Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Zika Virus | Research

Construction of a recombinant avipoxvirus expressing the env gene of Zika virus as a novel putative preventive vaccine

Authors: Carlo Zanotto, Francesca Paolini, Antonia Radaelli, Carlo De Giuli Morghen

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Zika virus (ZIKV) has been declared a public health emergency that requires development of an effective vaccine, as it might represent an international threat.

Methods

Here, two novel DNA-based (pVAXzenv) and fowlpox-based (FPzenv) recombinant putative vaccine candidates were constructed that contained the cPrME genes of ZIKV. The env gene inserted into the fowlpox vector was verified for correct transgene expression by Western blotting and by immunofluorescence in different cell lines. The production of virus-like particles as a result of env gene expression was also demonstrated by electron microscopy. BALB/c mice were immunosuppressed with dexamethasone and immunized following a prime–boost strategy in a heterologous protocol where pVAXzenv was followed by FPzenv, to evaluate the immunogenicity of the Env protein. The mice underwent a challenge with an epidemic ZIKV after the last boost.

Results

These data show that the ZIKV Env protein was correctly expressed in both normal human lung fibroblasts (MRC-5 cells) and green monkey kidney (Vero) cells infected with FPzenv, and that the transgene expression lasted for more than 2 weeks. After mucosal administration of FPzenv, the immunized mice showed specific and significantly higher humoral responses compared to the control mice. However, virus neutralizing antibodies were not detected using plaque reduction assays.

Conclusions

Although BALB/c mice appear to be an adequate model for ZIKV infection, as it mimics the natural mild infection in human beings, inadequate immune suppression seemed to occur by dexamethasone and different immune suppression strategies should be applied before challenge to reveal any protection of the mice.
Literature
1.
go back to reference Poland GA, Kennedy RB, Ovsyannikova I, Palacios R, Ho PL, Kalil J. Development of vaccines against Zika virus. Lancet Infect Dis. 2018;18:212–9.CrossRef Poland GA, Kennedy RB, Ovsyannikova I, Palacios R, Ho PL, Kalil J. Development of vaccines against Zika virus. Lancet Infect Dis. 2018;18:212–9.CrossRef
2.
go back to reference Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis. 2016;16:E119–26.PubMedCrossRef Wikan N, Smith DR. Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis. 2016;16:E119–26.PubMedCrossRef
3.
go back to reference Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-spaeth G, Duangchinda T, Sakuntabhai A, Malasit P, Rey FA. Dengue virus sero-cross-reactivity drives antibody- dependent enhancement of infection with zika virus. Nat Immunol. 2016;17:1102–8.PubMedPubMedCentralCrossRef Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-spaeth G, Duangchinda T, Sakuntabhai A, Malasit P, Rey FA. Dengue virus sero-cross-reactivity drives antibody- dependent enhancement of infection with zika virus. Nat Immunol. 2016;17:1102–8.PubMedPubMedCentralCrossRef
4.
go back to reference Mlakar J, Korva M, Tul N, Popovic M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Rus KR, Vipotnik TV, Vodušek VF, Vizjak A, Pižem J, Petrovec M, Županc TA. Zika Virus Associated with Microcephaly. N Engl J Med. 2016;374:951–8.PubMedCrossRef Mlakar J, Korva M, Tul N, Popovic M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Rus KR, Vipotnik TV, Vodušek VF, Vizjak A, Pižem J, Petrovec M, Županc TA. Zika Virus Associated with Microcephaly. N Engl J Med. 2016;374:951–8.PubMedCrossRef
5.
go back to reference Russell K, Hills SL, Oster AM, Porse CC, Danyluk G, Cone M, Brooks R, Scotland S, Schiffman E, Fredette C. Male-to-female sexual transmission of Zika Virus — United States, January–April 2016. Clin Infect Dis. 2017;64:211–3.PubMedCrossRef Russell K, Hills SL, Oster AM, Porse CC, Danyluk G, Cone M, Brooks R, Scotland S, Schiffman E, Fredette C. Male-to-female sexual transmission of Zika Virus — United States, January–April 2016. Clin Infect Dis. 2017;64:211–3.PubMedCrossRef
6.
go back to reference Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM. Zika Virus in Gabon (Central Africa). PLoS Negl Trop Dis. 2014;8:1–6. Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM. Zika Virus in Gabon (Central Africa). PLoS Negl Trop Dis. 2014;8:1–6.
7.
go back to reference MacNamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–45.PubMedCrossRef MacNamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–45.PubMedCrossRef
8.
go back to reference Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43.PubMedCrossRef Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2536–43.PubMedCrossRef
9.
go back to reference Musso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol infect. 2014;20:595–6.CrossRef Musso D, Nilles EJ, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol infect. 2014;20:595–6.CrossRef
11.
go back to reference Krauer F, Riesen M, Reveiz L, Oladapo OT, Martìnez-Vega R, Porgo TV, Haefliger A, Broutet NJ, Low N, WHO Zika Causality Working Group. Zika virus infection as a cause of congenital brain abnormalities and guillain-barré syndrome: systematic review. PLoS Med. 2017;14:1–27. Krauer F, Riesen M, Reveiz L, Oladapo OT, Martìnez-Vega R, Porgo TV, Haefliger A, Broutet NJ, Low N, WHO Zika Causality Working Group. Zika virus infection as a cause of congenital brain abnormalities and guillain-barré syndrome: systematic review. PLoS Med. 2017;14:1–27.
12.
go back to reference Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Lee EM, Christian KM, Didier RA, Jin P. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:587–90.PubMedPubMedCentralCrossRef Tang H, Hammack C, Ogden SC, Wen Z, Qian X, Li Y, Lee EM, Christian KM, Didier RA, Jin P. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell. 2016;18:587–90.PubMedPubMedCentralCrossRef
13.
go back to reference Fauci AS, Morens DM. Zika virus in the Americas - yet another arbovirus threat. N Engl J Med. 2016;374:601–4.PubMedCrossRef Fauci AS, Morens DM. Zika virus in the Americas - yet another arbovirus threat. N Engl J Med. 2016;374:601–4.PubMedCrossRef
14.
go back to reference Vogel G. One year later, Zika scientists prepare for a long war. Science. 2016;354:1888–97.CrossRef Vogel G. One year later, Zika scientists prepare for a long war. Science. 2016;354:1888–97.CrossRef
16.
go back to reference Abbink P, Larocca RA, Visitsunthorn K, Boyd M, De La Barrera RA, Gromowski G, Kirilova M, Peterson R, Li Z, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Chandrashekar A, Jetton D, Mojta S, Gandhi P, LeSuer J, Khatiwada S, Lewis MG, Modjarrad K, Jarman RG, Eckels KH, Thomas SJ, Michael NL, Barouch DH. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci Transl Med. 2017;9:pii: eaao4163. Abbink P, Larocca RA, Visitsunthorn K, Boyd M, De La Barrera RA, Gromowski G, Kirilova M, Peterson R, Li Z, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Chandrashekar A, Jetton D, Mojta S, Gandhi P, LeSuer J, Khatiwada S, Lewis MG, Modjarrad K, Jarman RG, Eckels KH, Thomas SJ, Michael NL, Barouch DH. Durability and correlates of vaccine protection against Zika virus in rhesus monkeys. Sci Transl Med. 2017;9:pii: eaao4163.
17.
go back to reference Griffin BD, Muthumani K, Warner BM, Majer A, Hagan M, Audet J, Stein DR, Ranadheera C, Racine T, De La Vega MA, Piret J, Kucas S, Tran KN, Frost KL, De Graff C, Soule G, Scharikow L, Scott J, McTavish G, Smid V, Park JK, Maslow JN, Sardesai NY, Kim JJ, Yao XJ, Bello A, Lindsay R, Boivin G, Booth SA, Kobasa D, Embury-Hyatt C, Safronetz D, Weiner DB, Kobinger GP. DNA vaccination protects mice against Zika virus-induced damage to the testes. Nat Commun. 2017;8:15743.PubMedPubMedCentralCrossRef Griffin BD, Muthumani K, Warner BM, Majer A, Hagan M, Audet J, Stein DR, Ranadheera C, Racine T, De La Vega MA, Piret J, Kucas S, Tran KN, Frost KL, De Graff C, Soule G, Scharikow L, Scott J, McTavish G, Smid V, Park JK, Maslow JN, Sardesai NY, Kim JJ, Yao XJ, Bello A, Lindsay R, Boivin G, Booth SA, Kobasa D, Embury-Hyatt C, Safronetz D, Weiner DB, Kobinger GP. DNA vaccination protects mice against Zika virus-induced damage to the testes. Nat Commun. 2017;8:15743.PubMedPubMedCentralCrossRef
18.
go back to reference Guo Q, Chan JF, Poon VK, Wu S, Chan CC, Hou L, Yip CC, Ren C, Cai JP, Zhao M, Zhang AJ, Song X, Chan KH, Wang B, Kok KH, Wen Y, Yuen KY, Chen W. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J Infect Dis. 2018;218:365–77.PubMedCrossRef Guo Q, Chan JF, Poon VK, Wu S, Chan CC, Hou L, Yip CC, Ren C, Cai JP, Zhao M, Zhang AJ, Song X, Chan KH, Wang B, Kok KH, Wen Y, Yuen KY, Chen W. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J Infect Dis. 2018;218:365–77.PubMedCrossRef
19.
go back to reference Prow NA, Liu L, Nakayama E. A vaccina–based single vector construct multi-pathogen vaccine protects both Zika and chikungunya viruses. Nat Commun. 2018;9:1230.PubMedPubMedCentralCrossRef Prow NA, Liu L, Nakayama E. A vaccina–based single vector construct multi-pathogen vaccine protects both Zika and chikungunya viruses. Nat Commun. 2018;9:1230.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Garg H, Sedano M, Plata G, Punke EB, Joshi A. Development of virus-like-particle vaccine and reporter assay for Zika virus. J Virol. 2017;91:e00834-e917.PubMedPubMedCentralCrossRef Garg H, Sedano M, Plata G, Punke EB, Joshi A. Development of virus-like-particle vaccine and reporter assay for Zika virus. J Virol. 2017;91:e00834-e917.PubMedPubMedCentralCrossRef
22.
go back to reference Richner JM, Himansu S, Dowd KA, Butler SL, Fox JM. Modified mRNA vaccines protect against zika virus infection. Cell. 2017;169:176.PubMedCrossRef Richner JM, Himansu S, Dowd KA, Butler SL, Fox JM. Modified mRNA vaccines protect against zika virus infection. Cell. 2017;169:176.PubMedCrossRef
23.
go back to reference Pardi N, Hogan MJ, Pelc RS, ndersen H, DeMaso CR. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248–299. Pardi N, Hogan MJ, Pelc RS, ndersen H, DeMaso CR. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248–299.
25.
go back to reference Abbink P, Larocca RA, Bricault CA, Moseley ET, Boyd M. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science. 2016;353:1129–32.PubMedPubMedCentralCrossRef Abbink P, Larocca RA, Bricault CA, Moseley ET, Boyd M. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science. 2016;353:1129–32.PubMedPubMedCentralCrossRef
26.
go back to reference Shan C, Muruato AE, Nunes BTD, Luo H, Xie X, Medeiros DBA, Wakamiya M, Tesh RB, Barrett AD, Wang T, Weaver SC, Vasconcelos PF, Rossi SL, Shi PY. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med. 2017;23:763–7.PubMedPubMedCentralCrossRef Shan C, Muruato AE, Nunes BTD, Luo H, Xie X, Medeiros DBA, Wakamiya M, Tesh RB, Barrett AD, Wang T, Weaver SC, Vasconcelos PF, Rossi SL, Shi PY. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med. 2017;23:763–7.PubMedPubMedCentralCrossRef
27.
go back to reference Yang M, Dent M, Sun H, Chen Q. Immunization of Zika virus envelope protein domain III induces specific and neutralizing immune responses against Zika virus. Vaccine. 2017;35:4287–94.PubMedPubMedCentralCrossRef Yang M, Dent M, Sun H, Chen Q. Immunization of Zika virus envelope protein domain III induces specific and neutralizing immune responses against Zika virus. Vaccine. 2017;35:4287–94.PubMedPubMedCentralCrossRef
28.
go back to reference Diamond MS, Legerwood JE, Pierson TC. Zika virus vaccine development: progress in the face of new challenges. Annu Rev Med. 2018;70:121–35.PubMedCrossRef Diamond MS, Legerwood JE, Pierson TC. Zika virus vaccine development: progress in the face of new challenges. Annu Rev Med. 2018;70:121–35.PubMedCrossRef
29.
go back to reference Barrett ADT. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. Vaccines. 2018;3:24.PubMedPubMedCentral Barrett ADT. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. Vaccines. 2018;3:24.PubMedPubMedCentral
30.
go back to reference Dittmer U, Brooks DM, Hasenkrug KJ. Requirement for multiple lymphocyte subsets in protection by a live attenuated vaccine against retroviral infection. Nat Med. 1999;5:1891–3.CrossRef Dittmer U, Brooks DM, Hasenkrug KJ. Requirement for multiple lymphocyte subsets in protection by a live attenuated vaccine against retroviral infection. Nat Med. 1999;5:1891–3.CrossRef
31.
go back to reference Heeney JL, Holterman L, ten Haaft P, Dubbes R, Koomstra W, Teeuwsen VJP, Bourquin P, Norley S, Niphuis H. Vaccine protection and reduced virus load from heterologous macaque-propagated SIV challenge. AIDS Res Hum Retroviruses. 1994;10:S117-121.PubMed Heeney JL, Holterman L, ten Haaft P, Dubbes R, Koomstra W, Teeuwsen VJP, Bourquin P, Norley S, Niphuis H. Vaccine protection and reduced virus load from heterologous macaque-propagated SIV challenge. AIDS Res Hum Retroviruses. 1994;10:S117-121.PubMed
32.
go back to reference De Giuli MC, Radaelli A, Zanotto C, Marconi P, Manservigi R. Virus vectors for immunoprophylaxis. AIDS Rev. 2000;2:127–35. De Giuli MC, Radaelli A, Zanotto C, Marconi P, Manservigi R. Virus vectors for immunoprophylaxis. AIDS Rev. 2000;2:127–35.
33.
go back to reference Baxby D, Paoletti E. Potential use of nonreplicating vectors as recombinant vaccines. Vaccine. 1992;10:8–9.PubMedCrossRef Baxby D, Paoletti E. Potential use of nonreplicating vectors as recombinant vaccines. Vaccine. 1992;10:8–9.PubMedCrossRef
34.
go back to reference Nacsa J, Radaelli A, Edghill-Smith Y, Venzon D, Tsai WP, De Giuli MC, Panicali DL, Tartaglia J, Franchini G. Avipox-based simian immunodeficiency virus (SIV) vaccines elicit a high frequency of SIV-specific CD4+ and CD8+ T-cell responses in vaccinia-experienced SIVmac251-infected macaques. Vaccine. 2004;22:597–606.PubMedCrossRef Nacsa J, Radaelli A, Edghill-Smith Y, Venzon D, Tsai WP, De Giuli MC, Panicali DL, Tartaglia J, Franchini G. Avipox-based simian immunodeficiency virus (SIV) vaccines elicit a high frequency of SIV-specific CD4+ and CD8+ T-cell responses in vaccinia-experienced SIVmac251-infected macaques. Vaccine. 2004;22:597–606.PubMedCrossRef
35.
go back to reference Clements-Mann ML, Weinhold K, Matthews TJ, Graham BS, Gorse GJ, Keefer MC, McElrath MJ, Hsieh R-H, Mestecky J, Zolla-Pazner S, Mascola J, Schwartz D, Siliciano R, Corey L, Wright PF, Belshe R, Dolin R, Jackson S, Xu S, Fast P, Walker MC, Stablein D, Excler JL, Tartaglia J, Duliege A-M, Sinangil F, Paoletti E. Immune responses to human immunodeficiency virus (HIV) type 1 induced by canarypox expressing HIV-1(MN) gp120, HIV-1(SF2) recombinant gp120, or both vaccines in seronegative adults. J Infect Dis. 1998;177:1230–46.PubMedCrossRef Clements-Mann ML, Weinhold K, Matthews TJ, Graham BS, Gorse GJ, Keefer MC, McElrath MJ, Hsieh R-H, Mestecky J, Zolla-Pazner S, Mascola J, Schwartz D, Siliciano R, Corey L, Wright PF, Belshe R, Dolin R, Jackson S, Xu S, Fast P, Walker MC, Stablein D, Excler JL, Tartaglia J, Duliege A-M, Sinangil F, Paoletti E. Immune responses to human immunodeficiency virus (HIV) type 1 induced by canarypox expressing HIV-1(MN) gp120, HIV-1(SF2) recombinant gp120, or both vaccines in seronegative adults. J Infect Dis. 1998;177:1230–46.PubMedCrossRef
36.
go back to reference Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines. 2005;4:63–76.PubMedCrossRef Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG. Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines. 2005;4:63–76.PubMedCrossRef
37.
go back to reference Taylor J, Weinberg R, Languet B, Desmettre P, Paoletti E. Recombinant fowlpox virus inducing protective immunity in nonavian species. Vaccine. 1988;6:497–503.PubMedCrossRef Taylor J, Weinberg R, Languet B, Desmettre P, Paoletti E. Recombinant fowlpox virus inducing protective immunity in nonavian species. Vaccine. 1988;6:497–503.PubMedCrossRef
38.
go back to reference Zanotto C, Pozzi E, Pacchioni S, Volonté L, De Giuli MC, Radaelli A. Canarypox and fowlpox viruses as recombinant vaccine vectors: a biological and immunological comparison. Antiviral Res. 2010;88:53–63.PubMedCrossRef Zanotto C, Pozzi E, Pacchioni S, Volonté L, De Giuli MC, Radaelli A. Canarypox and fowlpox viruses as recombinant vaccine vectors: a biological and immunological comparison. Antiviral Res. 2010;88:53–63.PubMedCrossRef
39.
go back to reference Dai L, Song J, Lu X, Deng YQ, Musyoki AM. Structures of the zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe. 2016;19:696–704.PubMedCrossRef Dai L, Song J, Lu X, Deng YQ, Musyoki AM. Structures of the zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe. 2016;19:696–704.PubMedCrossRef
40.
go back to reference Pardy RD, Rajah MM, Condotta SA, Taylor NG, Sagan SM. Analysis of the T cell response to zika virus and identification of a novel CD8+ T cell epitope in immunocompetent mice. PLoS Negl Trop Dis. 2017;13:e1006184. Pardy RD, Rajah MM, Condotta SA, Taylor NG, Sagan SM. Analysis of the T cell response to zika virus and identification of a novel CD8+ T cell epitope in immunocompetent mice. PLoS Negl Trop Dis. 2017;13:e1006184.
41.
go back to reference Kuno G, Chang G-J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007;152:687–96.PubMedCrossRef Kuno G, Chang G-J. Full-length sequencing and genomic characterization of Bagaza, Kedougou, and Zika viruses. Arch Virol. 2007;152:687–96.PubMedCrossRef
42.
go back to reference Prasad VM, Miller AS, Klose T, Sirohi D, Buda G, Jiang W, Kuhn RJ, Rossmann MG. Structure of the immature Zika virus at 9 Å resolution. Nat Struct Mol Biol. 2017;24:184–6.PubMedPubMedCentralCrossRef Prasad VM, Miller AS, Klose T, Sirohi D, Buda G, Jiang W, Kuhn RJ, Rossmann MG. Structure of the immature Zika virus at 9 Å resolution. Nat Struct Mol Biol. 2017;24:184–6.PubMedPubMedCentralCrossRef
43.
go back to reference Bissa M, Pacchioni S, Zanotto C, De Giuli MC, Illiano E, Granucci F, Zanoni I, Broggi A, Radaelli A. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do notprotect mice against the highly pathogenic IHD-J vaccinia strain. Virus Res. 2013;178:374–82.PubMedCrossRef Bissa M, Pacchioni S, Zanotto C, De Giuli MC, Illiano E, Granucci F, Zanoni I, Broggi A, Radaelli A. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do notprotect mice against the highly pathogenic IHD-J vaccinia strain. Virus Res. 2013;178:374–82.PubMedCrossRef
44.
go back to reference Bissa M, Quaglino E, Zanotto C, Illiano E, Rolih V, Pacchioni S, Cavallo F, De Giuli MC, Radaelli A. Protection of mice against the highly pathogenic VVIHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity. Antiviral Res. 2016;134:182–91.PubMedCrossRef Bissa M, Quaglino E, Zanotto C, Illiano E, Rolih V, Pacchioni S, Cavallo F, De Giuli MC, Radaelli A. Protection of mice against the highly pathogenic VVIHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity. Antiviral Res. 2016;134:182–91.PubMedCrossRef
45.
go back to reference Aiyar A, Leis J. Modification of the megaprimer method of PCR mutagenesis: improved amplification of the final product. Biotechniques. 1993;14:366–9.PubMed Aiyar A, Leis J. Modification of the megaprimer method of PCR mutagenesis: improved amplification of the final product. Biotechniques. 1993;14:366–9.PubMed
46.
go back to reference Radaelli A, Zanotto C, Perletti G, Elli V, Vicenzi E, Poli G, De Giuli MC. Comparative analysis of immune responses and cytokine profiles elicited in rabbits by the combined use of recombinant fowlpox viruses, plasmid and virus-like particles in prime-boost vaccination protocols against SHIV. Vaccine. 2003;21:2052–64.PubMedCrossRef Radaelli A, Zanotto C, Perletti G, Elli V, Vicenzi E, Poli G, De Giuli MC. Comparative analysis of immune responses and cytokine profiles elicited in rabbits by the combined use of recombinant fowlpox viruses, plasmid and virus-like particles in prime-boost vaccination protocols against SHIV. Vaccine. 2003;21:2052–64.PubMedCrossRef
47.
go back to reference Rosel JL, Earl PL, Weir J, Moss B. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the hindlll H genome fragment. J Virol. 1986;60:436–49.PubMedPubMedCentralCrossRef Rosel JL, Earl PL, Weir J, Moss B. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the hindlll H genome fragment. J Virol. 1986;60:436–49.PubMedPubMedCentralCrossRef
48.
go back to reference Bissa M, Pacchioni S, Zanotto C, De Giuli MC, Radaelli A. GFP co-expression reduces the A33R gene expression driven by a fowlpox vector in replication permissive and non-permissive cell lines. J Virol Methods. 2013;187:172–6.PubMedCrossRef Bissa M, Pacchioni S, Zanotto C, De Giuli MC, Radaelli A. GFP co-expression reduces the A33R gene expression driven by a fowlpox vector in replication permissive and non-permissive cell lines. J Virol Methods. 2013;187:172–6.PubMedCrossRef
49.
go back to reference Pacchioni S, Volonté L, Zanotto C, Pozzi E, De Giuli MC, Radaelli A. Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis. Arch Virol. 2010;155:915–24.PubMedCrossRef Pacchioni S, Volonté L, Zanotto C, Pozzi E, De Giuli MC, Radaelli A. Canarypox and fowlpox viruses as recombinant vaccine vectors: an ultrastructural comparative analysis. Arch Virol. 2010;155:915–24.PubMedCrossRef
50.
go back to reference Bissa M, Forlani G, Zanotto C, Tosi G, De Giuli MC, Accolla R, Radaelli A. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes. PLoS ONE. 2018;13:1–23.CrossRef Bissa M, Forlani G, Zanotto C, Tosi G, De Giuli MC, Accolla R, Radaelli A. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes. PLoS ONE. 2018;13:1–23.CrossRef
51.
go back to reference Radaelli A, De Giuli MC, Zanotto C, Pacchioni S, Bissa M, Franconi R, Massa S, Paolini F, Muller A, Venuti A. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers. Virus Res. 2012;170:44–52.PubMedCrossRef Radaelli A, De Giuli MC, Zanotto C, Pacchioni S, Bissa M, Franconi R, Massa S, Paolini F, Muller A, Venuti A. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers. Virus Res. 2012;170:44–52.PubMedCrossRef
52.
go back to reference Bissa M, Illiano E, Pacchioni S, Paolini F, Zanotto C, De Giuli MC, Massa S, Franconi R, Radaelli A, Venuti A. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers. J Transl Med. 2015;13:80–91.PubMedPubMedCentralCrossRef Bissa M, Illiano E, Pacchioni S, Paolini F, Zanotto C, De Giuli MC, Massa S, Franconi R, Radaelli A, Venuti A. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers. J Transl Med. 2015;13:80–91.PubMedPubMedCentralCrossRef
53.
go back to reference Pozzi E, Basavecchia V, Zanotto C, Pacchioni S, De Giuli MC, Radaelli A. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods. 2009;158:184–9.PubMedCrossRef Pozzi E, Basavecchia V, Zanotto C, Pacchioni S, De Giuli MC, Radaelli A. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods. 2009;158:184–9.PubMedCrossRef
54.
go back to reference Chan JF, Zhang AJ, Chan CC, Yip CC, Mak WW, Zhu H, Poon VK, Tee KM, Zhu Z, Cai JP, Tsang JO, Chik KK, Yin F, Chan KH, Kok KH, Jin DY, Au-Yeung RK, Yuen KY. Zika virus infection in dexamethasone-immunosuppressed mice demonstrating disseminated infection with multi-organ involvement including orchitis effectively treated by recombinant type I interferons. EBioMedicine. 2016;14:112–22.PubMedPubMedCentralCrossRef Chan JF, Zhang AJ, Chan CC, Yip CC, Mak WW, Zhu H, Poon VK, Tee KM, Zhu Z, Cai JP, Tsang JO, Chik KK, Yin F, Chan KH, Kok KH, Jin DY, Au-Yeung RK, Yuen KY. Zika virus infection in dexamethasone-immunosuppressed mice demonstrating disseminated infection with multi-organ involvement including orchitis effectively treated by recombinant type I interferons. EBioMedicine. 2016;14:112–22.PubMedPubMedCentralCrossRef
55.
go back to reference Radaelli A, Pozzi E, Pacchioni S, Zanotto C, De Giuli MC. Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits. J Transl Med. 2010;8:40.PubMedPubMedCentralCrossRef Radaelli A, Pozzi E, Pacchioni S, Zanotto C, De Giuli MC. Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits. J Transl Med. 2010;8:40.PubMedPubMedCentralCrossRef
56.
go back to reference Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, del Carmen Castillo Signor L. Phylogeny of Zika virus in western hemisphere, 2015. Emerging infectious diseases. 2016;22:933–935. Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, del Carmen Castillo Signor L. Phylogeny of Zika virus in western hemisphere, 2015. Emerging infectious diseases. 2016;22:933–935.
57.
go back to reference Zanotto C, Paganini M, Elli V, Basavecchia V, Neri M, De Giuli MC, Radaelli A. Molecular and biological characterization of simian-human immunodeficiency virus-like particles produced by recombinant fowlpox viruses. Vaccine. 2005;23:4745–53.PubMedCrossRef Zanotto C, Paganini M, Elli V, Basavecchia V, Neri M, De Giuli MC, Radaelli A. Molecular and biological characterization of simian-human immunodeficiency virus-like particles produced by recombinant fowlpox viruses. Vaccine. 2005;23:4745–53.PubMedCrossRef
58.
go back to reference Xie X, Yang Y, uruato AE. Understanding Zika virus stability and developing a chimeric vaccine through functional analysis. MBio. 2017;8:e02134–16. Xie X, Yang Y, uruato AE. Understanding Zika virus stability and developing a chimeric vaccine through functional analysis. MBio. 2017;8:e02134–16.
59.
go back to reference Prow NA, Liu L, Nakayama E. A vaccina-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun. 2018;9:1–11.CrossRef Prow NA, Liu L, Nakayama E. A vaccina-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat Commun. 2018;9:1–11.CrossRef
61.
go back to reference Barba-spaeth G, Dejnirattisai W, Rouvinski A. Structural basis of potent Zika-dengue virus antibody cross-neutralizzation. Nature. 2016;536:48–53.PubMedCrossRef Barba-spaeth G, Dejnirattisai W, Rouvinski A. Structural basis of potent Zika-dengue virus antibody cross-neutralizzation. Nature. 2016;536:48–53.PubMedCrossRef
63.
go back to reference Durbin AP, Kirkpatrick BD, Pierce KK, Grier PL, Hynes N, Opert K, Jarvis AP, Sabundayo BP. A 12-Month–Interval Dosing Study in Adults Indicates That a Single Dose of the National Institute of Allergy and Infectious Diseases Tetravalent Dengue Vaccine Induces a Robust Neutralizing Antibody Response. J Infect Dis. 2016;214:832–5.PubMedPubMedCentralCrossRef Durbin AP, Kirkpatrick BD, Pierce KK, Grier PL, Hynes N, Opert K, Jarvis AP, Sabundayo BP. A 12-Month–Interval Dosing Study in Adults Indicates That a Single Dose of the National Institute of Allergy and Infectious Diseases Tetravalent Dengue Vaccine Induces a Robust Neutralizing Antibody Response. J Infect Dis. 2016;214:832–5.PubMedPubMedCentralCrossRef
64.
go back to reference Zhan Y, Den Y, Tan W. Humoral and cellular immunity against both ZIKV and poxvirus is elicited by a two-dose regimen using DNA and non-replicating vaccina virus-based vaccine candidates. Vaccine. 2019;37:2122–30.PubMedCrossRef Zhan Y, Den Y, Tan W. Humoral and cellular immunity against both ZIKV and poxvirus is elicited by a two-dose regimen using DNA and non-replicating vaccina virus-based vaccine candidates. Vaccine. 2019;37:2122–30.PubMedCrossRef
67.
go back to reference Touret F, Gilles M, Klitting R, Aubry F, deLamballerie X, Nougairede A. Live Zika Virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone. Emerg Microbes Infect. 2018;7:161.PubMedPubMedCentralCrossRef Touret F, Gilles M, Klitting R, Aubry F, deLamballerie X, Nougairede A. Live Zika Virus chimeric vaccine candidate based on a yellow fever 17-D attenuated backbone. Emerg Microbes Infect. 2018;7:161.PubMedPubMedCentralCrossRef
Metadata
Title
Construction of a recombinant avipoxvirus expressing the env gene of Zika virus as a novel putative preventive vaccine
Authors
Carlo Zanotto
Francesca Paolini
Antonia Radaelli
Carlo De Giuli Morghen
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01519-x

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue