Skip to main content
Top
Published in: Virology Journal 1/2022

01-12-2022 | SARS-CoV-2 | Research

Tracking the molecular evolution and transmission patterns of SARS-CoV-2 lineage B.1.466.2 in Indonesia based on genomic surveillance data

Authors: Mingjian Zhu, Qianli Zeng, Bryanna Infinita Laviashna Saputro, Sien Ping Chew, Ian Chew, Holie Frendy, Joanna Weihui Tan, Lanjuan Li

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

As a new epi-center of COVID-19 in Asia and a densely populated developing country, Indonesia is facing unprecedented challenges in public health. SARS-CoV-2 lineage B.1.466.2 was reported to be an indigenous dominant strain in Indonesia (once second only to the Delta variant). However, it remains unclear how this variant evolved and spread within such an archipelagic nation.

Methods

For statistical description, the spatiotemporal distributions of the B.1.466.2 variant were plotted using the publicly accessible metadata in GISAID. A total of 1302 complete genome sequences of Indonesian B.1.466.2 strains with high coverage were downloaded from the GISAID’s EpiCoV database on 28 August 2021. To determine the molecular evolutionary characteristics, we performed a time-scaled phylogenetic analysis using the maximum likelihood algorithm and called the single nucleotide variants taking the Wuhan-Hu-1 sequence as reference. To investigate the spatiotemporal transmission patterns, we estimated two dynamic parameters (effective population size and effective reproduction number) and reconstructed the phylogeography among different islands.

Results

As of the end of August 2021, nearly 85% of the global SARS-CoV-2 lineage B.1.466.2 sequences (including the first one) were obtained from Indonesia. This variant was estimated to account for over 50% of Indonesia’s daily infections during the period of March–May 2021. The time-scaled phylogeny suggested that SARS-CoV-2 lineage B.1.466.2 circulating in Indonesia might have originated from Java Island in mid-June 2020 and had evolved into two disproportional and distinct sub-lineages. High-frequency non-synonymous mutations were mostly found in the spike and NSP3; the S-D614G/N439K/P681R co-mutations were identified in its larger sub-lineage. The demographic history was inferred to have experienced four phases, with an exponential growth from October 2020 to February 2021. The effective reproduction number was estimated to have reached its peak (11.18) in late December 2020 and dropped to be less than one after early May 2021. The relevant phylogeography showed that Java and Sumatra might successively act as epi-centers and form a stable transmission loop. Additionally, several long-distance transmission links across seas were revealed.

Conclusions

SARS-CoV-2 variants circulating in the tropical archipelago may follow unique patterns of evolution and transmission. Continuous, extensive and targeted genomic surveillance is essential.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentralCrossRef Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74.PubMedPubMedCentralCrossRef
2.
go back to reference WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020. WHO. Naming the coronavirus disease (COVID-19) and the virus that causes it. 2020.
3.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentralCrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.PubMedPubMedCentralCrossRef
5.
go back to reference WHO. Weekly epidemiological update on COVID-19 - 31 August 2021. 2021. WHO. Weekly epidemiological update on COVID-19 - 31 August 2021. 2021.
6.
go back to reference ABVC. COVID-19 situational report in the ASEAN region (as of July 21,2021). 2021. ABVC. COVID-19 situational report in the ASEAN region (as of July 21,2021). 2021.
7.
go back to reference Indonesia-MoH. Vaksinasi COVID-19 nasional. 2022. Indonesia-MoH. Vaksinasi COVID-19 nasional. 2022.
8.
go back to reference Dyer O. Covid-19: Indonesia becomes Asia’s new pandemic epicentre as delta variant spreads. BMJ. 2021;374:n1815.PubMedCrossRef Dyer O. Covid-19: Indonesia becomes Asia’s new pandemic epicentre as delta variant spreads. BMJ. 2021;374:n1815.PubMedCrossRef
9.
go back to reference Kumar A, Parashar R, Kumar S, Faiq MA, Kumari C, Kulandhasamy M, Narayan RK, Jha RK, Singh HN, Prasoon P, et al. Emerging SARS-CoV-2 variants can potentially break set epidemiological barriers in COVID-19. J Med Virol. 2021;94(4):1300–14.PubMedPubMedCentralCrossRef Kumar A, Parashar R, Kumar S, Faiq MA, Kumari C, Kulandhasamy M, Narayan RK, Jha RK, Singh HN, Prasoon P, et al. Emerging SARS-CoV-2 variants can potentially break set epidemiological barriers in COVID-19. J Med Virol. 2021;94(4):1300–14.PubMedPubMedCentralCrossRef
10.
go back to reference Oude MB, Worp N, Nieuwenhuijse DF, Sikkema RS, Haagmans B, Fouchier R, Koopmans M. The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nat Med. 2021;27(9):1518–24.CrossRef Oude MB, Worp N, Nieuwenhuijse DF, Sikkema RS, Haagmans B, Fouchier R, Koopmans M. The next phase of SARS-CoV-2 surveillance: real-time molecular epidemiology. Nat Med. 2021;27(9):1518–24.CrossRef
11.
go back to reference Rambaut A, Holmes EC, O’Toole A, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus OG. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–7.PubMedPubMedCentralCrossRef Rambaut A, Holmes EC, O’Toole A, Hill V, McCrone JT, Ruis C, du Plessis L, Pybus OG. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–7.PubMedPubMedCentralCrossRef
12.
13.
go back to reference Gunadi, Wibawa H, Marcellus, Hakim MS, Daniwijaya EW, Rizki LP, Supriyati E, Nugrahaningsih D, Afiahayati, Siswanto et al. Full-length genome characterization and phylogenetic analysis of SARS-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia. PeerJ. 2020;8:e10575. Gunadi, Wibawa H, Marcellus, Hakim MS, Daniwijaya EW, Rizki LP, Supriyati E, Nugrahaningsih D, Afiahayati, Siswanto et al. Full-length genome characterization and phylogenetic analysis of SARS-CoV-2 virus strains from Yogyakarta and Central Java, Indonesia. PeerJ. 2020;8:e10575.
14.
go back to reference Gunadi, Wibawa H, Hakim MS, Marcellus, Trisnawati I, Khair RE, Triasih R, Irene, Afiahayati, Iskandar K et al. Molecular epidemiology of SARS-CoV-2 isolated from COVID-19 family clusters. BMC Med Genomics. 2021; 14(1):144. Gunadi, Wibawa H, Hakim MS, Marcellus, Trisnawati I, Khair RE, Triasih R, Irene, Afiahayati, Iskandar K et al. Molecular epidemiology of SARS-CoV-2 isolated from COVID-19 family clusters. BMC Med Genomics. 2021; 14(1):144.
15.
go back to reference Gunadi, Hakim MS, Wibawa H, Marcellus, Trisnawati I, Supriyati E, Afiahayati, Khair RE, Iskandar K, Siswanto et al. Association between prognostic factors and the outcomes of patients infected with SARS-CoV-2 harboring multiple spike protein mutations. Sci Rep 2021; 11(1):21352. Gunadi, Hakim MS, Wibawa H, Marcellus, Trisnawati I, Supriyati E, Afiahayati, Khair RE, Iskandar K, Siswanto et al. Association between prognostic factors and the outcomes of patients infected with SARS-CoV-2 harboring multiple spike protein mutations. Sci Rep 2021; 11(1):21352.
16.
go back to reference Gunadi, Hakim MS, Wibawa H, Marcellus, Setiawaty V, Slamet, Trisnawati I, Supriyati E, El KR, Iskandar K et al. Is the infection of the SARS-CoV-2 delta variant associated with the outcomes of COVID-19 patients? Front Med (Lausanne) 2021;8:780611. Gunadi, Hakim MS, Wibawa H, Marcellus, Setiawaty V, Slamet, Trisnawati I, Supriyati E, El KR, Iskandar K et al. Is the infection of the SARS-CoV-2 delta variant associated with the outcomes of COVID-19 patients? Front Med (Lausanne) 2021;8:780611.
17.
go back to reference Fibriani A, Stephanie R, Alfiantie AA, Siregar A, Pradani G, Yamahoki N, Purba WS, Alamanda C, Rahmawati E, Rachman RW, et al. Analysis of SARS-CoV-2 genomes from West Java, Indonesia. Viruses. 2021;13(10):2097.PubMedPubMedCentralCrossRef Fibriani A, Stephanie R, Alfiantie AA, Siregar A, Pradani G, Yamahoki N, Purba WS, Alamanda C, Rahmawati E, Rachman RW, et al. Analysis of SARS-CoV-2 genomes from West Java, Indonesia. Viruses. 2021;13(10):2097.PubMedPubMedCentralCrossRef
18.
go back to reference IMoH. IKHTISAR MINGGUAN COVID-19 (Indonesia, 14–20 Agustus 2021). 2021. IMoH. IKHTISAR MINGGUAN COVID-19 (Indonesia, 14–20 Agustus 2021). 2021.
19.
go back to reference Cahyani I, Putro EW, Ridwanuloh AM, Wibowo S, Hariyatun H, Syahputra G, Akbariani G, Utomo AR, Ilyas M, Loose M, et al. Genome Profiling of SARS-CoV-2 in Indonesia, ASEAN and the Neighbouring East Asian Countries: Features, Challenges and Achievements. Viruses. 2022;14(4):778.PubMedPubMedCentralCrossRef Cahyani I, Putro EW, Ridwanuloh AM, Wibowo S, Hariyatun H, Syahputra G, Akbariani G, Utomo AR, Ilyas M, Loose M, et al. Genome Profiling of SARS-CoV-2 in Indonesia, ASEAN and the Neighbouring East Asian Countries: Features, Challenges and Achievements. Viruses. 2022;14(4):778.PubMedPubMedCentralCrossRef
20.
go back to reference Sam IC, Chong YM, Abdullah A, Fu J, Hasan MS, Jamaluddin FH, Kamarulzaman A, Lim KK, Mohd NM, Pang YK, et al. Changing predominant SARS-CoV-2 lineages drives successive COVID-19 waves in Malaysia, February 2020 to March 2021. J Med Virol. 2021;94:1146–53.PubMedCrossRef Sam IC, Chong YM, Abdullah A, Fu J, Hasan MS, Jamaluddin FH, Kamarulzaman A, Lim KK, Mohd NM, Pang YK, et al. Changing predominant SARS-CoV-2 lineages drives successive COVID-19 waves in Malaysia, February 2020 to March 2021. J Med Virol. 2021;94:1146–53.PubMedCrossRef
21.
go back to reference Aisyah DN, Mayadewi CA, Igusti G, Manikam L, Adisasmito W, Kozlakidis Z. Laboratory readiness and response for SARS-Cov-2 in Indonesia. Front Public Health. 2021;9:705031.PubMedPubMedCentralCrossRef Aisyah DN, Mayadewi CA, Igusti G, Manikam L, Adisasmito W, Kozlakidis Z. Laboratory readiness and response for SARS-Cov-2 in Indonesia. Front Public Health. 2021;9:705031.PubMedPubMedCentralCrossRef
22.
go back to reference Ulfah M, Helianti I. Bioinformatic analysis of the whole genome sequences of SARS-CoV-2 from Indonesia. Iran J Microbiol. 2021;13(2):145–55.PubMedPubMedCentral Ulfah M, Helianti I. Bioinformatic analysis of the whole genome sequences of SARS-CoV-2 from Indonesia. Iran J Microbiol. 2021;13(2):145–55.PubMedPubMedCentral
23.
go back to reference Nidom RV, Indrasari S, Normalina I, Nidom AN, Afifah B, Dewi L, Putra AK, Ansori A, Kusala M, Alamudi MY, et al. Phylogenetic and full-length genome mutation analysis of SARS-CoV-2 in Indonesia prior to COVID-19 vaccination program in 2021. Bull Natl Res Cent. 2021;45(1):200.PubMedPubMedCentralCrossRef Nidom RV, Indrasari S, Normalina I, Nidom AN, Afifah B, Dewi L, Putra AK, Ansori A, Kusala M, Alamudi MY, et al. Phylogenetic and full-length genome mutation analysis of SARS-CoV-2 in Indonesia prior to COVID-19 vaccination program in 2021. Bull Natl Res Cent. 2021;45(1):200.PubMedPubMedCentralCrossRef
25.
go back to reference Laud P. Confidence intervals for comparisons of binomial or poisson rates. 2018. Laud P. Confidence intervals for comparisons of binomial or poisson rates. 2018.
28.
go back to reference Sagulenko P, Puller V, Neher RA. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4(1):x42.CrossRef Sagulenko P, Puller V, Neher RA. TreeTime: maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4(1):x42.CrossRef
29.
go back to reference Rambaut A, Lam TT, Max CL, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):w7.CrossRef Rambaut A, Lam TT, Max CL, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):w7.CrossRef
30.
go back to reference Jacob MD, Scott R, Guirales S, Janies DA. Fundamental evolution of all Orthocoronavirinae including three deadly lineages descendent from Chiroptera-hosted coronaviruses: SARS-CoV, MERS-CoV and SARS-CoV-2. Cladistics. 2021;37(5):461–88.CrossRef Jacob MD, Scott R, Guirales S, Janies DA. Fundamental evolution of all Orthocoronavirinae including three deadly lineages descendent from Chiroptera-hosted coronaviruses: SARS-CoV, MERS-CoV and SARS-CoV-2. Cladistics. 2021;37(5):461–88.CrossRef
31.
go back to reference Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–3.PubMedPubMedCentralCrossRef Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T, Neher RA. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–3.PubMedPubMedCentralCrossRef
33.
go back to reference Anne Cori SCNM. Estimate time varying reproduction numbers from epidemic curves. 2021. Anne Cori SCNM. Estimate time varying reproduction numbers from epidemic curves. 2021.
34.
go back to reference Alpert T, Brito AF, Lasek-Nesselquist E, Rothman J, Valesano AL, MacKay MJ, Petrone ME, Breban MI, Watkins AE, Vogels C, et al. Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States. Cell. 2021;184(10):2595–604.PubMedPubMedCentralCrossRef Alpert T, Brito AF, Lasek-Nesselquist E, Rothman J, Valesano AL, MacKay MJ, Petrone ME, Breban MI, Watkins AE, Vogels C, et al. Early introductions and transmission of SARS-CoV-2 variant B.1.1.7 in the United States. Cell. 2021;184(10):2595–604.PubMedPubMedCentralCrossRef
35.
go back to reference Kraemer M, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, Baele G, Parag KV, Battle AL, Gutierrez B, et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science. 2021;373(6557):889–95.PubMedCrossRef Kraemer M, Hill V, Ruis C, Dellicour S, Bajaj S, McCrone JT, Baele G, Parag KV, Battle AL, Gutierrez B, et al. Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence. Science. 2021;373(6557):889–95.PubMedCrossRef
36.
go back to reference Cheng J. An R interface to leaflet maps. 2021. Cheng J. An R interface to leaflet maps. 2021.
37.
go back to reference Indonesia-MoH. Pemerintah Tingkatkan Kapasitas Deteksi Genom Virus SARS-CoV-2. 2021. Indonesia-MoH. Pemerintah Tingkatkan Kapasitas Deteksi Genom Virus SARS-CoV-2. 2021.
38.
go back to reference Fan XA, Xy B, Rac C, Yx A. Quantifying competitive advantages of mutant strains in a population involving importation and mass vaccination rollout. Infect Dis Model. 2021;6:988–96. Fan XA, Xy B, Rac C, Yx A. Quantifying competitive advantages of mutant strains in a population involving importation and mass vaccination rollout. Infect Dis Model. 2021;6:988–96.
39.
go back to reference Parvez MK, Parveen S. Evolution and emergence of pathogenic viruses: past, present, and future. Intervirology. 2017;60(1–2):1–7.PubMedCrossRef Parvez MK, Parveen S. Evolution and emergence of pathogenic viruses: past, present, and future. Intervirology. 2017;60(1–2):1–7.PubMedCrossRef
40.
go back to reference Wikipedia. List of islands by population. 2021. Wikipedia. List of islands by population. 2021.
41.
go back to reference Sy K, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties. PLoS ONE. 2021;16(4):e249271.CrossRef Sy K, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties. PLoS ONE. 2021;16(4):e249271.CrossRef
43.
go back to reference Huang JC. Bats & coffee in sumatras rainforest. 2014. Huang JC. Bats & coffee in sumatras rainforest. 2014.
44.
go back to reference Struebig M. Building a future for borneos bats. 2009. Struebig M. Building a future for borneos bats. 2009.
45.
go back to reference Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.PubMedPubMedCentralCrossRef Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.PubMedPubMedCentralCrossRef
46.
go back to reference Joffrin L, Goodman SM, Wilkinson DA, Ramasindrazana B, Lagadec E, Gomard Y, Le Minter G, Dos SA, Corrie SM, Sookhareea R, et al. Bat coronavirus phylogeography in the Western Indian Ocean. Sci Rep. 2020;10(1):6873.PubMedPubMedCentralCrossRef Joffrin L, Goodman SM, Wilkinson DA, Ramasindrazana B, Lagadec E, Gomard Y, Le Minter G, Dos SA, Corrie SM, Sookhareea R, et al. Bat coronavirus phylogeography in the Western Indian Ocean. Sci Rep. 2020;10(1):6873.PubMedPubMedCentralCrossRef
47.
go back to reference Abdullahi IN, Emeribe AU, Mustapha JO, Fasogbon SA, Nwofe J. Exploring the genetics, ecology of SARS-COV-2 and climatic factors as possible control strategies against COVID-19. Le infezioni in medicina: rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive. 2020;28(2):167–73. Abdullahi IN, Emeribe AU, Mustapha JO, Fasogbon SA, Nwofe J. Exploring the genetics, ecology of SARS-COV-2 and climatic factors as possible control strategies against COVID-19. Le infezioni in medicina: rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive. 2020;28(2):167–73.
48.
go back to reference Hassanin A, Tu VT, Curaudeau M, Csorba G. Inferring the ecological niche of bat viruses closely related to SARS-CoV-2 using phylogeographic analyses of Rhinolophus species. Sci Rep. 2021;11(1):14276.PubMedPubMedCentralCrossRef Hassanin A, Tu VT, Curaudeau M, Csorba G. Inferring the ecological niche of bat viruses closely related to SARS-CoV-2 using phylogeographic analyses of Rhinolophus species. Sci Rep. 2021;11(1):14276.PubMedPubMedCentralCrossRef
49.
go back to reference Zhu M, Shen J, Zeng Q, Tan JW, Kleepbua J, Chew I, Law JX, Chew SP, Tangathajinda A, Latthitham N, et al. Molecular phylogenesis and spatiotemporal spread of SARS-CoV-2 in Southeast Asia. Front Public Health. 2021;9:685315.PubMedPubMedCentralCrossRef Zhu M, Shen J, Zeng Q, Tan JW, Kleepbua J, Chew I, Law JX, Chew SP, Tangathajinda A, Latthitham N, et al. Molecular phylogenesis and spatiotemporal spread of SARS-CoV-2 in Southeast Asia. Front Public Health. 2021;9:685315.PubMedPubMedCentralCrossRef
50.
go back to reference Wang S, Xu X, Wei C, Li S, Zhao J, Zheng Y, Liu X, Zeng X, Yuan W, Peng S. Molecular evolutionary characteristics of SARS-CoV-2 emerging in the United States. J Med Virol. 2022;94(1):310–7.PubMedCrossRef Wang S, Xu X, Wei C, Li S, Zhao J, Zheng Y, Liu X, Zeng X, Yuan W, Peng S. Molecular evolutionary characteristics of SARS-CoV-2 emerging in the United States. J Med Virol. 2022;94(1):310–7.PubMedCrossRef
51.
go back to reference Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011;8(2):270–9.PubMedPubMedCentralCrossRef Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011;8(2):270–9.PubMedPubMedCentralCrossRef
52.
go back to reference Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir Res. 2018;149:58–74.PubMedCrossRef Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: structures and functions of a large multi-domain protein. Antivir Res. 2018;149:58–74.PubMedCrossRef
53.
go back to reference Kashima S, Slavov SN, Giovanetti M, Rodrigues ES, Patané JSL, Viala VL, Santos EV, Evaristo M, Lima LPOD, Martins AJ, et al. Introduction of SARS-COV-2 C.37 (WHO VOI lambda) in the Sao Paulo State, Southeast Brazil. J Med Virol. 2021;94:1206–11.PubMedCrossRef Kashima S, Slavov SN, Giovanetti M, Rodrigues ES, Patané JSL, Viala VL, Santos EV, Evaristo M, Lima LPOD, Martins AJ, et al. Introduction of SARS-COV-2 C.37 (WHO VOI lambda) in the Sao Paulo State, Southeast Brazil. J Med Virol. 2021;94:1206–11.PubMedCrossRef
54.
go back to reference GISAID. Clade and lineage nomenclature aids in genomic epidemiology studies of active hCoV-19 viruses. 2021. GISAID. Clade and lineage nomenclature aids in genomic epidemiology studies of active hCoV-19 viruses. 2021.
55.
go back to reference Chakraborty C, Saha A, Sharma AR, Bhattacharya M, Lee SS, Agoramoorthy G. D614G mutation eventuates in all VOI and VOC in SARS-CoV-2: is it part of the positive selection pioneered by Darwin? Mol Ther Nucleic Acids. 2021;26:237–41.PubMedPubMedCentralCrossRef Chakraborty C, Saha A, Sharma AR, Bhattacharya M, Lee SS, Agoramoorthy G. D614G mutation eventuates in all VOI and VOC in SARS-CoV-2: is it part of the positive selection pioneered by Darwin? Mol Ther Nucleic Acids. 2021;26:237–41.PubMedPubMedCentralCrossRef
56.
go back to reference Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739–51.PubMedPubMedCentralCrossRef Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739–51.PubMedPubMedCentralCrossRef
57.
go back to reference Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, Miyoshi K, Kishigami S, Ueno T, Iwatani Y, et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun. 2021;12(1):848.PubMedPubMedCentralCrossRef Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, Miyoshi K, Kishigami S, Ueno T, Iwatani Y, et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun. 2021;12(1):848.PubMedPubMedCentralCrossRef
58.
go back to reference Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812–27.PubMedPubMedCentralCrossRef Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812–27.PubMedPubMedCentralCrossRef
59.
go back to reference Lam JY, Yuen CK, Ip JD, Wong WM, To KK, Yuen KY, Kok KH. Loss of orf3b in the circulating SARS-CoV-2 strains. Emerg Microbes Infect. 2020;9(1):2685–96.PubMedPubMedCentralCrossRef Lam JY, Yuen CK, Ip JD, Wong WM, To KK, Yuen KY, Kok KH. Loss of orf3b in the circulating SARS-CoV-2 strains. Emerg Microbes Infect. 2020;9(1):2685–96.PubMedPubMedCentralCrossRef
60.
go back to reference Chu D, Hui K, Gu H, Ko R, Krishnan P, Ng D, Liu G, Wan C, Cheung MC, Ng KC, et al. Introduction of ORF3a-Q57H SARS-CoV-2 variant causing fourth epidemic wave of COVID-19, Hong Kong, China. Emerg Infect Dis. 2021;27(5):1492–5.PubMedPubMedCentralCrossRef Chu D, Hui K, Gu H, Ko R, Krishnan P, Ng D, Liu G, Wan C, Cheung MC, Ng KC, et al. Introduction of ORF3a-Q57H SARS-CoV-2 variant causing fourth epidemic wave of COVID-19, Hong Kong, China. Emerg Infect Dis. 2021;27(5):1492–5.PubMedPubMedCentralCrossRef
61.
go back to reference Wang R, Chen J, Gao K, Hozumi Y, Yin C, Wei GW. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun Biol. 2021;4(1):228.PubMedPubMedCentralCrossRef Wang R, Chen J, Gao K, Hozumi Y, Yin C, Wei GW. Analysis of SARS-CoV-2 mutations in the United States suggests presence of four substrains and novel variants. Commun Biol. 2021;4(1):228.PubMedPubMedCentralCrossRef
62.
go back to reference Thomson EC, Rosen LE, Shepherd JG, Spreafico R, Da SFA, Wojcechowskyj JA, Davis C, Piccoli L, Pascall DJ, Dillen J, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021;184(5):1171–87.PubMedPubMedCentralCrossRef Thomson EC, Rosen LE, Shepherd JG, Spreafico R, Da SFA, Wojcechowskyj JA, Davis C, Piccoli L, Pascall DJ, Dillen J, et al. Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell. 2021;184(5):1171–87.PubMedPubMedCentralCrossRef
63.
go back to reference Zhou W, Xu C, Wang P, Luo M, Xu Z, Cheng R, Jin X, Guo Y, Xue G, Juan L, et al. N439K variant in spike protein alter the infection efficiency and antigenicity of SARS-CoV-2 based on molecular dynamics simulation. Front Cell Dev Biol. 2021;9:697035.PubMedPubMedCentralCrossRef Zhou W, Xu C, Wang P, Luo M, Xu Z, Cheng R, Jin X, Guo Y, Xue G, Juan L, et al. N439K variant in spike protein alter the infection efficiency and antigenicity of SARS-CoV-2 based on molecular dynamics simulation. Front Cell Dev Biol. 2021;9:697035.PubMedPubMedCentralCrossRef
64.
go back to reference Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 variants: a review of its mutations, its implications and vaccine efficacy. Vaccines (Basel). 2021;9(10):1195.CrossRef Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 variants: a review of its mutations, its implications and vaccine efficacy. Vaccines (Basel). 2021;9(10):1195.CrossRef
66.
go back to reference Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2021;602:300–6.PubMedPubMedCentralCrossRef Saito A, Irie T, Suzuki R, Maemura T, Nasser H, Uriu K, Kosugi Y, Shirakawa K, Sadamasu K, Kimura I, et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature. 2021;602:300–6.PubMedPubMedCentralCrossRef
67.
go back to reference Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, Daniels R, Hobson P, Hatipoglu E, Ngai Y, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B16172 and B1351 by BNT162b2 vaccination. Lancet. 2021;397(10292):2331–3.PubMedPubMedCentralCrossRef Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, Daniels R, Hobson P, Hatipoglu E, Ngai Y, et al. Neutralising antibody activity against SARS-CoV-2 VOCs B16172 and B1351 by BNT162b2 vaccination. Lancet. 2021;397(10292):2331–3.PubMedPubMedCentralCrossRef
68.
go back to reference Roy C, Mandal SM, Mondal SK, Mukherjee S, Mapder T, Ghosh W, Chakraborty R. Trends of mutation accumulation across global SARS-CoV-2 genomes: implications for the evolution of the novel coronavirus. Genomics. 2020;112(6):5331–42.PubMedCrossRef Roy C, Mandal SM, Mondal SK, Mukherjee S, Mapder T, Ghosh W, Chakraborty R. Trends of mutation accumulation across global SARS-CoV-2 genomes: implications for the evolution of the novel coronavirus. Genomics. 2020;112(6):5331–42.PubMedCrossRef
69.
go back to reference Karcher MD, Carvalho LM, Suchard MA, Dudas G, Minin VN. Estimating effective population size changes from preferentially sampled genetic sequences. Plos Comput Biol. 2020;16(10):e1007774.PubMedPubMedCentralCrossRef Karcher MD, Carvalho LM, Suchard MA, Dudas G, Minin VN. Estimating effective population size changes from preferentially sampled genetic sequences. Plos Comput Biol. 2020;16(10):e1007774.PubMedPubMedCentralCrossRef
70.
go back to reference Smith MR, Trofimova M, Weber A, Duport Y, Kuhnert D, von Kleist M. Rapid incidence estimation from SARS-CoV-2 genomes reveals decreased case detection in Europe during summer 2020. Nat Commun. 2021;12(1):6009.PubMedPubMedCentralCrossRef Smith MR, Trofimova M, Weber A, Duport Y, Kuhnert D, von Kleist M. Rapid incidence estimation from SARS-CoV-2 genomes reveals decreased case detection in Europe during summer 2020. Nat Commun. 2021;12(1):6009.PubMedPubMedCentralCrossRef
71.
go back to reference Nishiura H, Chowell G. The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In: Chowell G, Hyman JM, Bettencourt LMA, Castillo-Chavez C, editors. Mathematical and statistical estimation approaches in epidemiology. Springer: Dordrecht; 2009. p. 103–21.CrossRef Nishiura H, Chowell G. The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In: Chowell G, Hyman JM, Bettencourt LMA, Castillo-Chavez C, editors. Mathematical and statistical estimation approaches in epidemiology. Springer: Dordrecht; 2009. p. 103–21.CrossRef
72.
go back to reference WHO. WHO Indonesia situation report - 69. 2021. WHO. WHO Indonesia situation report - 69. 2021.
73.
go back to reference OCHA. Situation update: response to COVID-19 in Indonesia (As of 1 March 2021). 2021. OCHA. Situation update: response to COVID-19 in Indonesia (As of 1 March 2021). 2021.
74.
go back to reference Kalia K, Saberwal G, Sharma G. The lag in SARS-CoV-2 genome submissions to GISAID. Nat Biotechnol. 2021;39(9):1058–60.PubMedCrossRef Kalia K, Saberwal G, Sharma G. The lag in SARS-CoV-2 genome submissions to GISAID. Nat Biotechnol. 2021;39(9):1058–60.PubMedCrossRef
75.
go back to reference Li Y, Wang X, Nair H. global seasonality of human seasonal Coronaviruses: a clue for postpandemic circulating season of severe acute respiratory syndrome Coronavirus 2? J Infect Dis. 2020;222(7):1090–7.PubMedCrossRef Li Y, Wang X, Nair H. global seasonality of human seasonal Coronaviruses: a clue for postpandemic circulating season of severe acute respiratory syndrome Coronavirus 2? J Infect Dis. 2020;222(7):1090–7.PubMedCrossRef
76.
go back to reference Karapiperis C, Kouklis P, Papastratos S, Chasapi A, Ouzounis CA. A strong seasonality pattern for Covid-19 incidence rates modulated by UV radiation levels. Viruses. 2021;13(4):574.PubMedPubMedCentralCrossRef Karapiperis C, Kouklis P, Papastratos S, Chasapi A, Ouzounis CA. A strong seasonality pattern for Covid-19 incidence rates modulated by UV radiation levels. Viruses. 2021;13(4):574.PubMedPubMedCentralCrossRef
77.
go back to reference GitHub. Recent circulation of multiple sublineages of B.1.466.2 in Jakarta, Indonesia #405. 2022. GitHub. Recent circulation of multiple sublineages of B.1.466.2 in Jakarta, Indonesia #405. 2022.
80.
go back to reference Carleton T, Cornetet J, Huybers P, Meng KC, Proctor J. Global evidence for ultraviolet radiation decreasing COVID-19 growth rates. Proc Natl Acad Sci. 2021;118(1):e2012370118.PubMedCrossRef Carleton T, Cornetet J, Huybers P, Meng KC, Proctor J. Global evidence for ultraviolet radiation decreasing COVID-19 growth rates. Proc Natl Acad Sci. 2021;118(1):e2012370118.PubMedCrossRef
81.
go back to reference Supatmi S, Hou R, Sumitra ID. Study of hybrid neurofuzzy inference system for forecasting flood event vulnerability in Indonesia. Comput Intell Neurosci. 2019;2019:6203510.PubMedPubMedCentralCrossRef Supatmi S, Hou R, Sumitra ID. Study of hybrid neurofuzzy inference system for forecasting flood event vulnerability in Indonesia. Comput Intell Neurosci. 2019;2019:6203510.PubMedPubMedCentralCrossRef
82.
go back to reference Shen X, Cai C, Yang Q, Anagnostou EN, Li H. The US COVID-19 pandemic in the flood season. Sci Total Environ. 2021;755(Pt 2):142634.PubMedCrossRef Shen X, Cai C, Yang Q, Anagnostou EN, Li H. The US COVID-19 pandemic in the flood season. Sci Total Environ. 2021;755(Pt 2):142634.PubMedCrossRef
84.
go back to reference Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, Wesolowski A, Santillana M, Zhang C, Du X, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. 2020;585(7825):410–3.PubMedPubMedCentralCrossRef Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Floyd JR, Wesolowski A, Santillana M, Zhang C, Du X, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China. Nature. 2020;585(7825):410–3.PubMedPubMedCentralCrossRef
85.
go back to reference Liu Y, Wang Z, Rader B, Li B, Wu CH, Whittington JD, Zheng P, Stenseth NC, Bjornstad ON, Brownstein JS, Tian H. Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study. Lancet Digit Health. 2021;3(6):e349.PubMedPubMedCentralCrossRef Liu Y, Wang Z, Rader B, Li B, Wu CH, Whittington JD, Zheng P, Stenseth NC, Bjornstad ON, Brownstein JS, Tian H. Associations between changes in population mobility in response to the COVID-19 pandemic and socioeconomic factors at the city level in China and country level worldwide: a retrospective, observational study. Lancet Digit Health. 2021;3(6):e349.PubMedPubMedCentralCrossRef
86.
go back to reference Tuladhar R, Grigolini P, Santamaria F. The allometric propagation of COVID-19 is explained by human travel. Infect Dis Model. 2022;7(1):122–33.PubMed Tuladhar R, Grigolini P, Santamaria F. The allometric propagation of COVID-19 is explained by human travel. Infect Dis Model. 2022;7(1):122–33.PubMed
87.
go back to reference SuaraJakarta. 4 Aturan Baru PSBB Transisi Jakarta Dimulai Senin Hari Ini. 2020. SuaraJakarta. 4 Aturan Baru PSBB Transisi Jakarta Dimulai Senin Hari Ini. 2020.
88.
go back to reference KOMPAS: Ramainya Arus Mudik Natal dan Tahun Baru di Tengah Pandemi Covid-19. Halaman all. 2020. KOMPAS: Ramainya Arus Mudik Natal dan Tahun Baru di Tengah Pandemi Covid-19. Halaman all. 2020.
90.
go back to reference Fu Y, Supriyadi A, Wang T. China’s outward FDI in Indonesia: spatial patterns and determinants. Sustainability-Basel. 2018;10(12):4632.CrossRef Fu Y, Supriyadi A, Wang T. China’s outward FDI in Indonesia: spatial patterns and determinants. Sustainability-Basel. 2018;10(12):4632.CrossRef
91.
go back to reference Zhu M, Kleepbua J, Guan Z, Chew SP, Tan JW, Shen J, Latthitham N, Hu J, Law JX, Li L. Early Spatiotemporal Patterns and Population Characteristics of the COVID-19 Pandemic in Southeast Asia. Healthcare (Basel). 2021;9(9):1220.CrossRef Zhu M, Kleepbua J, Guan Z, Chew SP, Tan JW, Shen J, Latthitham N, Hu J, Law JX, Li L. Early Spatiotemporal Patterns and Population Characteristics of the COVID-19 Pandemic in Southeast Asia. Healthcare (Basel). 2021;9(9):1220.CrossRef
92.
go back to reference Sigler T, Mahmuda S, Kimpton A, Loginova J, Wohland P, Charles-Edwards E, Corcoran J. The socio-spatial determinants of COVID-19 diffusion: the impact of globalisation, settlement characteristics and population. Glob Health. 2021;17(1):56.CrossRef Sigler T, Mahmuda S, Kimpton A, Loginova J, Wohland P, Charles-Edwards E, Corcoran J. The socio-spatial determinants of COVID-19 diffusion: the impact of globalisation, settlement characteristics and population. Glob Health. 2021;17(1):56.CrossRef
93.
Metadata
Title
Tracking the molecular evolution and transmission patterns of SARS-CoV-2 lineage B.1.466.2 in Indonesia based on genomic surveillance data
Authors
Mingjian Zhu
Qianli Zeng
Bryanna Infinita Laviashna Saputro
Sien Ping Chew
Ian Chew
Holie Frendy
Joanna Weihui Tan
Lanjuan Li
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
SARS-CoV-2
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01830-1

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue