Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Influenza Virus | Research

Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies

Authors: Yixin Xiao, Fan Yang, Fumin Liu, Hangping Yao, Nanping Wu, Haibo Wu

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

The H9N2 subtype of avian influenza virus (AIV) has become the most widespread subtype of AIV among birds in Asia, which threatens the poultry industry and human health. Therefore, it is important to establish methods for the rapid diagnosis and continuous surveillance of H9N2 subtype AIV.

Methods

In this study, an antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) and a colloidal gold immunochromatographic test (ICT) strip using monoclonal antibodies (MAbs) 3G4 and 2G7 were established to detect H9N2 subtype AIV.

Results

The AC-ELISA method and ICT strip can detect H9N2 subtype AIV quickly, and do not cross-react with other subtype AIVs or other viruses. The detection limit of AC-ELISA was a hemagglutinin (HA) titer of 4 for H9N2 subtype AIV per 100 μl sample, and the limit of detection of the HA protein of AIV H9N2 was 31.5 ng/ml. The ICT strip detection limit was an HA titer of 4 for H9N2 subtype AIV per 100 μl sample. Moreover, both detection methods exhibited good reproducibility and repeatability, with coefficients of variation < 5%. For detection in 200 actual poultry samples, the sensitivities and specificities of AC-ELISA were determined as 93.2% and 98.1%, respectively. The sensitivities and specificities of the ICT strips were determined as 90.9% and 97.4%, respectively.

Conclusions

The developed AC-ELISA and ICT strips displayed high specificity, sensitivity, and stability, making them suitable for rapid diagnosis and field investigation of H9N2 subtype AIV.
Literature
1.
go back to reference Petrova VN, Russell CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol. 2018;16:47–60.PubMedCrossRef Petrova VN, Russell CA. The evolution of seasonal influenza viruses. Nat Rev Microbiol. 2018;16:47–60.PubMedCrossRef
2.
go back to reference Borkenhagen LK, Salman MD, Ma MJ, Gray GC. Animal influenza virus infections in humans: a commentary. Int J Infect Dis. 2019;88:113–9.PubMedCrossRef Borkenhagen LK, Salman MD, Ma MJ, Gray GC. Animal influenza virus infections in humans: a commentary. Int J Infect Dis. 2019;88:113–9.PubMedCrossRef
3.
go back to reference Jung YJ, Lee YT, Ngo VL, Cho YH, Ko EJ, Hong SM, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep. 2017;7:17360.PubMedPubMedCentralCrossRef Jung YJ, Lee YT, Ngo VL, Cho YH, Ko EJ, Hong SM, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection. Sci Rep. 2017;7:17360.PubMedPubMedCentralCrossRef
4.
go back to reference Kim SH, Choi JW, Kim AR, Lee SC, Yoon MY. Development of ssDNA aptamers for diagnosis and inhibition of the highly pathogenic avian influenza virus subtype H5N1. Biomolecules. 2020;10:1116.PubMedCentralCrossRef Kim SH, Choi JW, Kim AR, Lee SC, Yoon MY. Development of ssDNA aptamers for diagnosis and inhibition of the highly pathogenic avian influenza virus subtype H5N1. Biomolecules. 2020;10:1116.PubMedCentralCrossRef
5.
go back to reference Zhang Y, Wei Y, Liu K, Huang M, Li R, Wang Y, et al. Recombinant influenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane domain showed enhanced immunogenicity in mice and chicken. Sci Rep. 2017;7:17923.PubMedPubMedCentralCrossRef Zhang Y, Wei Y, Liu K, Huang M, Li R, Wang Y, et al. Recombinant influenza H9N2 virus with a substitution of H3 hemagglutinin transmembrane domain showed enhanced immunogenicity in mice and chicken. Sci Rep. 2017;7:17923.PubMedPubMedCentralCrossRef
6.
go back to reference Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013;381:1926–32.PubMedCrossRef Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet. 2013;381:1926–32.PubMedCrossRef
7.
go back to reference Nagy A, Mettenleiter TC, Abdelwhab EM. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect. 2017;145:3320–33.PubMedCrossRef Nagy A, Mettenleiter TC, Abdelwhab EM. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect. 2017;145:3320–33.PubMedCrossRef
9.
10.
go back to reference Arai Y, Kawashita N, Ibrahim MS, Elgendy EM, Daidoji T, Ono T, et al. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog. 2019;15:e1007919.PubMedPubMedCentralCrossRef Arai Y, Kawashita N, Ibrahim MS, Elgendy EM, Daidoji T, Ono T, et al. PB2 mutations arising during H9N2 influenza evolution in the Middle East confer enhanced replication and growth in mammals. PLoS Pathog. 2019;15:e1007919.PubMedPubMedCentralCrossRef
11.
go back to reference Liu H, Liu X, Cheng J, Peng D, Jia L, Huang Y. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996–2001. Avian Dis. 2003;47:116–27.PubMedCrossRef Liu H, Liu X, Cheng J, Peng D, Jia L, Huang Y. Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996–2001. Avian Dis. 2003;47:116–27.PubMedCrossRef
12.
go back to reference Hajam IA, Senevirathne A, Hewawaduge C, Kim J, Lee JH. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet Res. 2020;51:37.PubMedPubMedCentralCrossRef Hajam IA, Senevirathne A, Hewawaduge C, Kim J, Lee JH. Intranasally administered protein coated chitosan nanoparticles encapsulating influenza H9N2 HA2 and M2e mRNA molecules elicit protective immunity against avian influenza viruses in chickens. Vet Res. 2020;51:37.PubMedPubMedCentralCrossRef
14.
go back to reference Turner JC, Feeroz MM, Hasan MK, Akhtar S, Walker D, Seiler P, et al. Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerg Microbes Infect. 2017;6:e12.PubMedPubMedCentralCrossRef Turner JC, Feeroz MM, Hasan MK, Akhtar S, Walker D, Seiler P, et al. Insight into live bird markets of Bangladesh: an overview of the dynamics of transmission of H5N1 and H9N2 avian influenza viruses. Emerg Microbes Infect. 2017;6:e12.PubMedPubMedCentralCrossRef
15.
go back to reference Negovetich NJ, Feeroz MM, Jones-Engel L, Walker D, Alam SM, Hasan K, et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLoS ONE. 2011;6:e19311.PubMedPubMedCentralCrossRef Negovetich NJ, Feeroz MM, Jones-Engel L, Walker D, Alam SM, Hasan K, et al. Live bird markets of Bangladesh: H9N2 viruses and the near absence of highly pathogenic H5N1 influenza. PLoS ONE. 2011;6:e19311.PubMedPubMedCentralCrossRef
16.
go back to reference Thuy DM, Peacock TP, Bich VTN, Fabrizio T, Hoang DN, Tho ND, et al. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infect Genet Evol. 2016;44:530–40.PubMedPubMedCentralCrossRef Thuy DM, Peacock TP, Bich VTN, Fabrizio T, Hoang DN, Tho ND, et al. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infect Genet Evol. 2016;44:530–40.PubMedPubMedCentralCrossRef
17.
go back to reference Ali M, Yaqub T, Mukhtar N, Imran M, Ghafoor A, Shahid MF, et al. Prevalence and phylogenetics of H9n2 in backyard and commercial poultry in Pakistan. Avian Dis. 2018;62:416–24.PubMedCrossRef Ali M, Yaqub T, Mukhtar N, Imran M, Ghafoor A, Shahid MF, et al. Prevalence and phylogenetics of H9n2 in backyard and commercial poultry in Pakistan. Avian Dis. 2018;62:416–24.PubMedCrossRef
18.
go back to reference Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect. 2018;146:1259–66.PubMedCrossRef Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect. 2018;146:1259–66.PubMedCrossRef
19.
go back to reference Chaudhry M, Rashid HB, Angot A, Thrusfield M, Bronsvoort BMD, Capua I, et al. Risk factors for avian influenza H9 infection of chickens in live bird retail stalls of Lahore District, Pakistan 2009–2010. Sci Rep. 2018;8:5634.PubMedPubMedCentralCrossRef Chaudhry M, Rashid HB, Angot A, Thrusfield M, Bronsvoort BMD, Capua I, et al. Risk factors for avian influenza H9 infection of chickens in live bird retail stalls of Lahore District, Pakistan 2009–2010. Sci Rep. 2018;8:5634.PubMedPubMedCentralCrossRef
20.
go back to reference Wu H, Peng X, Peng X, Cheng L, Lu X, Jin C, et al. Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China. Sci Rep. 2015;5:17508.PubMedPubMedCentralCrossRef Wu H, Peng X, Peng X, Cheng L, Lu X, Jin C, et al. Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China. Sci Rep. 2015;5:17508.PubMedPubMedCentralCrossRef
21.
go back to reference Chen LJ, Lin XD, Guo WP, Tian JH, Wang W, Ying XH, et al. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China. J Gen Virol. 2016;97:844–54.PubMedCrossRef Chen LJ, Lin XD, Guo WP, Tian JH, Wang W, Ying XH, et al. Diversity and evolution of avian influenza viruses in live poultry markets, free-range poultry and wild wetland birds in China. J Gen Virol. 2016;97:844–54.PubMedCrossRef
22.
go back to reference Xu Q, Xie Z, Xie L, Xie Z, Deng X, Liu J, et al. Characterization of an Avian Influenza Virus H9N2 Strain Isolated from a Wild Bird in Southern China. Genome Announc. 2014;2:e00600.PubMedPubMedCentral Xu Q, Xie Z, Xie L, Xie Z, Deng X, Liu J, et al. Characterization of an Avian Influenza Virus H9N2 Strain Isolated from a Wild Bird in Southern China. Genome Announc. 2014;2:e00600.PubMedPubMedCentral
23.
go back to reference Arai Y, Kawashita N, Elgendy EM, Ibrahim MS, Daidoji T, Ono T, et al. PA Mutations inherited during viral evolution act cooperatively to increase replication of contemporary H5N1 influenza virus with an expanded host range. J Virol. 2020;95:e01582.PubMedPubMedCentralCrossRef Arai Y, Kawashita N, Elgendy EM, Ibrahim MS, Daidoji T, Ono T, et al. PA Mutations inherited during viral evolution act cooperatively to increase replication of contemporary H5N1 influenza virus with an expanded host range. J Virol. 2020;95:e01582.PubMedPubMedCentralCrossRef
24.
go back to reference Ma C, Cui S, Sun Y, Zhao J, Zhang D, Zhang L, et al. Avian influenza A (H9N2) virus infections among poultry workers, swine workers, and the general population in Beijing, China, 2013–2016: a serological cohort study. Influenza Other Respir Viruses. 2019;13:415–25.PubMedPubMedCentralCrossRef Ma C, Cui S, Sun Y, Zhao J, Zhang D, Zhang L, et al. Avian influenza A (H9N2) virus infections among poultry workers, swine workers, and the general population in Beijing, China, 2013–2016: a serological cohort study. Influenza Other Respir Viruses. 2019;13:415–25.PubMedPubMedCentralCrossRef
25.
go back to reference Li C, Yu K, Tian G, Yu D, Liu L, Jing B, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology. 2005;340:70–83.PubMedCrossRef Li C, Yu K, Tian G, Yu D, Liu L, Jing B, et al. Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology. 2005;340:70–83.PubMedCrossRef
26.
go back to reference Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathog. 2014;10:e1004508.PubMedPubMedCentralCrossRef Li X, Shi J, Guo J, Deng G, Zhang Q, Wang J, et al. Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathog. 2014;10:e1004508.PubMedPubMedCentralCrossRef
27.
go back to reference Bhatta TR, Chamings A, Vibin J, Klaassen M, Alexandersen S. Detection of a reassortant H9N2 avian influenza virus with intercontinental gene segments in a resident Australian chestnut teal. Viruses. 2020;12:88.PubMedCentralCrossRef Bhatta TR, Chamings A, Vibin J, Klaassen M, Alexandersen S. Detection of a reassortant H9N2 avian influenza virus with intercontinental gene segments in a resident Australian chestnut teal. Viruses. 2020;12:88.PubMedCentralCrossRef
28.
go back to reference Killian ML, Zhang Y, Panigrahy B, Trampel D, Yoon KJ. Identification and characterization of H2N3 avian influenza virus from backyard poultry and comparison with novel H2N3 swine influenza virus. Avian Dis. 2011;55:611–9.PubMedCrossRef Killian ML, Zhang Y, Panigrahy B, Trampel D, Yoon KJ. Identification and characterization of H2N3 avian influenza virus from backyard poultry and comparison with novel H2N3 swine influenza virus. Avian Dis. 2011;55:611–9.PubMedCrossRef
29.
go back to reference Kandie R, Ochola R, Njaanake K. Evaluation of fluorescent in-situ hybridization technique for diagnosis of malaria in Ahero Sub-County hospital. Kenya BMC Infect Dis. 2018;18:22.PubMedCrossRef Kandie R, Ochola R, Njaanake K. Evaluation of fluorescent in-situ hybridization technique for diagnosis of malaria in Ahero Sub-County hospital. Kenya BMC Infect Dis. 2018;18:22.PubMedCrossRef
30.
go back to reference Moreno A, Lelli D, Lavazza A, Sozzi E, Zanni I, Chiapponi C, et al. MAb-based competitive ELISA for the detection of antibodies against influenza D virus. Transbound Emerg Dis. 2019;66:268–76.PubMedCrossRef Moreno A, Lelli D, Lavazza A, Sozzi E, Zanni I, Chiapponi C, et al. MAb-based competitive ELISA for the detection of antibodies against influenza D virus. Transbound Emerg Dis. 2019;66:268–76.PubMedCrossRef
31.
go back to reference Li W, Liu L, Chen L, Shang S. Evaluation of a commercial colloidal gold assay for detection of influenza A and B virus in children's respiratory specimens. Fetal Pediatr Pathol. 2020;39:93–8.PubMedCrossRef Li W, Liu L, Chen L, Shang S. Evaluation of a commercial colloidal gold assay for detection of influenza A and B virus in children's respiratory specimens. Fetal Pediatr Pathol. 2020;39:93–8.PubMedCrossRef
32.
go back to reference Kiener TK, Lim XF, Jia Q, Meng T, Chow VT, Kwang J. Characterization of a monoclonal antibody against the 3D polymerase of enterovirus 71 and its use for the detection of human enterovirus A infection. J Virol Methods. 2012;180:75–83.PubMedCrossRef Kiener TK, Lim XF, Jia Q, Meng T, Chow VT, Kwang J. Characterization of a monoclonal antibody against the 3D polymerase of enterovirus 71 and its use for the detection of human enterovirus A infection. J Virol Methods. 2012;180:75–83.PubMedCrossRef
33.
go back to reference Wang L, Hu YC, Xiao CY, Wang F, Liu YF, Tang LH, et al. Comparative testing of HPV L1 protein monoclonal antibody panel for the detection of HPV in cervical exfoliated cells. J Virol Methods. 2018;257:33–41.PubMedCrossRef Wang L, Hu YC, Xiao CY, Wang F, Liu YF, Tang LH, et al. Comparative testing of HPV L1 protein monoclonal antibody panel for the detection of HPV in cervical exfoliated cells. J Virol Methods. 2018;257:33–41.PubMedCrossRef
34.
go back to reference Zhao W, Su J, Zhao N, Liu J, Su S. Development of monoclonal antibodies for detection of conserved and variable epitopes of large protein of rabies virus. Viruses. 2021;13:220.PubMedPubMedCentralCrossRef Zhao W, Su J, Zhao N, Liu J, Su S. Development of monoclonal antibodies for detection of conserved and variable epitopes of large protein of rabies virus. Viruses. 2021;13:220.PubMedPubMedCentralCrossRef
35.
go back to reference Shim DH, Kim MJ, Cha HR, Park ES, Kim AR, Park JH, et al. Development of a HA1-specific enzyme-linked immunosorbent assay against pandemic influenza virus A H1N1. Clin Exp Vaccine Res. 2019;8:70–6.PubMedPubMedCentralCrossRef Shim DH, Kim MJ, Cha HR, Park ES, Kim AR, Park JH, et al. Development of a HA1-specific enzyme-linked immunosorbent assay against pandemic influenza virus A H1N1. Clin Exp Vaccine Res. 2019;8:70–6.PubMedPubMedCentralCrossRef
36.
go back to reference Sun Z, Shi B, Meng F, Ma R, Hu Q, Qin T, et al. Development of a colloidal gold-based immunochromatographic strip for rapid detection of H7N9 influenza viruses. Front Microbiol. 2018;9:2069.PubMedPubMedCentralCrossRef Sun Z, Shi B, Meng F, Ma R, Hu Q, Qin T, et al. Development of a colloidal gold-based immunochromatographic strip for rapid detection of H7N9 influenza viruses. Front Microbiol. 2018;9:2069.PubMedPubMedCentralCrossRef
37.
go back to reference Jin C, Wu N, Peng X, Yao H, Lu X, Chen Y, et al. Comparison of a new gold immunochromatographic assay for the rapid diagnosis of the novel influenza A (H7N9) virus with cell culture and a real-time reverse-transcription PCR assay. Biomed Res Int. 2014;2014:425051.PubMedPubMedCentral Jin C, Wu N, Peng X, Yao H, Lu X, Chen Y, et al. Comparison of a new gold immunochromatographic assay for the rapid diagnosis of the novel influenza A (H7N9) virus with cell culture and a real-time reverse-transcription PCR assay. Biomed Res Int. 2014;2014:425051.PubMedPubMedCentral
38.
go back to reference Wu H, Guo C, Lu R, Xu L, Wo E, You J, et al. Characterization of a highly pathogenic H5N1 avian influenza virus isolated from ducks in Eastern China in 2011. Arch Virol. 2012;157:1131–6.CrossRef Wu H, Guo C, Lu R, Xu L, Wo E, You J, et al. Characterization of a highly pathogenic H5N1 avian influenza virus isolated from ducks in Eastern China in 2011. Arch Virol. 2012;157:1131–6.CrossRef
39.
go back to reference Wu H, Peng X, Peng X, Cheng L, Wu N. Molecular characterization of novel reassortant H6N2 subtype avian influenza viruses isolated from poultry in Eastern China, in 2014. Infect Genet Evol. 2015;36:41–5.PubMedCrossRef Wu H, Peng X, Peng X, Cheng L, Wu N. Molecular characterization of novel reassortant H6N2 subtype avian influenza viruses isolated from poultry in Eastern China, in 2014. Infect Genet Evol. 2015;36:41–5.PubMedCrossRef
40.
go back to reference Wu H, Lu R, Peng X, Liu F, Cheng L, Wu N. Characterization of reassortant H1-subtype avian influenza viruses isolated from poultry in Zhejiang Province in China from 2013 to 2015. Arch Virol. 2017;162:3493–500.PubMedCrossRef Wu H, Lu R, Peng X, Liu F, Cheng L, Wu N. Characterization of reassortant H1-subtype avian influenza viruses isolated from poultry in Zhejiang Province in China from 2013 to 2015. Arch Virol. 2017;162:3493–500.PubMedCrossRef
41.
go back to reference Wu H, Lu R, Peng X, Peng X, Cheng L, Liu F, et al. Characterization of novel reassortant influenza A (H5N2) viruses isolated from poultry in Eastern China, 2015. Front Microbiol. 2017;8:741.PubMedPubMedCentralCrossRef Wu H, Lu R, Peng X, Peng X, Cheng L, Liu F, et al. Characterization of novel reassortant influenza A (H5N2) viruses isolated from poultry in Eastern China, 2015. Front Microbiol. 2017;8:741.PubMedPubMedCentralCrossRef
42.
go back to reference Peng X, Liu F, Wu H, Peng X, Xu Y, Wang L, et al. Amino acid substitutions HA A150V, PA A343T, and PB2 E627K increase the virulence of H5N6 influenza virus in mice. Front Microbiol. 2018;9:453.PubMedPubMedCentralCrossRef Peng X, Liu F, Wu H, Peng X, Xu Y, Wang L, et al. Amino acid substitutions HA A150V, PA A343T, and PB2 E627K increase the virulence of H5N6 influenza virus in mice. Front Microbiol. 2018;9:453.PubMedPubMedCentralCrossRef
43.
go back to reference Shen C, Chen J, Li R, Zhang M, Wang G, Stegalkina S, et al. A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Sci Transl Med. 2017;9:eaam5752.PubMedCrossRef Shen C, Chen J, Li R, Zhang M, Wang G, Stegalkina S, et al. A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Sci Transl Med. 2017;9:eaam5752.PubMedCrossRef
44.
go back to reference He Q, Velumani S, Du Q, Lim CW, Ng FK, Donis R, et al. Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin Vaccine Immunol. 2007;14:617–23.PubMedPubMedCentralCrossRef He Q, Velumani S, Du Q, Lim CW, Ng FK, Donis R, et al. Detection of H5 avian influenza viruses by antigen-capture enzyme-linked immunosorbent assay using H5-specific monoclonal antibody. Clin Vaccine Immunol. 2007;14:617–23.PubMedPubMedCentralCrossRef
45.
go back to reference Yang F, Xiao Y, Xu L, Liu F, Yao H, Wu N, et al. Development of an antigen-capture enzyme-linked immunosorbent assay and immunochromatographic strip based on monoclonal antibodies for detection of H6 avian influenza viruses. Arch Virol. 2020;165:1129–39.PubMedCrossRef Yang F, Xiao Y, Xu L, Liu F, Yao H, Wu N, et al. Development of an antigen-capture enzyme-linked immunosorbent assay and immunochromatographic strip based on monoclonal antibodies for detection of H6 avian influenza viruses. Arch Virol. 2020;165:1129–39.PubMedCrossRef
46.
go back to reference Liu X, Feng X, Tang Q, Wang Z, Qiu Z, Li Y, et al. Characterization and potential diagnostic application of monoclonal antibodies specific to rabies virus. J Biomed Res. 2010;24:395–403.PubMedPubMedCentralCrossRef Liu X, Feng X, Tang Q, Wang Z, Qiu Z, Li Y, et al. Characterization and potential diagnostic application of monoclonal antibodies specific to rabies virus. J Biomed Res. 2010;24:395–403.PubMedPubMedCentralCrossRef
47.
go back to reference Nogales A, Piepenbrink MS, Wang J, Ortega S, Basu M, Fucile CF, et al. A highly potent and broadly neutralizing H1 influenza-specific human monoclonal antibody. Sci Rep. 2018;8:4374.PubMedPubMedCentralCrossRef Nogales A, Piepenbrink MS, Wang J, Ortega S, Basu M, Fucile CF, et al. A highly potent and broadly neutralizing H1 influenza-specific human monoclonal antibody. Sci Rep. 2018;8:4374.PubMedPubMedCentralCrossRef
48.
go back to reference Chen L, Ruan F, Liu M, Zhou J, Song W, Qin K. A sandwich ELISA for detecting the hemagglutinin of avian influenza A (H10N8) virus. J Med Virol. 2019;91:877–80.PubMedCrossRef Chen L, Ruan F, Liu M, Zhou J, Song W, Qin K. A sandwich ELISA for detecting the hemagglutinin of avian influenza A (H10N8) virus. J Med Virol. 2019;91:877–80.PubMedCrossRef
49.
go back to reference Niu Y, Wang D, Cui L, Wang B, Pang X, Yu P. Monoclonal antibody-based colloid gold immunochromatographic strip for the rapid detection of tomato zonate spot tospovirus. Virol J. 2018;15:15.PubMedPubMedCentralCrossRef Niu Y, Wang D, Cui L, Wang B, Pang X, Yu P. Monoclonal antibody-based colloid gold immunochromatographic strip for the rapid detection of tomato zonate spot tospovirus. Virol J. 2018;15:15.PubMedPubMedCentralCrossRef
50.
go back to reference Li X, Qu B, He G, Cardona CJ, Song Y, Xing Z. Critical role of HAX-1 in promoting avian influenza virus replication in lung epithelial cells. Mediators Inflamm. 2018;2018:3586132.PubMedPubMedCentral Li X, Qu B, He G, Cardona CJ, Song Y, Xing Z. Critical role of HAX-1 in promoting avian influenza virus replication in lung epithelial cells. Mediators Inflamm. 2018;2018:3586132.PubMedPubMedCentral
51.
go back to reference Castellan DM, Hinrichs J, Fusheng G, Sawitri E, do Dung H, Martin V, et al. Development and application of a vaccination planning tool for avian influenza. Avian Dis. 2014;58:437–52.PubMedCrossRef Castellan DM, Hinrichs J, Fusheng G, Sawitri E, do Dung H, Martin V, et al. Development and application of a vaccination planning tool for avian influenza. Avian Dis. 2014;58:437–52.PubMedCrossRef
52.
go back to reference Guswanto A, Allamanda P, Mariamah ES, Munkjargal T, Tuvshintulga B, Takemae H, et al. Evaluation of immunochromatographic test (ICT) strips for the serological detection of Babesia bovis and Babesia bigemina infection in cattle from Western Java. Indonesia Vet Parasitol. 2017;239:76–9.PubMedCrossRef Guswanto A, Allamanda P, Mariamah ES, Munkjargal T, Tuvshintulga B, Takemae H, et al. Evaluation of immunochromatographic test (ICT) strips for the serological detection of Babesia bovis and Babesia bigemina infection in cattle from Western Java. Indonesia Vet Parasitol. 2017;239:76–9.PubMedCrossRef
Metadata
Title
Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies
Authors
Yixin Xiao
Fan Yang
Fumin Liu
Hangping Yao
Nanping Wu
Haibo Wu
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Influenza Virus
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01671-4

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue