Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Influenza Virus | Methodology

Reverse transcription recombinase-aided amplification assay for H5 subtype avian influenza virus

Authors: Suchun Wang, Yang Li, Fuyou Zhang, Nan Jiang, Qingye Zhuang, Guangyu Hou, Lijian Jiang, Jianmin Yu, Xiaohui Yu, Hualei Liu, Chenglong Zhao, Liping Yuan, Baoxu Huang, Kaicheng Wang

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

The H5 subtype avian influenza virus (AIV) has caused huge economic losses to the poultry industry and is a threat to human health. A rapid and simple test is needed to confirm infection in suspected cases during disease outbreaks.

Methods

In this study, we developed a reverse transcription recombinase-aided amplification (RT-RAA) assay for the detection of H5 subtype AIV. Assays were performed at a single temperature (39 °C), and the results were obtained within 20 min.

Results

The assay showed no cross-detection with Newcastle disease virus or infectious bronchitis virus. The analytical sensitivity was 103 RNA copies/μL at a 95% confidence interval according to probit regression analysis, with 100% specificity. Compared with published reverse transcription quantitative real-time polymerase chain reaction assays, the κ value of the RT-RAA assay in 420 avian clinical samples was 0.983 (p < 0.001). The sensitivity for avian clinical sample detection was 97.26% (95% CI, 89.56–99.52%), and the specificity was 100% (95% CI, 98.64–100%).

Conclusions

These results indicated that our RT-RAA assay may be a valuable tool for detecting H5 subtype AIV.
Literature
1.
go back to reference Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, Rockman S, Laederach A, Brown LE, Fodor E, Bauer DL. The structure of the influenza A virus genome. Nat Microbiol. 2019;4(11):1781–9.CrossRef Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, Rockman S, Laederach A, Brown LE, Fodor E, Bauer DL. The structure of the influenza A virus genome. Nat Microbiol. 2019;4(11):1781–9.CrossRef
2.
go back to reference Nakajima K. Influenza virus genome structure and encoded proteins. Nihon Rinsho Jpn J Clin Med. 1997;55(10):2542–6. Nakajima K. Influenza virus genome structure and encoded proteins. Nihon Rinsho Jpn J Clin Med. 1997;55(10):2542–6.
3.
go back to reference Peiris JSM, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;20:243–67.CrossRef Peiris JSM, de Jong MD, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev. 2007;20:243–67.CrossRef
4.
go back to reference Drew TW. OIE manual of diagnostic test and vaccine for terrestrial animal. Paris: Avian Influenza; 2008. p. 465–81. Drew TW. OIE manual of diagnostic test and vaccine for terrestrial animal. Paris: Avian Influenza; 2008. p. 465–81.
5.
go back to reference Capua I, Alenxander DJ. Avian influenza and Newcastle disease: a field and laboratory manual. Springer; 2009.CrossRef Capua I, Alenxander DJ. Avian influenza and Newcastle disease: a field and laboratory manual. Springer; 2009.CrossRef
6.
go back to reference Sidoti F, Rizzo F, Costa C, Astegiano S, Curtoni A, Mandola ML, Rossana C, Massimiliano B. Development of real time RT-PCR assays for detection of type A influenza virus and for subtyping of Avian H5 and H7 hemagglutinin subtypes. Mol Biotechnol. 2010;44(1):41.CrossRef Sidoti F, Rizzo F, Costa C, Astegiano S, Curtoni A, Mandola ML, Rossana C, Massimiliano B. Development of real time RT-PCR assays for detection of type A influenza virus and for subtyping of Avian H5 and H7 hemagglutinin subtypes. Mol Biotechnol. 2010;44(1):41.CrossRef
7.
go back to reference Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.CrossRef Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.CrossRef
8.
go back to reference Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Muller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, Stetten FV. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip. 2010;10:887–93.CrossRef Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Muller C, Mark D, Roth G, Munday P, Armes N, Piepenburg O, Zengerle R, Stetten FV. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip. 2010;10:887–93.CrossRef
9.
go back to reference Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691–6.CrossRef Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP. Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992;20:1691–6.CrossRef
10.
go back to reference Bei L, Cheng HR, Yan QF, Huang ZJ, Shen GF, Zhang ZF, Li YN, Deng ZX, Lin M, Cheng Q. Recombinase-aid amplification, a novel technology of in vitro rapid nucleic acid amplification. Sci Sinica. 2010;40:983–8. Bei L, Cheng HR, Yan QF, Huang ZJ, Shen GF, Zhang ZF, Li YN, Deng ZX, Lin M, Cheng Q. Recombinase-aid amplification, a novel technology of in vitro rapid nucleic acid amplification. Sci Sinica. 2010;40:983–8.
11.
go back to reference Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CrossRef Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.CrossRef
12.
go back to reference Rychlik W. OLIGO 7 primer analysis software. Methods Mol Biol. 2007;402:35–60.CrossRef Rychlik W. OLIGO 7 primer analysis software. Methods Mol Biol. 2007;402:35–60.CrossRef
13.
go back to reference Spackman E, Senne DA, Myers TJ, Bulage LL, Suarez DL. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40(9):3256–60.CrossRef Spackman E, Senne DA, Myers TJ, Bulage LL, Suarez DL. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40(9):3256–60.CrossRef
14.
go back to reference Cui D, Zhao D, Xie G, Yang X, Huo Z, Zheng S, Yu F, Chen Y. Simultaneous detection of influenza A subtypes of H3N2 virus, pandemic (H1N1) 2009 virus and reassortant avian H7N9 virus in humans by multiplex one-step real-time RT-PCR assay. Springerplus. 2016;5:2054.CrossRef Cui D, Zhao D, Xie G, Yang X, Huo Z, Zheng S, Yu F, Chen Y. Simultaneous detection of influenza A subtypes of H3N2 virus, pandemic (H1N1) 2009 virus and reassortant avian H7N9 virus in humans by multiplex one-step real-time RT-PCR assay. Springerplus. 2016;5:2054.CrossRef
15.
go back to reference Chen C, Li XN, Li GX, Zhao L, Duan SX, Yan TF, Feng ZS, Ma XJ. Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagn Microbiol Infect Dis. 2018;90:90–5.CrossRef Chen C, Li XN, Li GX, Zhao L, Duan SX, Yan TF, Feng ZS, Ma XJ. Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagn Microbiol Infect Dis. 2018;90:90–5.CrossRef
16.
go back to reference Peng D, Hu S, Hua Y, Xiao Y, Li Z, Wang X, Bi DR. Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays. Vet Immunol Immunopathol. 2007;117(1–2):17–25.CrossRef Peng D, Hu S, Hua Y, Xiao Y, Li Z, Wang X, Bi DR. Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays. Vet Immunol Immunopathol. 2007;117(1–2):17–25.CrossRef
17.
go back to reference Gall A, Hoffmann B, Harder T, Grund C, Höper D, Beer M. Design and validation of a microarray for detection, hemagglutinin subtyping, and pathotyping of avian influenza viruses. J Clin Microbiol. 2009;47(2):327–34.CrossRef Gall A, Hoffmann B, Harder T, Grund C, Höper D, Beer M. Design and validation of a microarray for detection, hemagglutinin subtyping, and pathotyping of avian influenza viruses. J Clin Microbiol. 2009;47(2):327–34.CrossRef
18.
go back to reference Wang R, Wang Y, Lassiter K, Li Y, Hargis B, Tung S, Berghman L, Bottje W. Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta. 2009;79(2):159–64.CrossRef Wang R, Wang Y, Lassiter K, Li Y, Hargis B, Tung S, Berghman L, Bottje W. Interdigitated array microelectrode based impedance immunosensor for detection of avian influenza virus H5N1. Talanta. 2009;79(2):159–64.CrossRef
19.
go back to reference Zhao GY, Shu-Chun WU, Wang LN, Chen GB, Cui SJ. A disposable amperometric enzyme immunosensor for rapid detection of avian influenza virus. Chin J Anim Vet Sci. 2008;39(10):1442–8. Zhao GY, Shu-Chun WU, Wang LN, Chen GB, Cui SJ. A disposable amperometric enzyme immunosensor for rapid detection of avian influenza virus. Chin J Anim Vet Sci. 2008;39(10):1442–8.
20.
go back to reference Song JL, Zhang WD, Wang JP, Zuo-Sheng LI, Feng ZL, Yuan-Yuan HU, Guo SH, Zhang YG, Fan QS, Song XL. Development of type and subtype-specific immunofluorescence techniques for detection of avian influenza virus. J Yunnan Univ. 2008;30(5):526–30. Song JL, Zhang WD, Wang JP, Zuo-Sheng LI, Feng ZL, Yuan-Yuan HU, Guo SH, Zhang YG, Fan QS, Song XL. Development of type and subtype-specific immunofluorescence techniques for detection of avian influenza virus. J Yunnan Univ. 2008;30(5):526–30.
21.
go back to reference Collins RA, Ko LS, Fung KY, Chan KY, Xing J, Lau LT. Rapid and sensitive detection of avian influenza virus subtype H7 using NASBA. Biochem Biophys Res Commun. 2003;300:507–15.CrossRef Collins RA, Ko LS, Fung KY, Chan KY, Xing J, Lau LT. Rapid and sensitive detection of avian influenza virus subtype H7 using NASBA. Biochem Biophys Res Commun. 2003;300:507–15.CrossRef
22.
go back to reference Wahed AEA, Weidmann M, Hufert FT. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol. 2015;69:16–21.CrossRef Wahed AEA, Weidmann M, Hufert FT. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol. 2015;69:16–21.CrossRef
23.
go back to reference Zhou EM, Cantin MF. Evaluation of a competitive ELISA for detection of antibodies against avian influenza virus nucleoprotein. Avian Dis. 1998;42(3):517–22.CrossRef Zhou EM, Cantin MF. Evaluation of a competitive ELISA for detection of antibodies against avian influenza virus nucleoprotein. Avian Dis. 1998;42(3):517–22.CrossRef
24.
go back to reference Yan TF, Li XN, Wang L, Chen C, Duan SX, Qi JJ, Li LX, Ma XJ. Development of a reverse transcription recombinase-aided amplification assay for the detection of coxsackievirus A10 and coxsackievirus A6 RNA. Adv Virol. 2018;163:1455–61. Yan TF, Li XN, Wang L, Chen C, Duan SX, Qi JJ, Li LX, Ma XJ. Development of a reverse transcription recombinase-aided amplification assay for the detection of coxsackievirus A10 and coxsackievirus A6 RNA. Adv Virol. 2018;163:1455–61.
25.
go back to reference Qi J, Li X, Zhang Y, Shen X, Song G, Pan J, Fan T, Wang RH, Li LX, Ma XJ. Development of a duplex reverse transcription recombinase-aided amplification assay for respiratory syncytial virus incorporating an internal control. Adv Virol. 2019;164:1843–50. Qi J, Li X, Zhang Y, Shen X, Song G, Pan J, Fan T, Wang RH, Li LX, Ma XJ. Development of a duplex reverse transcription recombinase-aided amplification assay for respiratory syncytial virus incorporating an internal control. Adv Virol. 2019;164:1843–50.
26.
go back to reference Shen XX, Qiu FZ, She LP, Yan TF, Zhao MC, Qi JJ, Chen C, Zhao L, Wang L, Feng ZS, Ma XJ. A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infect Dis. 2019;19:229.CrossRef Shen XX, Qiu FZ, She LP, Yan TF, Zhao MC, Qi JJ, Chen C, Zhao L, Wang L, Feng ZS, Ma XJ. A rapid and sensitive recombinase aided amplification assay to detect hepatitis B virus without DNA extraction. BMC Infect Dis. 2019;19:229.CrossRef
27.
go back to reference Song Z, Ting L, Kun Y, Wei L, Jian-Feng Z, Li-Chuan G, Yan-Hong L, Yang D, Qing-Jie Y, Hai-Tao Y. Establishment of a recombinase-aided isothermal amplification technique to detect Schistosoma japonicum specific gene fragments. Chin J Schistosomiasis Control. 2018;30:273–7. Song Z, Ting L, Kun Y, Wei L, Jian-Feng Z, Li-Chuan G, Yan-Hong L, Yang D, Qing-Jie Y, Hai-Tao Y. Establishment of a recombinase-aided isothermal amplification technique to detect Schistosoma japonicum specific gene fragments. Chin J Schistosomiasis Control. 2018;30:273–7.
28.
go back to reference Zhou DG, Luo J, Chen JH, Yu XJ. Establishment and application of rt-raa rapid detection method for Middle East respiratory syndrome coronavirus. J Virol. 2018;34(01):45–51. Zhou DG, Luo J, Chen JH, Yu XJ. Establishment and application of rt-raa rapid detection method for Middle East respiratory syndrome coronavirus. J Virol. 2018;34(01):45–51.
29.
go back to reference Qian CZ, Liu CY, Liu BY. Establishment and evaluation of New Coronavirus nucleic acid fluorescence RT-RAA detection method. J Anhui Med Univ. 2021;56(06):980–5. Qian CZ, Liu CY, Liu BY. Establishment and evaluation of New Coronavirus nucleic acid fluorescence RT-RAA detection method. J Anhui Med Univ. 2021;56(06):980–5.
30.
go back to reference Li XN. Detection of mutations in EV71, cva16 and rpoB genes of Mycobacterium tuberculosis by recombinant enzyme mediated amplification. China Center for Disease Control and prevention, 2020. Li XN. Detection of mutations in EV71, cva16 and rpoB genes of Mycobacterium tuberculosis by recombinant enzyme mediated amplification. China Center for Disease Control and prevention, 2020.
31.
go back to reference Huang XX, He YP, Yuan CG, Guo DH, Zhao Y, Sun XH, Zeng J, Zheng QY. Detection of Listeria monocytogenes in food by fluorescent recombinase mediated isothermal amplification. Bull Microbiol. 2021;48(12):4989–5000. Huang XX, He YP, Yuan CG, Guo DH, Zhao Y, Sun XH, Zeng J, Zheng QY. Detection of Listeria monocytogenes in food by fluorescent recombinase mediated isothermal amplification. Bull Microbiol. 2021;48(12):4989–5000.
32.
go back to reference Zhao GJ. Study on rapid detection method of Salmonella and Staphylococcus aureus in dairy products and design of food microbiology laboratory. Nanchang University, 2020. Zhao GJ. Study on rapid detection method of Salmonella and Staphylococcus aureus in dairy products and design of food microbiology laboratory. Nanchang University, 2020.
33.
go back to reference Zhao KY, Zeng DX, Hu YX, Qian BX, Xue F, Qian YJ, Wu XD, Dai JJ. Establishment of real-time fluorescence RAA detection method for African classical swine fever virus. Chin Vet Sci. 2021;51(01):1–8. Zhao KY, Zeng DX, Hu YX, Qian BX, Xue F, Qian YJ, Wu XD, Dai JJ. Establishment of real-time fluorescence RAA detection method for African classical swine fever virus. Chin Vet Sci. 2021;51(01):1–8.
34.
go back to reference Miao L, Wang JC, Wang XJ, Han JX, Shen H, Xv SF, Zheng QY, Wang L, Luo BZ, Wu S, Lin H, Kong FD. Rapid detection of pig derived components in export food, recombinant enzyme mediated strand replacement nucleic acid amplification (RAA). Zhengzhou Customs Technology Center; 2018. Miao L, Wang JC, Wang XJ, Han JX, Shen H, Xv SF, Zheng QY, Wang L, Luo BZ, Wu S, Lin H, Kong FD. Rapid detection of pig derived components in export food, recombinant enzyme mediated strand replacement nucleic acid amplification (RAA). Zhengzhou Customs Technology Center; 2018.
35.
go back to reference Miao L, Zong K, Wang P, Shen H, Zhang JK, Wu S, Luo BZ, Kong FD, Wang L, Zheng QY, Xv SF. Rapid detection of sheep derived components in export food, recombinant enzyme mediated strand replacement nucleic acid amplification (RAA). Zhengzhou Customs Technology Center; 2018. Miao L, Zong K, Wang P, Shen H, Zhang JK, Wu S, Luo BZ, Kong FD, Wang L, Zheng QY, Xv SF. Rapid detection of sheep derived components in export food, recombinant enzyme mediated strand replacement nucleic acid amplification (RAA). Zhengzhou Customs Technology Center; 2018.
36.
go back to reference Miao L, Wang P, Wang JC, Zong K, Deng TT, Wang L, Luo BZ, Kong FD, Lin H, Zheng QY, Wu S. Rapid detection of chicken derived components in export food, recombinant enzyme mediated strand replacement nucleic acid amplification (RAA). Zhengzhou Customs Technology Center; 2018. Miao L, Wang P, Wang JC, Zong K, Deng TT, Wang L, Luo BZ, Kong FD, Lin H, Zheng QY, Wu S. Rapid detection of chicken derived components in export food, recombinant enzyme mediated strand replacement nucleic acid amplification (RAA). Zhengzhou Customs Technology Center; 2018.
Metadata
Title
Reverse transcription recombinase-aided amplification assay for H5 subtype avian influenza virus
Authors
Suchun Wang
Yang Li
Fuyou Zhang
Nan Jiang
Qingye Zhuang
Guangyu Hou
Lijian Jiang
Jianmin Yu
Xiaohui Yu
Hualei Liu
Chenglong Zhao
Liping Yuan
Baoxu Huang
Kaicheng Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01807-0

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue