Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Antibiotic | Research

Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation

Authors: Fedor Zurabov, Evgeniy Zhilenkov

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Nowadays, hundreds of thousands of deaths per year are caused by antibiotic resistant nosocomial infections and the prognosis for future years is much worse, as evidenced by modern research. Bacteria of the Klebsiella genus are one of the main pathogens that cause nosocomial infections. Among the many antimicrobials offered to replace or supplement traditional antibiotics, bacteriophages are promising candidates.

Methods

This article presents microbiological, physicochemical and genomic characterization of 4 virulent bacteriophages belonging to Siphoviridae, Myoviridae and Podoviridae families. Phages were studied by electron microscopy; their host range, lytic activity, adsorption rate, burst size, latent period, frequency of phage-resistant forms generation, lysis dynamics and sensitivity of phage particles to temperature and pH were identified; genomes of all 4 bacteriophages were studied by restriction digestion and complete genome sequence.

Results

Studied phages showed wide host range and high stability at different temperature and pH values. In contrast with single phages, a cocktail of bacteriophages lysed all studied bacterial strains, moreover, no cases of the emergence of phage-resistant bacterial colonies were detected. Genomic data proved that isolated viruses do not carry antibiotic resistance, virulence or lysogenic genes. Three out of four bacteriophages encode polysaccharide depolymerases, which are involved in the degradation of biofilms and capsules.

Conclusions

The bacteriophages studied in this work are promising for further in vivo studies and might be used in phage therapy as part of a complex therapeutic and prophylactic phage preparation. The conducted studies showed that the complex preparation is more effective than individual phages. The use of the complex phage cocktail allows to extend the lytic spectrum, and significantly reduces the possibility of phage-resistant forms generation.
Appendix
Available only for authorised users
Literature
4.
go back to reference Debarbieux L, et al. A bacteriophage journey at the European medicines agency. FEMS Microbiol Lett. 2016;363(2):225.CrossRef Debarbieux L, et al. A bacteriophage journey at the European medicines agency. FEMS Microbiol Lett. 2016;363(2):225.CrossRef
5.
go back to reference Ling LL, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455–9.CrossRef Ling LL, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455–9.CrossRef
9.
go back to reference Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.CrossRef Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.CrossRef
14.
go back to reference Chong Y, Yakushiji H, Ito Y, Kamimura T. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis. 2011;30:83–7.CrossRef Chong Y, Yakushiji H, Ito Y, Kamimura T. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis. 2011;30:83–7.CrossRef
15.
go back to reference Khan E, et al. Emergence of CTX-M Group 1-ESBL producing Klebsiella pneumonia from a tertiary care centre in Karachi. Pakistan J Infect Dev Ctries. 2010;4:472–6.CrossRef Khan E, et al. Emergence of CTX-M Group 1-ESBL producing Klebsiella pneumonia from a tertiary care centre in Karachi. Pakistan J Infect Dev Ctries. 2010;4:472–6.CrossRef
16.
go back to reference Mshana SE, et al. Predominance of Klebsiella pneumoniae ST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect Dis. 2013;13:466.CrossRef Mshana SE, et al. Predominance of Klebsiella pneumoniae ST14 carrying CTX-M-15 causing neonatal sepsis in Tanzania. BMC Infect Dis. 2013;13:466.CrossRef
17.
go back to reference Chhibber S, Kaur S, Kumari S. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol. 2008;57:1508–13.CrossRef Chhibber S, Kaur S, Kumari S. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol. 2008;57:1508–13.CrossRef
23.
go back to reference Williams P, Tomas JM. The pathogenicity of Klebsiella pneumoniae. Rev Med Microbiol. 1990;1:196–204. Williams P, Tomas JM. The pathogenicity of Klebsiella pneumoniae. Rev Med Microbiol. 1990;1:196–204.
24.
go back to reference Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 2008;10:685–701.CrossRef Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 2008;10:685–701.CrossRef
28.
go back to reference Leiman PG, et al. The structures of bacteriophages K1E and K1–5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol. 2007;371:836–49.CrossRef Leiman PG, et al. The structures of bacteriophages K1E and K1–5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol. 2007;371:836–49.CrossRef
29.
go back to reference Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs. 2014;28:265–74.CrossRef Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs. 2014;28:265–74.CrossRef
31.
go back to reference Pires D, Melo L, Vilas Boas D, Sillankorva S, Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol. 2017;39:48–56.CrossRef Pires D, Melo L, Vilas Boas D, Sillankorva S, Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr Opin Microbiol. 2017;39:48–56.CrossRef
36.
go back to reference Łusiak-Szelachowska M, et al. Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol. 2017;12:109–17.CrossRef Łusiak-Szelachowska M, et al. Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol. 2017;12:109–17.CrossRef
39.
go back to reference Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.CrossRef Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8:317–27.CrossRef
40.
go back to reference Lobocka M, et al. The first step to bacteriophage therapy – how to choose the correct phage. In: Borysowski J, editor., et al., Phage Therapy: Current Research and Applications. Cambridge: Caister Academic Press; 2014. p. 23–69. Lobocka M, et al. The first step to bacteriophage therapy – how to choose the correct phage. In: Borysowski J, editor., et al., Phage Therapy: Current Research and Applications. Cambridge: Caister Academic Press; 2014. p. 23–69.
41.
go back to reference Jamal M, Hussain T, Das CR, Andleeb S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol. 2015;64:454–62.CrossRef Jamal M, Hussain T, Das CR, Andleeb S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol. 2015;64:454–62.CrossRef
43.
go back to reference Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001. Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 2001.
44.
go back to reference Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;15:2114–20.CrossRef Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;15:2114–20.CrossRef
48.
go back to reference Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis – 10 years on. Nucleic Acids Res. 2015;44:694–7.CrossRef Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis – 10 years on. Nucleic Acids Res. 2015;44:694–7.CrossRef
49.
go back to reference McArthur AG, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–57.CrossRef McArthur AG, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–57.CrossRef
50.
go back to reference Gupta SK, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212–20.CrossRef Gupta SK, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 2014;58(1):212–20.CrossRef
51.
go back to reference Zankari E, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.CrossRef Zankari E, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.CrossRef
55.
go back to reference Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser. 1995;121:217–26.CrossRef Maranger R, Bird DF. Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser. 1995;121:217–26.CrossRef
56.
go back to reference Maranger R, Bird DF. High concentrations of viruses in the sediments of Lake Gilbert. Quebec Microb Ecol. 1996;31:141–51.PubMed Maranger R, Bird DF. High concentrations of viruses in the sediments of Lake Gilbert. Quebec Microb Ecol. 1996;31:141–51.PubMed
57.
go back to reference Danovaro R, Serresi M. Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl Environ Microbiol. 2000;66:1857–61.CrossRef Danovaro R, Serresi M. Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl Environ Microbiol. 2000;66:1857–61.CrossRef
58.
go back to reference Hewson I, O’Neill JM, Fuhrman JA, Dennison WC. Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr. 2001;46:1734–46.CrossRef Hewson I, O’Neill JM, Fuhrman JA, Dennison WC. Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr. 2001;46:1734–46.CrossRef
59.
go back to reference Chattopadhyay S, Puls RW. Forces dictating colloidal interactions between viruses and soil. Chemosphere. 2000;41:1279–86.CrossRef Chattopadhyay S, Puls RW. Forces dictating colloidal interactions between viruses and soil. Chemosphere. 2000;41:1279–86.CrossRef
60.
go back to reference Kropinski AM, Prangishvili D, Lavigne R. Position paper: the creation of a rational scheme for the nomenclature of viruses of bacteria and archaea. Environ Microbiol. 2009;11:2775–7.CrossRef Kropinski AM, Prangishvili D, Lavigne R. Position paper: the creation of a rational scheme for the nomenclature of viruses of bacteria and archaea. Environ Microbiol. 2009;11:2775–7.CrossRef
63.
go back to reference Solovyeva, E.V. Кaпcyлocпeцифичныe бaктepиoфaги и иx пoлиcaxapиддeгpaдиpyющиe фepмeнты, aктивныe в oтнoшeнии гипepмyкoидныx штaммoв Klebsiella pneumoniae. State Research Center for Applied Microbiology & Biotechnology; obolensk.org/center/diss/solovieva/Диccepтaция_Coлoвьeвa%20EB.pdf. Solovyeva, E.V. Кaпcyлocпeцифичныe бaктepиoфaги и иx пoлиcaxapиддeгpaдиpyющиe фepмeнты, aктивныe в oтнoшeнии гипepмyкoидныx штaммoв Klebsiella pneumoniae. State Research Center for Applied Microbiology & Biotechnology; obolensk.org/center/diss/solovieva/Диccepтaция_Coлoвьeвa%20EB.pdf.
66.
go back to reference Pires D, Oliveira H, Melo L, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: Their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100:2141–51.CrossRef Pires D, Oliveira H, Melo L, Sillankorva S, Azeredo J. Bacteriophage-encoded depolymerases: Their diversity and biotechnological applications. Appl Microbiol Biotechnol. 2016;100:2141–51.CrossRef
70.
go back to reference Ackermann HW, Dubow MS. General properties of bacteriophages. Vir Prok 1, 13–28, 33–47, 49–101, 143–172, 202 (1987). Ackermann HW, Dubow MS. General properties of bacteriophages. Vir Prok 1, 13–28, 33–47, 49–101, 143–172, 202 (1987).
71.
go back to reference Hazem A. Effects of temperatures, pH-values, ultra-violet light, ethanol and chloroform on the growth of isolated thermophilic Bacillus phages. New Microbiol. 2002;25:469–76.PubMed Hazem A. Effects of temperatures, pH-values, ultra-violet light, ethanol and chloroform on the growth of isolated thermophilic Bacillus phages. New Microbiol. 2002;25:469–76.PubMed
Metadata
Title
Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation
Authors
Fedor Zurabov
Evgeniy Zhilenkov
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Antibiotic
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01485-w

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue