Skip to main content
Top
Published in: BioDrugs 3/2014

01-06-2014 | Review Article

Bacteriophage Polysaccharide Depolymerases and Biomedical Applications

Authors: Jianlong Yan, Jiaoxiao Mao, Jianping Xie

Published in: BioDrugs | Issue 3/2014

Login to get access

Abstract

Polysaccharide depolymerase, a polysaccharide hydrolase encoded by bacteriophages (or ‘phages’), can specifically degrade the macromolecule carbohydrates of the host bacterial envelope. This enzyme assists the bacteriophage in adsorbing, invading, and disintegrating the host bacteria. Polysaccharide depolymerase activity continues even within biofilms. This effectiveness means phages are promising candidates for novel antibiotic scaffolds. A comprehensive compendium of bacteriophage polysaccharide depolymerases has been compiled, together with their potential biomedical applications, such as novel antibiotics, adjuvants for antibiotics, bacterial biofilm disruptants, and diagnostic kits.
Literature
3.
go back to reference Bayer AS, Speert DP, Park S, Tu J, Witt M, Nast CC, Norman DC. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun. 1991;59(1):302–8. http://europepmc.org/articles/PMC257741. Bayer AS, Speert DP, Park S, Tu J, Witt M, Nast CC, Norman DC. Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa. Infect Immun. 1991;59(1):302–8. http://​europepmc.​org/​articles/​PMC257741.
6.
11.
go back to reference Ackermann H-W. Classification of bacteriophages. Bacteriophages. 2006;2:8–16. Ackermann H-W. Classification of bacteriophages. Bacteriophages. 2006;2:8–16.
14.
go back to reference Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure. 2008;16(5):766–75. doi:10.1016/j.str.2008.01.019.PubMedCrossRef Müller JJ, Barbirz S, Heinle K, Freiberg A, Seckler R, Heinemann U. An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri Phage Sf6. Structure. 2008;16(5):766–75. doi:10.​1016/​j.​str.​2008.​01.​019.PubMedCrossRef
21.
go back to reference Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Molecular Microbiol. 2008;69(2):303–16. doi:10.1111/j.1365-2958.2008.06311.x.CrossRef Barbirz S, Müller JJ, Uetrecht C, Clark AJ, Heinemann U, Seckler R. Crystal structure of Escherichia coli phage HK620 tailspike: podoviral tailspike endoglycosidase modules are evolutionarily related. Molecular Microbiol. 2008;69(2):303–16. doi:10.​1111/​j.​1365-2958.​2008.​06311.​x.CrossRef
22.
go back to reference Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J Molecular Biol. 2010;402(4):731–40. doi:10.1016/j.jmb.2010.07.058.CrossRef Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J Molecular Biol. 2010;402(4):731–40. doi:10.​1016/​j.​jmb.​2010.​07.​058.CrossRef
23.
go back to reference Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, Llamas-Saiz AL, Seckler R, Miller S, van Raaij MJ. Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus. J Virol. 2008;82(5):2265–73. doi:10.1128/JVI.01641-07.PubMedCentralPubMedCrossRef Walter M, Fiedler C, Grassl R, Biebl M, Rachel R, Hermo-Parrado XL, Llamas-Saiz AL, Seckler R, Miller S, van Raaij MJ. Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus. J Virol. 2008;82(5):2265–73. doi:10.​1128/​JVI.​01641-07.PubMedCentralPubMedCrossRef
24.
go back to reference Chua JE, Manning PA, Morona R. The Shigella flexneri bacteriophage Sf6 tailspike protein (TSP)/endorhamnosidase is related to the bacteriophage P22 TSP and has a motif common to exo-and endoglycanases, and C-5 epimerases. Microbiology. 1999;145(7):1649–59. doi:10.1099/13500872-145-7-1649.PubMedCrossRef Chua JE, Manning PA, Morona R. The Shigella flexneri bacteriophage Sf6 tailspike protein (TSP)/endorhamnosidase is related to the bacteriophage P22 TSP and has a motif common to exo-and endoglycanases, and C-5 epimerases. Microbiology. 1999;145(7):1649–59. doi:10.​1099/​13500872-145-7-1649.PubMedCrossRef
25.
go back to reference Chaby R, Girard R. Adsorption and endo-glycosidase activity of phage phi 1 (40) on Salmonella johannesbureg O-polysaccharide. Virology. 1980;105(1):136–47.PubMedCrossRef Chaby R, Girard R. Adsorption and endo-glycosidase activity of phage phi 1 (40) on Salmonella johannesbureg O-polysaccharide. Virology. 1980;105(1):136–47.PubMedCrossRef
35.
go back to reference Watts AG, Oppezzo P, Withers SG, Alzari PM, Buschiazzo A. Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase. J Biol Chem. 2006;281(7):4149–55. doi:10.1074/jbc.M510677200.PubMedCrossRef Watts AG, Oppezzo P, Withers SG, Alzari PM, Buschiazzo A. Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase. J Biol Chem. 2006;281(7):4149–55. doi:10.​1074/​jbc.​M510677200.PubMedCrossRef
38.
go back to reference Kitajima K, Inoue S, Inoue Y, Troy FA. Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. J Biol Chem. 1988;263(34):18269–76. http://www.jbc.org/content/263/34/18269.short. Kitajima K, Inoue S, Inoue Y, Troy FA. Use of a bacteriophage-derived endo-N-acetylneuraminidase and an equine antipolysialyl antibody to characterize the polysialyl residues in salmonid fish egg polysialoglycoproteins. Substrate and immunospecificity studies. J Biol Chem. 1988;263(34):18269–76. http://​www.​jbc.​org/​content/​263/​34/​18269.​short.
39.
40.
41.
go back to reference Schwarzer D, Stummeyer K, Gerardy-Schahn R, Mühlenhoff M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J Biol Chem. 2007;282(5):2821–31. doi:10.1074/jbc.M609543200.PubMedCrossRef Schwarzer D, Stummeyer K, Gerardy-Schahn R, Mühlenhoff M. Characterization of a novel intramolecular chaperone domain conserved in endosialidases and other bacteriophage tail spike and fiber proteins. J Biol Chem. 2007;282(5):2821–31. doi:10.​1074/​jbc.​M609543200.PubMedCrossRef
42.
go back to reference Jakobsson E, Jokilammi A, Aalto J, Ollikka P, Lehtonen JV, Hirvonen H, Finne J. Identification of amino acid residues at the active site of endosialidase that dissociate the polysialic acid binding and cleaving activities in Escherichia coli K1 bacteriophages. Biochem J. 2007;405(3):465. http://www.ncbi.nlm.nih.gov/pubmed/17394421. Jakobsson E, Jokilammi A, Aalto J, Ollikka P, Lehtonen JV, Hirvonen H, Finne J. Identification of amino acid residues at the active site of endosialidase that dissociate the polysialic acid binding and cleaving activities in Escherichia coli K1 bacteriophages. Biochem J. 2007;405(3):465. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17394421.
43.
go back to reference Gerardy-Schahn R, Bethe A, Brennecke T, Mühlenhoff M, Eckhardt M, Ziesing S, Lottspeich F, Frosch M. Molecular cloning and functional expression of bacteriophage PK1E-encoded endoneuraminidase Endo NE. Molecular Microbiol. 1995;16(3):441–50. doi:10.1111/j.1365-2958.1995.tb02409.x.CrossRef Gerardy-Schahn R, Bethe A, Brennecke T, Mühlenhoff M, Eckhardt M, Ziesing S, Lottspeich F, Frosch M. Molecular cloning and functional expression of bacteriophage PK1E-encoded endoneuraminidase Endo NE. Molecular Microbiol. 1995;16(3):441–50. doi:10.​1111/​j.​1365-2958.​1995.​tb02409.​x.CrossRef
48.
go back to reference Mishra P, Prem Kumar R, Ethayathulla AS, Singh N, Sharma S, Perbandt M, Betzel C, Kaur P, Srinivasan A, Bhakuni V, Singh TP. Polysaccharide binding sites in hyaluronate lyase-crystal structures of native phage-encoded hyaluronate lyase and its complexes with ascorbic acid and lactose. FEBS J. 2009;276(12):3392–402. doi:10.1111/j.1742-4658.2009.07065.x.PubMedCrossRef Mishra P, Prem Kumar R, Ethayathulla AS, Singh N, Sharma S, Perbandt M, Betzel C, Kaur P, Srinivasan A, Bhakuni V, Singh TP. Polysaccharide binding sites in hyaluronate lyase-crystal structures of native phage-encoded hyaluronate lyase and its complexes with ascorbic acid and lactose. FEBS J. 2009;276(12):3392–402. doi:10.​1111/​j.​1742-4658.​2009.​07065.​x.PubMedCrossRef
50.
go back to reference Jedrzejas MJ, Mello LV, de Groot BL, Li S. Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. J Biol Chem. 2002;277(31):28287–97. doi:10.1074/jbc.M112009200.PubMedCrossRef Jedrzejas MJ, Mello LV, de Groot BL, Li S. Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. J Biol Chem. 2002;277(31):28287–97. doi:10.​1074/​jbc.​M112009200.PubMedCrossRef
52.
go back to reference Niemann H, Birch-Andersen A, Kjems E, Mansa B, Stirm S. Streptococcal bacteriophage 12/12-borne hyaluronidase and its characterization as a lyase (EC 4.2.99.1) by means of streptococcal hyaluronic acid and purified bacteriophage suspensions. Acta Pathologica Microbiologica Scandinavica Section B. Microbiology. 1976;84(3):145–53. doi:10.1111/j.1699-0463.1976.tb01917.x.PubMed Niemann H, Birch-Andersen A, Kjems E, Mansa B, Stirm S. Streptococcal bacteriophage 12/12-borne hyaluronidase and its characterization as a lyase (EC 4.2.99.1) by means of streptococcal hyaluronic acid and purified bacteriophage suspensions. Acta Pathologica Microbiologica Scandinavica Section B. Microbiology. 1976;84(3):145–53. doi:10.​1111/​j.​1699-0463.​1976.​tb01917.​x.PubMed
54.
go back to reference Smith NL, Taylor EJ, Lindsay AM, Charnock SJ, Turkenburg JP, Dodson EJ, Davies GJ, Black GW. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix. Proc Natl Acad Sci USA. 2005;102(49):17652–7. doi:10.1073/pnas.0504782102.PubMedCentralPubMedCrossRef Smith NL, Taylor EJ, Lindsay AM, Charnock SJ, Turkenburg JP, Dodson EJ, Davies GJ, Black GW. Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded beta-helix. Proc Natl Acad Sci USA. 2005;102(49):17652–7. doi:10.​1073/​pnas.​0504782102.PubMedCentralPubMedCrossRef
55.
go back to reference Lindsay AM, Zhang M, Mitchell Z, Holden MT, Waller AS, Sutcliffe IC, Black GW. The Streptococcus equi prophage-encoded protein SEQ2045 is a hyaluronan-specific hyaluronate lyase that is produced during equine infection. Microbiology. 2009;155(Pt 2):443–9. doi:10.1099/mic.0.020826-0.PubMedCrossRef Lindsay AM, Zhang M, Mitchell Z, Holden MT, Waller AS, Sutcliffe IC, Black GW. The Streptococcus equi prophage-encoded protein SEQ2045 is a hyaluronan-specific hyaluronate lyase that is produced during equine infection. Microbiology. 2009;155(Pt 2):443–9. doi:10.​1099/​mic.​0.​020826-0.PubMedCrossRef
59.
go back to reference Martinez-Fleites C, Smith NL, Turkenburg JP, Black GW, Taylor EJ. Structures of two truncated phage-tail hyaluronate lyases from Streptococcus pyogenes serotype M1. Acta Crystallogr Section F Struct Biol Cryst Commun. 2009;65(10):963–6. doi:10.1107/S1744309109032813.CrossRef Martinez-Fleites C, Smith NL, Turkenburg JP, Black GW, Taylor EJ. Structures of two truncated phage-tail hyaluronate lyases from Streptococcus pyogenes serotype M1. Acta Crystallogr Section F Struct Biol Cryst Commun. 2009;65(10):963–6. doi:10.​1107/​S174430910903281​3.CrossRef
63.
go back to reference Scholl D, Cooley M, Williams SR, Gebhart D, Martin D, Bates A, Mandrell R. An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157: H7. Antimicrob Agents Chemother. 2009;53(7):3074–80. doi:10.1128/AAC.01660-08.PubMedCentralPubMedCrossRef Scholl D, Cooley M, Williams SR, Gebhart D, Martin D, Bates A, Mandrell R. An engineered R-type pyocin is a highly specific and sensitive bactericidal agent for the food-borne pathogen Escherichia coli O157: H7. Antimicrob Agents Chemother. 2009;53(7):3074–80. doi:10.​1128/​AAC.​01660-08.PubMedCentralPubMedCrossRef
Metadata
Title
Bacteriophage Polysaccharide Depolymerases and Biomedical Applications
Authors
Jianlong Yan
Jiaoxiao Mao
Jianping Xie
Publication date
01-06-2014
Publisher
Springer International Publishing
Published in
BioDrugs / Issue 3/2014
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.1007/s40259-013-0081-y

Other articles of this Issue 3/2014

BioDrugs 3/2014 Go to the issue