back to reference Hazari Y, Bravo-San Pedro JM, Hetz C, Galluzzi L, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol. 2020;72(1):183–96.CrossRef Hazari Y, Bravo-San Pedro JM, Hetz C, Galluzzi L, Kroemer G. Autophagy in hepatic adaptation to stress. J Hepatol. 2020;72(1):183–96.CrossRef
12.
go back to reference White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–10.CrossRef White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–10.CrossRef
13.
go back to reference Shen Y, Malik SA, Amir M, Kumar P, Cingolani F, Wen J, et al. Decreased hepatocyte autophagy leads to synergistic IL-1beta and TNF mouse liver injury and inflammation. Hepatology. 2020;72(2):595–608.CrossRef Shen Y, Malik SA, Amir M, Kumar P, Cingolani F, Wen J, et al. Decreased hepatocyte autophagy leads to synergistic IL-1beta and TNF mouse liver injury and inflammation. Hepatology. 2020;72(2):595–608.CrossRef
15.
go back to reference Emming S, Bianchi N, Polletti S, Balestrieri C, Leoni C, Montagner S, et al. A molecular network regulating the proinflammatory phenotype of human memory T lymphocytes. Nat Immunol. 2020;21(4):388–99.CrossRef Emming S, Bianchi N, Polletti S, Balestrieri C, Leoni C, Montagner S, et al. A molecular network regulating the proinflammatory phenotype of human memory T lymphocytes. Nat Immunol. 2020;21(4):388–99.CrossRef
16.
go back to reference Lee SA, Kim K, Kim H, Kim BJ. Nucleotide change of codon 182 in the surface gene of hepatitis B virus genotype C leading to truncated surface protein is associated with progression of liver diseases. J Hepatol. 2012;56(1):63–9.CrossRef Lee SA, Kim K, Kim H, Kim BJ. Nucleotide change of codon 182 in the surface gene of hepatitis B virus genotype C leading to truncated surface protein is associated with progression of liver diseases. J Hepatol. 2012;56(1):63–9.CrossRef
17.
go back to reference Dong X, Yang Y, Zou Z, Zhao Y, Ci B, Zhong L, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2021;589(7842):456–61.CrossRef Dong X, Yang Y, Zou Z, Zhao Y, Ci B, Zhong L, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2021;589(7842):456–61.CrossRef
18.
go back to reference Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.CrossRef Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.CrossRef
19.
go back to reference Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. J Cell Biol. 2010;189(6):925–35.CrossRef Saitoh T, Akira S. Regulation of innate immune responses by autophagy-related proteins. J Cell Biol. 2010;189(6):925–35.CrossRef
20.
go back to reference Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends in Gene TIG. 2017;33(12):943–59.CrossRef Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends in Gene TIG. 2017;33(12):943–59.CrossRef
21.
go back to reference Hsieh YH, Su IJ, Wang HC, Tsai JH, Huang YJ, Chang WW, et al. Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Mo Cancer Res MCR. 2007;5(10):1063–72.CrossRef Hsieh YH, Su IJ, Wang HC, Tsai JH, Huang YJ, Chang WW, et al. Hepatitis B virus pre-S2 mutant surface antigen induces degradation of cyclin-dependent kinase inhibitor p27Kip1 through c-Jun activation domain-binding protein 1. Mo Cancer Res MCR. 2007;5(10):1063–72.CrossRef
22.
go back to reference Wang LH, Huang W, Lai MD, Su IJ. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis. 2012;33(2):466–72.CrossRef Wang LH, Huang W, Lai MD, Su IJ. Aberrant cyclin A expression and centrosome overduplication induced by hepatitis B virus pre-S2 mutants and its implication in hepatocarcinogenesis. Carcinogenesis. 2012;33(2):466–72.CrossRef
24.
go back to reference Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology. 2005;41(4):761–70.CrossRef Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, et al. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology. 2005;41(4):761–70.CrossRef
25.
go back to reference Kanapin A, Batalov S, Davis MJ, Gough J, Grimmond S, Kawaji H, et al. Mouse proteome analysis. Genom Res. 2003;13:1335–44.CrossRef Kanapin A, Batalov S, Davis MJ, Gough J, Grimmond S, Kawaji H, et al. Mouse proteome analysis. Genom Res. 2003;13:1335–44.CrossRef
26.
go back to reference Benham AM. Protein secretion and the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2012;4(8): a012872.CrossRef Benham AM. Protein secretion and the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2012;4(8): a012872.CrossRef
27.
go back to reference van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol. 2005;40(4):191–228.CrossRef van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol. 2005;40(4):191–228.CrossRef
28.
go back to reference Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol. 2019;66:116–28.CrossRef Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol. 2019;66:116–28.CrossRef
30.
go back to reference Kiruthiga C, Devi KP, Nabavi SM, Anupam BA. Autophagy: a potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers. 2020;12(3):562.CrossRef Kiruthiga C, Devi KP, Nabavi SM, Anupam BA. Autophagy: a potential therapeutic target of polyphenols in hepatocellular carcinoma. Cancers. 2020;12(3):562.CrossRef
31.
go back to reference Fazio PD, Matrood S. Targeting autophagy in liver cancer. Trans Gastroenterol Hepatol. 2018;10(3):39.CrossRef Fazio PD, Matrood S. Targeting autophagy in liver cancer. Trans Gastroenterol Hepatol. 2018;10(3):39.CrossRef
33.
go back to reference Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer. 2019;120(9):871–82.CrossRef Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer. 2019;120(9):871–82.CrossRef
34.
go back to reference Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411–28.CrossRef Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol. 2019;16(7):411–28.CrossRef
35.
go back to reference Ritz T, Krenkel O, Tacke F. Dynamic plasticity of macrophage functions in diseased liver. Cell Immunol. 2018;330:175–82.CrossRef Ritz T, Krenkel O, Tacke F. Dynamic plasticity of macrophage functions in diseased liver. Cell Immunol. 2018;330:175–82.CrossRef
36.
go back to reference Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.CrossRef Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.CrossRef
37.
go back to reference Schneider C, Tacke F. Distinct anti-tumoral functions of adaptive immune cells in liver cancer. OncoImmunology. 2012;1(6):937–9.CrossRef Schneider C, Tacke F. Distinct anti-tumoral functions of adaptive immune cells in liver cancer. OncoImmunology. 2012;1(6):937–9.CrossRef
38.
go back to reference Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.CrossRef Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35.CrossRef
39.
go back to reference Ghislat G, Lawrence T. Autophagy in dendritic cells. Cell Mol Immunol. 2018;15(11):944–52.CrossRef Ghislat G, Lawrence T. Autophagy in dendritic cells. Cell Mol Immunol. 2018;15(11):944–52.CrossRef
40.
go back to reference Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy dependent viral recognition by plasmacytoid dendritic cells. Science. 2007;315(5871):1398–401.CrossRef Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy dependent viral recognition by plasmacytoid dendritic cells. Science. 2007;315(5871):1398–401.CrossRef
41.
go back to reference Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA. 2009;106(8):2770–5.CrossRef Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci USA. 2009;106(8):2770–5.CrossRef
42.
go back to reference Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA. 2009;106(49):20842–6.CrossRef Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA. 2009;106(49):20842–6.CrossRef
43.
go back to reference Duran A, Hernandez Eloy D, Reina-Campos M, Castilla Elias A, Subramaniam S, Raghunandan S, et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell. 2016;30(4):595–609.CrossRef Duran A, Hernandez Eloy D, Reina-Campos M, Castilla Elias A, Subramaniam S, Raghunandan S, et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell. 2016;30(4):595–609.CrossRef
44.
go back to reference Alissafi T, Hatzioannou A, Mintzas K, Barouni RM, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Investig. 2018;128(9):3840–52.CrossRef Alissafi T, Hatzioannou A, Mintzas K, Barouni RM, Banos A, Sormendi S, et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Investig. 2018;128(9):3840–52.CrossRef
45.
go back to reference Noman MZ, Berchem G, Janji B. Targeting autophagy blocks melanoma growth by bringing natural killer cells to the tumor battlefield. Autophagy. 2018;14(4):730–2.CrossRef Noman MZ, Berchem G, Janji B. Targeting autophagy blocks melanoma growth by bringing natural killer cells to the tumor battlefield. Autophagy. 2018;14(4):730–2.CrossRef
Metadata
Title
MHBSt167 induced autophagy promote cell proliferation and EMT by activating the immune response in L02 cells
Authors
Bin Cheng
Qiong Wang
Zhiqiang Wei
Yulin He
Ruiming Li
Guohua Liu
Shaobo Zeng
Zhongji Meng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01840-z

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue