Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Conjunctivitis | Research

Epidemiological trends and sociodemographic factors associated with acute hemorrhagic conjunctivitis in mainland China from 2004 to 2018

Authors: Rong Liu, Yuxing Chen, Hao Liu, Xihui Huang, Fang Zhou

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

Acute hemorrhagic conjunctivitis (AHC) is classified as a class C notifiable infectious disease in China and poses a great threat to public health. This study aimed to investigate the epidemiological trends and hotspots of AHC in mainland China. Sociodemographic factors that could contribute to early warning of AHC were further explored.

Methods

Yearly and monthly incidences of acute hemorrhagic conjunctivitis by date and region from 2004 to 2018 were extracted from the Data Center of China Public Health Science. Joinpoint regression and spatial autocorrelation analysis were performed to explore the epidemiological trends and hotspots of AHC. A generalized linear model was then applied to explore the relationship between sociodemographic factors and AHC incidence.

Results

The average annual AHC incidence was 3.58/100,000 in mainland China. The first-level spatial and temporal aggregation areas were distributed in Guangxi, Hainan, Guangdong, Guizhou, Hunan, Jiangxi, Fujian, Chongqing, Hubei, Anhui, and Zhejiang, with gathering times from 2010/1/1 to 2010/12/31 (RR = 20.13, LLR = 474,522.89, P < 0.01). After 2010, the AHC incidence was stable (APC = − 8.37, 95% CI: − 23.02–9.06). However, it was significantly increased in low- and middle-income provinces (AAPC = 10.65, 95% CI: 0.62–21.68, AAPC = 11.94, 95% CI: 0.62–24.53). The peak of AHC occurred during the August to October period. Children who age 0–3 years are identified as high-risk group with AHC incidence significantly increased (APC = 31.54, 95% CI: 0.27–72.56). Birth rate, population ages 0–14 (% of total population), passenger traffic, and urban population (% of total population) were positively associated with the AHC incidence, while per capita gross domestic product was negatively associated with the AHC incidence.

Conclusion

Overall, the AHC incidence was stable after 2010 in China, but it was significantly increased in low- and middle-income provinces. Regions with a high birth rate, population ages 0–14 (% of the total population), passenger traffic, urban population (% of the total population) and low per capita gross domestic product are at high risk of incidences of AHC. In the future, public health policy and resource priority for AHC in regions with these characteristics are necessary.
Appendix
Available only for authorised users
Literature
1.
go back to reference Burr SE, Sillah A, Joof H, Bailey RL, Holland MJ. An outbreak of acute haemorrhagic conjunctivitis associated with coxsackievirus A24 variant in The Gambia, West Africa. BMC Res Notes. 2017;10:692.PubMedPubMedCentralCrossRef Burr SE, Sillah A, Joof H, Bailey RL, Holland MJ. An outbreak of acute haemorrhagic conjunctivitis associated with coxsackievirus A24 variant in The Gambia, West Africa. BMC Res Notes. 2017;10:692.PubMedPubMedCentralCrossRef
3.
go back to reference Ayoub EA, Shafik CF, Gaynor AM, Mohareb EW, Amin MA, Yassin AS, et al. A molecular investigative approach to an outbreak of acute hemorrhagic conjunctivitis in Egypt, October 2010. Virol J. 2013;10:96.PubMedPubMedCentralCrossRef Ayoub EA, Shafik CF, Gaynor AM, Mohareb EW, Amin MA, Yassin AS, et al. A molecular investigative approach to an outbreak of acute hemorrhagic conjunctivitis in Egypt, October 2010. Virol J. 2013;10:96.PubMedPubMedCentralCrossRef
4.
go back to reference Shukla D, Kumar A, Srivastava S, Dhole TN. Molecular identification and phylogenetic study of coxsackievirus A24 variant isolated from an outbreak of acute hemorrhagic conjunctivitis in India in 2010. Arch Virol. 2013;158:679–84.PubMedCrossRef Shukla D, Kumar A, Srivastava S, Dhole TN. Molecular identification and phylogenetic study of coxsackievirus A24 variant isolated from an outbreak of acute hemorrhagic conjunctivitis in India in 2010. Arch Virol. 2013;158:679–84.PubMedCrossRef
5.
go back to reference Yan D, Zhu S, Zhang Y, Zhang J, Zhou Y, Xu W. Outbreak of acute hemorrhagic conjunctivitis in Yunnan, People’s Republic of China, 2007. Virol J. 2010;7:138.PubMedPubMedCentralCrossRef Yan D, Zhu S, Zhang Y, Zhang J, Zhou Y, Xu W. Outbreak of acute hemorrhagic conjunctivitis in Yunnan, People’s Republic of China, 2007. Virol J. 2010;7:138.PubMedPubMedCentralCrossRef
6.
go back to reference Zhang S, Hu Q, Deng Z, Hu S, Liu F, Yu S, et al. Transmissibility of acute haemorrhagic conjunctivitis in small-scale outbreaks in Hunan Province, China. Sci Rep. 2020;10:119.PubMedPubMedCentralCrossRef Zhang S, Hu Q, Deng Z, Hu S, Liu F, Yu S, et al. Transmissibility of acute haemorrhagic conjunctivitis in small-scale outbreaks in Hunan Province, China. Sci Rep. 2020;10:119.PubMedPubMedCentralCrossRef
7.
go back to reference Lim KH, Yin-Murphy M. An epidemic of conjunctivitis in Singapore in 1970. Singapore Med J. 1971;12:247–9.PubMed Lim KH, Yin-Murphy M. An epidemic of conjunctivitis in Singapore in 1970. Singapore Med J. 1971;12:247–9.PubMed
8.
go back to reference Baggen J, Hurdiss DL, Zocher G, Mistry N, Roberts RW, Slager JJ, et al. Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc Natl Acad Sci USA. 2018;115:397–402.PubMedCrossRef Baggen J, Hurdiss DL, Zocher G, Mistry N, Roberts RW, Slager JJ, et al. Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc Natl Acad Sci USA. 2018;115:397–402.PubMedCrossRef
9.
go back to reference Oh M, Park S, Choi Y, Kim H, Lee K, Park W, et al. Acute hemorrhagic conjunctivitis caused by coxsackievirus A24 variant, South Korea, 2002. Emerg Infect Dis. 2003;9:1010–2.PubMedPubMedCentralCrossRef Oh M, Park S, Choi Y, Kim H, Lee K, Park W, et al. Acute hemorrhagic conjunctivitis caused by coxsackievirus A24 variant, South Korea, 2002. Emerg Infect Dis. 2003;9:1010–2.PubMedPubMedCentralCrossRef
10.
go back to reference Chansaenroj J, Vongpunsawad S, Puenpa J, Theamboonlers A, Vuthitanachot V, Chattakul P, et al. Epidemic outbreak of acute haemorrhagic conjunctivitis caused by coxsackievirus A24 in Thailand, 2014. Epidemiol Infect. 2015;143:3087–93.PubMedCrossRef Chansaenroj J, Vongpunsawad S, Puenpa J, Theamboonlers A, Vuthitanachot V, Chattakul P, et al. Epidemic outbreak of acute haemorrhagic conjunctivitis caused by coxsackievirus A24 in Thailand, 2014. Epidemiol Infect. 2015;143:3087–93.PubMedCrossRef
11.
go back to reference Enfissi A, Joffret M-L, Delaune D, Delpeyroux F, Rousset D, Bessaud M. Coxsackievirus A24 variant associated with acute haemorrhagic conjunctivitis cases, French Guiana, 2017. Intervirology. 2017;60:271–5.PubMedCrossRef Enfissi A, Joffret M-L, Delaune D, Delpeyroux F, Rousset D, Bessaud M. Coxsackievirus A24 variant associated with acute haemorrhagic conjunctivitis cases, French Guiana, 2017. Intervirology. 2017;60:271–5.PubMedCrossRef
12.
go back to reference Fonseca MC, Pupo-Meriño M, García-González LA, Resik S, Hung LH, Muné M, et al. Molecular evolution of coxsackievirus A24v in Cuba over 23-years, 1986–2009. Sci Rep. 2020;10:13761.PubMedPubMedCentralCrossRef Fonseca MC, Pupo-Meriño M, García-González LA, Resik S, Hung LH, Muné M, et al. Molecular evolution of coxsackievirus A24v in Cuba over 23-years, 1986–2009. Sci Rep. 2020;10:13761.PubMedPubMedCentralCrossRef
13.
go back to reference Sousa IP, Burlandy FM, Ferreira JL, Alves JCS, Sousa-Júnior EC, Tavares FN, et al. Re-emergence of a coxsackievirus A24 variant causing acute hemorrhagic conjunctivitis in Brazil from 2017 to 2018. Arch Virol. 2019;164:1181–5.PubMedCrossRef Sousa IP, Burlandy FM, Ferreira JL, Alves JCS, Sousa-Júnior EC, Tavares FN, et al. Re-emergence of a coxsackievirus A24 variant causing acute hemorrhagic conjunctivitis in Brazil from 2017 to 2018. Arch Virol. 2019;164:1181–5.PubMedCrossRef
14.
15.
go back to reference Channa R, Zafar SN, Canner JK, Haring RS, Schneider EB, Friedman DS. Epidemiology of eye-related emergency department visits. JAMA Ophthalmol. 2016;134:312–9.PubMedCrossRef Channa R, Zafar SN, Canner JK, Haring RS, Schneider EB, Friedman DS. Epidemiology of eye-related emergency department visits. JAMA Ophthalmol. 2016;134:312–9.PubMedCrossRef
16.
go back to reference Zhang L, Zhao N, Huang X, Jin X, Geng X, Chan T-C, et al. Molecular epidemiology of acute hemorrhagic conjunctivitis caused by coxsackie A type 24 variant in China, 2004–2014. Sci Rep. 2017;7:45202.PubMedPubMedCentralCrossRef Zhang L, Zhao N, Huang X, Jin X, Geng X, Chan T-C, et al. Molecular epidemiology of acute hemorrhagic conjunctivitis caused by coxsackie A type 24 variant in China, 2004–2014. Sci Rep. 2017;7:45202.PubMedPubMedCentralCrossRef
17.
go back to reference Wang X, Zhao J, Zhang S, Si B, Wang Y. Acute hemorrhagic conjunctivitis outbreak in China. Dis Surveill. 2014;29:92–7 ((in Chinese)). Wang X, Zhao J, Zhang S, Si B, Wang Y. Acute hemorrhagic conjunctivitis outbreak in China. Dis Surveill. 2014;29:92–7 ((in Chinese)).
18.
go back to reference De W, Huanying Z, Hui L, Corina M, Xue G, Leng L, et al. Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong. China Virol J. 2012;9:41.PubMedCrossRef De W, Huanying Z, Hui L, Corina M, Xue G, Leng L, et al. Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong. China Virol J. 2012;9:41.PubMedCrossRef
20.
go back to reference Jing D, Zhao H, Ou R, Zhu H, Hu L, Giri M, et al. Epidemiological characteristics and spatiotemporal analysis of acute hemorrhagic conjunctivitis from 2004 to 2018 in Chongqing, China. Sci Rep. 2020;10:9286.PubMedPubMedCentralCrossRef Jing D, Zhao H, Ou R, Zhu H, Hu L, Giri M, et al. Epidemiological characteristics and spatiotemporal analysis of acute hemorrhagic conjunctivitis from 2004 to 2018 in Chongqing, China. Sci Rep. 2020;10:9286.PubMedPubMedCentralCrossRef
21.
go back to reference Chen SL, Liu RC, Chen FM, Zhang XX, Zhao J, Chen TM. Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China (2004–2015). Epidemiol Infect. 2017;145:368–78.PubMedCrossRef Chen SL, Liu RC, Chen FM, Zhang XX, Zhao J, Chen TM. Dynamic modelling of strategies for the control of acute haemorrhagic conjunctivitis outbreaks in schools in Changsha, China (2004–2015). Epidemiol Infect. 2017;145:368–78.PubMedCrossRef
22.
go back to reference Yang S, Wu J, Ding C, Cui Y, Zhou Y, Li Y, et al. Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. Lancet Infect Dis. 2017;17:716–25.PubMedPubMedCentralCrossRef Yang S, Wu J, Ding C, Cui Y, Zhou Y, Li Y, et al. Epidemiological features of and changes in incidence of infectious diseases in China in the first decade after the SARS outbreak: an observational trend study. Lancet Infect Dis. 2017;17:716–25.PubMedPubMedCentralCrossRef
25.
go back to reference Dong Y, Wang L, Burgner DP, Miller JE, Song Y, Ren X, et al. Infectious diseases in children and adolescents in China: analysis of national surveillance data from 2008 to 2017. BMJ. 2020;369:1043.CrossRef Dong Y, Wang L, Burgner DP, Miller JE, Song Y, Ren X, et al. Infectious diseases in children and adolescents in China: analysis of national surveillance data from 2008 to 2017. BMJ. 2020;369:1043.CrossRef
26.
go back to reference Harada K, Fujimoto T, Asato Y, Uchio E. Virological and epidemiological analysis of coxsackievirus A24 variant epidemic of acute hemorrhagic conjunctivitis in Okinawa, Japan, in 2011. Clin Ophthalmol. 2015;9:1085–92.PubMedPubMedCentral Harada K, Fujimoto T, Asato Y, Uchio E. Virological and epidemiological analysis of coxsackievirus A24 variant epidemic of acute hemorrhagic conjunctivitis in Okinawa, Japan, in 2011. Clin Ophthalmol. 2015;9:1085–92.PubMedPubMedCentral
27.
go back to reference Marguerite N, Brottet E, Pagès F, Jaffar-Bandjee MC, Schuffenecker I, Josset L, et al. A major outbreak of conjunctivitis caused by coxsackievirus A24, Réunion, January to April 2015. Euro Surveill. 2016;21:52.CrossRef Marguerite N, Brottet E, Pagès F, Jaffar-Bandjee MC, Schuffenecker I, Josset L, et al. A major outbreak of conjunctivitis caused by coxsackievirus A24, Réunion, January to April 2015. Euro Surveill. 2016;21:52.CrossRef
28.
go back to reference Chen T, Liu R. Study on the efficacy of quarantine during outbreaks of acute hemorrhagic conjunctivitis outbreaks at schools through the susceptive-infective-quarantine-removal model. Zhonghua Liu Xing Bing Xue Za Zhi. 2013;34:75–9 ((in Chinese)).PubMed Chen T, Liu R. Study on the efficacy of quarantine during outbreaks of acute hemorrhagic conjunctivitis outbreaks at schools through the susceptive-infective-quarantine-removal model. Zhonghua Liu Xing Bing Xue Za Zhi. 2013;34:75–9 ((in Chinese)).PubMed
29.
go back to reference Edmonds A, Haley DF, Tong W, Kempf M-C, Rahangdale L, Adimora AA, et al. Associations between population density and clinical and sociodemographic factors in women living with HIV in the Southern United States. AIDS Care. 2021;33:229–38.PubMedCrossRef Edmonds A, Haley DF, Tong W, Kempf M-C, Rahangdale L, Adimora AA, et al. Associations between population density and clinical and sociodemographic factors in women living with HIV in the Southern United States. AIDS Care. 2021;33:229–38.PubMedCrossRef
30.
go back to reference Yin H, Sun T, Yao L, Jiao Y, Ma L, Lin L, et al. Association between population density and infection rate suggests the importance of social distancing and travel restriction in reducing the COVID-19 pandemic. Environ Sci Pollut Res Int. 2021;28:40424–30.PubMedPubMedCentralCrossRef Yin H, Sun T, Yao L, Jiao Y, Ma L, Lin L, et al. Association between population density and infection rate suggests the importance of social distancing and travel restriction in reducing the COVID-19 pandemic. Environ Sci Pollut Res Int. 2021;28:40424–30.PubMedPubMedCentralCrossRef
31.
go back to reference Coker RJ, Hunter BM, Rudge JW, Liverani M, Hanvoravongchai P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet. 2011;377:599–609.PubMedPubMedCentralCrossRef Coker RJ, Hunter BM, Rudge JW, Liverani M, Hanvoravongchai P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet. 2011;377:599–609.PubMedPubMedCentralCrossRef
32.
go back to reference Liu H, Li C, Shao Y, Zhang X, Zhai Z, Wang X, et al. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011–2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. J Infect Public Health. 2020;13:287–94.PubMedCrossRef Liu H, Li C, Shao Y, Zhang X, Zhai Z, Wang X, et al. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011–2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. J Infect Public Health. 2020;13:287–94.PubMedCrossRef
33.
go back to reference Wu B, Qi X, Xu K, Ji H, Zhu Y, Tang F, et al. Genetic characteristics of the coxsackievirus A24 variant causing outbreaks of acute hemorrhagic conjunctivitis in Jiangsu, China, 2010. PLoS ON. 2014;9:e86883.CrossRef Wu B, Qi X, Xu K, Ji H, Zhu Y, Tang F, et al. Genetic characteristics of the coxsackievirus A24 variant causing outbreaks of acute hemorrhagic conjunctivitis in Jiangsu, China, 2010. PLoS ON. 2014;9:e86883.CrossRef
34.
go back to reference Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346:56–61.PubMedPubMedCentralCrossRef Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science. 2014;346:56–61.PubMedPubMedCentralCrossRef
35.
go back to reference Hao Y, Zhang N, Wu J, Su B, Gong L, Ma W, et al. Identifying infectious diarrhea hot spots and associated socioeconomic factors in Anhui Province. China Am J Trop Med Hyg. 2019;101:549–54.PubMedCrossRef Hao Y, Zhang N, Wu J, Su B, Gong L, Ma W, et al. Identifying infectious diarrhea hot spots and associated socioeconomic factors in Anhui Province. China Am J Trop Med Hyg. 2019;101:549–54.PubMedCrossRef
36.
go back to reference Chongsuvivatwong V, Phua KH, Yap MT, Pocock NS, Hashim JH, Chhem R, et al. Health and health-care systems in southeast Asia: diversity and transitions. Lancet. 2011;377:429–37.PubMedPubMedCentralCrossRef Chongsuvivatwong V, Phua KH, Yap MT, Pocock NS, Hashim JH, Chhem R, et al. Health and health-care systems in southeast Asia: diversity and transitions. Lancet. 2011;377:429–37.PubMedPubMedCentralCrossRef
37.
go back to reference Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Stat Med. 2006;25:3929–43.PubMedCrossRef Kulldorff M, Huang L, Pickle L, Duczmal L. An elliptic spatial scan statistic. Stat Med. 2006;25:3929–43.PubMedCrossRef
39.
go back to reference Thompson ES, Saveyn P, Declercq M, Meert J, Guida V, Eads CD, et al. Characterisation of heterogeneity and spatial autocorrelation in phase separating mixtures using Moran’s I. J Colloid Interface Sci. 2018;513:180–7.PubMedCrossRef Thompson ES, Saveyn P, Declercq M, Meert J, Guida V, Eads CD, et al. Characterisation of heterogeneity and spatial autocorrelation in phase separating mixtures using Moran’s I. J Colloid Interface Sci. 2018;513:180–7.PubMedCrossRef
40.
go back to reference Cheng Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol Ind. 2016;61:1024–32.CrossRef Cheng Z. The spatial correlation and interaction between manufacturing agglomeration and environmental pollution. Ecol Ind. 2016;61:1024–32.CrossRef
41.
go back to reference Parra-Amaya ME, Puerta-Yepes ME, Lizarralde-Bejarano DP, Arboleda-Sánchez S. Early detection for dengue using local indicator of spatial association (LISA) analysis. Diseases. 2016;4:E16.PubMedCrossRef Parra-Amaya ME, Puerta-Yepes ME, Lizarralde-Bejarano DP, Arboleda-Sánchez S. Early detection for dengue using local indicator of spatial association (LISA) analysis. Diseases. 2016;4:E16.PubMedCrossRef
42.
go back to reference Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19:335–51.PubMedCrossRef Kim HJ, Fay MP, Feuer EJ, Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19:335–51.PubMedCrossRef
44.
go back to reference Scott M, Flaherty D, Currall J. Statistics: general linear models (a flexible approach). J Small Anim Pract. 2014;55:527–30.PubMedCrossRef Scott M, Flaherty D, Currall J. Statistics: general linear models (a flexible approach). J Small Anim Pract. 2014;55:527–30.PubMedCrossRef
45.
go back to reference Zhang L, Jiang H, Wang K, Yuan Y, Fu Q, Jin X, et al. Long-term effects of weather condition and air pollution on acute hemorrhagic conjunctivitis in China: a nationalwide surveillance study in China. Environ Res. 2021;201:111616.PubMedCrossRef Zhang L, Jiang H, Wang K, Yuan Y, Fu Q, Jin X, et al. Long-term effects of weather condition and air pollution on acute hemorrhagic conjunctivitis in China: a nationalwide surveillance study in China. Environ Res. 2021;201:111616.PubMedCrossRef
46.
go back to reference Liu X, Qiu S, Liu Z, Chen D, Liu H, Ding G. Effects of floods on the incidence of acute hemorrhagic conjunctivitis in Mengshan, China, from 2005 to 2012. Am J Trop Med Hyg. 2020;102:1263–8.PubMedPubMedCentralCrossRef Liu X, Qiu S, Liu Z, Chen D, Liu H, Ding G. Effects of floods on the incidence of acute hemorrhagic conjunctivitis in Mengshan, China, from 2005 to 2012. Am J Trop Med Hyg. 2020;102:1263–8.PubMedPubMedCentralCrossRef
47.
go back to reference Zhao Y, Liu J, Zhang H, Guo C, Xia L, Yang F, et al. Complete genome analysis of coxsackievirus A24 isolated in Yunnan, China, in 2013. Arch Virol. 2016;161:1705–9.PubMedCrossRef Zhao Y, Liu J, Zhang H, Guo C, Xia L, Yang F, et al. Complete genome analysis of coxsackievirus A24 isolated in Yunnan, China, in 2013. Arch Virol. 2016;161:1705–9.PubMedCrossRef
48.
go back to reference Yan J, Chen Y, Li Z, Gong L, Lu Y, Zhang Y. Study on the etiology of acute hemorrhagic conjunctivitis outbreak in some areas of Zhejiang Province in 2010. Chin J Virol. 2011;27:421–6 ((in Chinese)). Yan J, Chen Y, Li Z, Gong L, Lu Y, Zhang Y. Study on the etiology of acute hemorrhagic conjunctivitis outbreak in some areas of Zhejiang Province in 2010. Chin J Virol. 2011;27:421–6 ((in Chinese)).
49.
go back to reference Wu D, Ke C-W, Mo Y-L, Sun L-M, Li H, Chen Q-X, et al. Multiple outbreaks of acute hemorrhagic conjunctivitis due to a variant of coxsackievirus A24: Guangdong, China, 2007. J Med Virol. 2008;80:1762–8.PubMedCrossRef Wu D, Ke C-W, Mo Y-L, Sun L-M, Li H, Chen Q-X, et al. Multiple outbreaks of acute hemorrhagic conjunctivitis due to a variant of coxsackievirus A24: Guangdong, China, 2007. J Med Virol. 2008;80:1762–8.PubMedCrossRef
50.
go back to reference Mao Y, Zhang N, Zhu B, Liu J, He R. A descriptive analysis of the Spatio-temporal distribution of intestinal infectious diseases in China. BMC Infect Dis. 2019;19:766.PubMedPubMedCentralCrossRef Mao Y, Zhang N, Zhu B, Liu J, He R. A descriptive analysis of the Spatio-temporal distribution of intestinal infectious diseases in China. BMC Infect Dis. 2019;19:766.PubMedPubMedCentralCrossRef
52.
go back to reference Wang X, Zhao J, Zhang S, Si B, Wang Y. Acute hemorrhagic conjunctivitis outbreak in China. Dis Surveill. 2014;29:92–7 ((in Chinese)). Wang X, Zhao J, Zhang S, Si B, Wang Y. Acute hemorrhagic conjunctivitis outbreak in China. Dis Surveill. 2014;29:92–7 ((in Chinese)).
53.
go back to reference Ra W, Aj M. Social and environmental risk factors in the emergence of infectious diseases. Nat Med. 2004;10. Ra W, Aj M. Social and environmental risk factors in the emergence of infectious diseases. Nat Med. 2004;10.
Metadata
Title
Epidemiological trends and sociodemographic factors associated with acute hemorrhagic conjunctivitis in mainland China from 2004 to 2018
Authors
Rong Liu
Yuxing Chen
Hao Liu
Xihui Huang
Fang Zhou
Publication date
01-12-2022
Publisher
BioMed Central
Keyword
Conjunctivitis
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01758-6

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue