Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Chronic Inflammatory Bowel Disease | Research

Coinfection with PEDV and BVDV induces inflammatory bowel disease pathway highly enriched in PK-15 cells

Authors: Jinghua Cheng, Jie Tao, Benqiang Li, Ying Shi, Huili Liu

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

From the 1078 diarrhea stools tested in our survey from 2017 to 2020 in local area of China, PEDV was the key pathogen that was closely related to the death of piglets with diarrhea. In addition, coinfection of PEDV-positive samples with BVDV reached 17.24%. Although BVDV infection in swine is typically subclinical, the effect of PEDV and BVDV coinfection on disease severity and the potential molecular mechanism of coinfection with these two viruses remain unknown.

Methods

In this study, we developed a model of coinfection with porcine epidemic diarrhea virus (PEDV) and bovine viral diarrhea virus (BVDV) in PK15 cells, and a tandem mass tag (TMT) combined with LC–MS/MS proteomic approach was used to identify differential protein expression profiles. Additionally, we performed drug experiments to explore the inflammatory response induced by PEDV or BVDV mono- or coinfection.

Results

A total of 1094, 1538, and 1482 differentially expressed proteins (DEPs) were identified upon PEDV monoinfection, BVDV monoinfection and PEDV/BVDV coinfection, respectively. KEGG pathway analysis revealed that PEDV and BVDV coinfection led to a highly significantly enrichment of the inflammatory bowel disease (IBD) pathway. In addition, the NF-κB signaling pathway was more intensively activated by PEDV and BVDV coinfection, which induced higher production of inflammatory cytokines, than PEDV or BVDV monoinfection.

Conclusions

Our study indicated that cattle pathogens might play synergistic roles in the pathogenesis of porcine diarrhea, which might also improve our understanding of the pathogenesis of multiple infections in diarrhea.
Appendix
Available only for authorised users
Literature
1.
go back to reference Choudhury B, Dastjerdi A, Doyle N, Frossard JP, Steinbach F. From the field to the lab—an European view on the global spread of PEDV. Virus Res. 2016;226:40–9.CrossRef Choudhury B, Dastjerdi A, Doyle N, Frossard JP, Steinbach F. From the field to the lab—an European view on the global spread of PEDV. Virus Res. 2016;226:40–9.CrossRef
2.
go back to reference Duarte M, Gelfi J, Lambert P, Rasschaert D, Laude H. Genome organization of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1993;342:55–60.CrossRef Duarte M, Gelfi J, Lambert P, Rasschaert D, Laude H. Genome organization of porcine epidemic diarrhoea virus. Adv Exp Med Biol. 1993;342:55–60.CrossRef
3.
go back to reference Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58:243–7.CrossRef Pensaert MB, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58:243–7.CrossRef
4.
go back to reference Zhang F, Luo S, Gu J, Li Z, Li K, Yuan W, Ye Y, Li H, Ding Z, Song D. Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018. BMC Vet Res. 2019;15:470.CrossRef Zhang F, Luo S, Gu J, Li Z, Li K, Yuan W, Ye Y, Li H, Ding Z, Song D. Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018. BMC Vet Res. 2019;15:470.CrossRef
5.
go back to reference Zhao Y, Qu H, Hu J. Characterization and pathogenicity of the porcine deltacoronavirus isolated in Southwest China. Viruses. 2019;11:1074.CrossRef Zhao Y, Qu H, Hu J. Characterization and pathogenicity of the porcine deltacoronavirus isolated in Southwest China. Viruses. 2019;11:1074.CrossRef
6.
go back to reference Cai Y, Yin W, Zhou Y, Li B, Ai L, Pan M, Guo W. Molecular detection of porcine astrovirus in Sichuan Province, China. Virol J. 2016;13:6.CrossRef Cai Y, Yin W, Zhou Y, Li B, Ai L, Pan M, Guo W. Molecular detection of porcine astrovirus in Sichuan Province, China. Virol J. 2016;13:6.CrossRef
7.
go back to reference Deng Y, Sun CQ, Cao SJ, Lin T, Yuan SS, Zhang HB, Zhai SL, Huang L, Shan TL, Zheng H, et al. High prevalence of bovine viral diarrhea virus 1 in Chinese swine herds. Vet Microbiol. 2012;159:490–3.CrossRef Deng Y, Sun CQ, Cao SJ, Lin T, Yuan SS, Zhang HB, Zhai SL, Huang L, Shan TL, Zheng H, et al. High prevalence of bovine viral diarrhea virus 1 in Chinese swine herds. Vet Microbiol. 2012;159:490–3.CrossRef
8.
go back to reference Milićević V, Maksimović-Zorić J, Veljović L, Kureljušić B, Savić B, Cvetojević Đ, Jezdimirović N, Radosavljević V. Bovine viral diarrhea virus infection in wild boar. Res Vet Sci. 2018;119:76–8.CrossRef Milićević V, Maksimović-Zorić J, Veljović L, Kureljušić B, Savić B, Cvetojević Đ, Jezdimirović N, Radosavljević V. Bovine viral diarrhea virus infection in wild boar. Res Vet Sci. 2018;119:76–8.CrossRef
9.
go back to reference Ding G, Fu Y, Li B, Chen J, Wang J, Yin B, Sha W, Liu G. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound Emerg Dis. 2020;67:678–85.CrossRef Ding G, Fu Y, Li B, Chen J, Wang J, Yin B, Sha W, Liu G. Development of a multiplex RT-PCR for the detection of major diarrhoeal viruses in pig herds in China. Transbound Emerg Dis. 2020;67:678–85.CrossRef
10.
go back to reference Zhao ZP, Yang Z, Lin WD, Wang WY, Yang J, Jin WJ, Qin AJ. The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus. Acta Virol. 2016;60:55–61.CrossRef Zhao ZP, Yang Z, Lin WD, Wang WY, Yang J, Jin WJ, Qin AJ. The rate of co-infection for piglet diarrhea viruses in China and the genetic characterization of porcine epidemic diarrhea virus and porcine kobuvirus. Acta Virol. 2016;60:55–61.CrossRef
11.
go back to reference Liess B, Moennig V. Ruminant pestivirus infection in pigs. Rev Sci Tech. 1990;9:151–61.CrossRef Liess B, Moennig V. Ruminant pestivirus infection in pigs. Rev Sci Tech. 1990;9:151–61.CrossRef
12.
go back to reference An K, Fang L, Luo R, Wang D, Xie L, Yang J, Chen H, Xiao S. Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway. J Proteome Res. 2014;13:5376–90.CrossRef An K, Fang L, Luo R, Wang D, Xie L, Yang J, Chen H, Xiao S. Quantitative proteomic analysis reveals that transmissible gastroenteritis virus activates the JAK-STAT1 signaling pathway. J Proteome Res. 2014;13:5376–90.CrossRef
13.
go back to reference Yun T, Hua J, Ye W, Yu B, Chen L, Ni Z, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in Cairna moschata. Sci Rep. 2018;8:10079.CrossRef Yun T, Hua J, Ye W, Yu B, Chen L, Ni Z, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in Cairna moschata. Sci Rep. 2018;8:10079.CrossRef
14.
go back to reference Zhou N, Fan C, Liu S, Zhou J, Jin Y, Zheng X, Wang Q, Liu J, Yang H, Gu J, Zhou J. Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidney-15 cells using isobaric tags for relative and absolute quantitation-coupled LC-MS/MS. Electrophoresis. 2017;38:1276–91.CrossRef Zhou N, Fan C, Liu S, Zhou J, Jin Y, Zheng X, Wang Q, Liu J, Yang H, Gu J, Zhou J. Cellular proteomic analysis of porcine circovirus type 2 and classical swine fever virus coinfection in porcine kidney-15 cells using isobaric tags for relative and absolute quantitation-coupled LC-MS/MS. Electrophoresis. 2017;38:1276–91.CrossRef
15.
go back to reference Shrinet J, Srivastava P, Kumar A, Dubey SK, Sirisena P, Srivastava P, Sunil S. Differential proteome analysis of chikungunya virus and dengue virus coinfection in Aedes mosquitoes. J Proteome Res. 2018;17:3348–59.CrossRef Shrinet J, Srivastava P, Kumar A, Dubey SK, Sirisena P, Srivastava P, Sunil S. Differential proteome analysis of chikungunya virus and dengue virus coinfection in Aedes mosquitoes. J Proteome Res. 2018;17:3348–59.CrossRef
16.
go back to reference Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.CrossRef Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.CrossRef
17.
go back to reference Folimonova SY. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol. 2012;86:5554–61.CrossRef Folimonova SY. Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol. 2012;86:5554–61.CrossRef
18.
go back to reference Bellecave P, Gouttenoire J, Gajer M, Brass V, Koutsoudakis G, Blum HE, Bartenschlager R, Nassal M, Moradpour D. Hepatitis B and C virus coinfection: a novel model system reveals the absence of direct viral interference. Hepatology. 2009;50:46–55.CrossRef Bellecave P, Gouttenoire J, Gajer M, Brass V, Koutsoudakis G, Blum HE, Bartenschlager R, Nassal M, Moradpour D. Hepatitis B and C virus coinfection: a novel model system reveals the absence of direct viral interference. Hepatology. 2009;50:46–55.CrossRef
19.
go back to reference Rovira A, Balasch M, Segalés J, García L, Plana-Durán J, Rosell C, Ellerbrok H, Mankertz A, Domingo M. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol. 2002;76:3232–9.CrossRef Rovira A, Balasch M, Segalés J, García L, Plana-Durán J, Rosell C, Ellerbrok H, Mankertz A, Domingo M. Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol. 2002;76:3232–9.CrossRef
20.
go back to reference Zhou N, Xing G, Zhou J, Jin Y, Liang C, Gu J, Hu B, Liao M, Wang Q, Zhou J. In vitro coinfection and replication of classical swine fever virus and porcine circovirus type 2 in PK15 cells. PLoS ONE. 2015;10:e0139457.CrossRef Zhou N, Xing G, Zhou J, Jin Y, Liang C, Gu J, Hu B, Liao M, Wang Q, Zhou J. In vitro coinfection and replication of classical swine fever virus and porcine circovirus type 2 in PK15 cells. PLoS ONE. 2015;10:e0139457.CrossRef
21.
go back to reference Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics. 2016;130:65–75.CrossRef Guo X, Hu H, Chen F, Li Z, Ye S, Cheng S, Zhang M, He Q. iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. J Proteomics. 2016;130:65–75.CrossRef
22.
go back to reference Li Z, Chen F, Ye S, Guo X, Muhanmmad Memon A, Wu M, He Q. Comparative proteome analysis of porcine jejunum tissues in response to a virulent strain of porcine epidemic diarrhea virus and its attenuated strain. Viruses. 2016;8:323.CrossRef Li Z, Chen F, Ye S, Guo X, Muhanmmad Memon A, Wu M, He Q. Comparative proteome analysis of porcine jejunum tissues in response to a virulent strain of porcine epidemic diarrhea virus and its attenuated strain. Viruses. 2016;8:323.CrossRef
23.
go back to reference Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20:91–9.CrossRef Zhang YZ, Li YY. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20:91–9.CrossRef
24.
go back to reference Monteleone G, Trapasso F, Parrello T, Biancone L, Stella A, Iuliano R, Luzza F, Fusco A, Pallone F. Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol. 1999;163:143–7.PubMed Monteleone G, Trapasso F, Parrello T, Biancone L, Stella A, Iuliano R, Luzza F, Fusco A, Pallone F. Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol. 1999;163:143–7.PubMed
25.
go back to reference Naftali T, Novick D, Gabay G, Rubinstein M, Novis B. Interleukin-18 and its binding protein in patients with inflammatory bowel disease during remission and exacerbation. Isr Med Assoc J. 2007;9:504–8.PubMed Naftali T, Novick D, Gabay G, Rubinstein M, Novis B. Interleukin-18 and its binding protein in patients with inflammatory bowel disease during remission and exacerbation. Isr Med Assoc J. 2007;9:504–8.PubMed
26.
go back to reference Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr, Foley E, Moskaluk CA, Bickston SJ, Cominelli F. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162:6829–35.PubMed Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr, Foley E, Moskaluk CA, Bickston SJ, Cominelli F. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol. 1999;162:6829–35.PubMed
27.
go back to reference Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Investig. 1998;101:711–21.CrossRef Puren AJ, Fantuzzi G, Gu Y, Su MS, Dinarello CA. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL-1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J Clin Investig. 1998;101:711–21.CrossRef
28.
go back to reference Alkheraif AA, Topliff CL, Reddy J, Massilamany C, Donis RO, Meyers G, Eskridge KM, Kelling CL. Type 2 BVDV N(pro) suppresses IFN-1 pathway signaling in bovine cells and augments BRSV replication. Virology. 2017;507:123–34.CrossRef Alkheraif AA, Topliff CL, Reddy J, Massilamany C, Donis RO, Meyers G, Eskridge KM, Kelling CL. Type 2 BVDV N(pro) suppresses IFN-1 pathway signaling in bovine cells and augments BRSV replication. Virology. 2017;507:123–34.CrossRef
29.
go back to reference Rosillo MA, Sanchez-Hidalgo M, Cárdeno A, de la Lastra CA. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem Pharmacol. 2011;82:737–45.CrossRef Rosillo MA, Sanchez-Hidalgo M, Cárdeno A, de la Lastra CA. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem Pharmacol. 2011;82:737–45.CrossRef
30.
go back to reference Fan FY, Sang LX, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules. 2017;22:484.CrossRef Fan FY, Sang LX, Jiang M. Catechins and their therapeutic benefits to inflammatory bowel disease. Molecules. 2017;22:484.CrossRef
Metadata
Title
Coinfection with PEDV and BVDV induces inflammatory bowel disease pathway highly enriched in PK-15 cells
Authors
Jinghua Cheng
Jie Tao
Benqiang Li
Ying Shi
Huili Liu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01845-8

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue