Skip to main content
Top
Published in: Virology Journal 1/2020

Open Access 01-12-2020 | Vaccination | Research

Response to a DNA vaccine against the H5N1 virus depending on the chicken line and number of doses

Authors: Barbara Małgorzata Kalenik, Anna Góra-Sochacka, Anna Stachyra, Monika Olszewska-Tomczyk, Anna Fogtman, Róża Sawicka, Krzysztof Śmietanka, Agnieszka Sirko

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

Avian influenza virus infections cause significant economic losses on poultry farms and pose the threat of a possible pandemic outbreak. Routine vaccination of poultry against avian influenza is not recommended in Europe, however it has been ordered in some other countries, and more countries are considering use of the avian influenza vaccine as a component of their control strategy. Although a variety of such vaccines have been tested, most research has concentrated on specific antibodies and challenge experiments.

Methods

We monitored the transcriptomic response to a DNA vaccine encoding hemagglutinin from the highly pathogenic H5N1 avian influenza virus in the spleens of broiler and layer chickens. Moreover, in layer chickens the response to one and two doses of the vaccine was compared.

Results

All groups of birds immunized with two doses of the vaccine responded at the humoral level by producing specific anti-hemagglutinin antibodies. A response to the vaccine was also detected in the spleen transcriptomes. Differential expression of many genes encoding noncoding RNA and proteins functionally connected to the neuroendocrine-immune system was observed in different immunized groups.

Conclusion

Broiler chickens showed a higher number and wider range of fold-changes in the transcriptional response than laying hens.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jang H, Elaish M, Kc M, Abundo MC, Ghorbani A, Ngunjiri JM, Lee CW. Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens. PLoS One. 2018;13:e0195285.PubMedPubMedCentralCrossRef Jang H, Elaish M, Kc M, Abundo MC, Ghorbani A, Ngunjiri JM, Lee CW. Efficacy and synergy of live-attenuated and inactivated influenza vaccines in young chickens. PLoS One. 2018;13:e0195285.PubMedPubMedCentralCrossRef
2.
go back to reference Chmielewski R, Swayne DE. Avian influenza: public health and food safety concerns. Annu Rev Food Sci Technol. 2011;2:37–57.PubMedCrossRef Chmielewski R, Swayne DE. Avian influenza: public health and food safety concerns. Annu Rev Food Sci Technol. 2011;2:37–57.PubMedCrossRef
3.
go back to reference Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza a viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res. 2018;7:1–15.PubMedPubMedCentralCrossRef Yoo SJ, Kwon T, Lyoo YS. Challenges of influenza a viruses in humans and animals and current animal vaccines as an effective control measure. Clin Exp Vaccine Res. 2018;7:1–15.PubMedPubMedCentralCrossRef
4.
go back to reference Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian influenza virus and DIVA strategies. Viral Immunol. 2016;29:198–211.PubMedCrossRef Hasan NH, Ignjatovic J, Peaston A, Hemmatzadeh F. Avian influenza virus and DIVA strategies. Viral Immunol. 2016;29:198–211.PubMedCrossRef
5.
go back to reference Li C, Bu Z, Chen H. Avian influenza vaccines against H5N1 'bird flu'. Trends Biotechnol. 2014;32:147–56.PubMedCrossRef Li C, Bu Z, Chen H. Avian influenza vaccines against H5N1 'bird flu'. Trends Biotechnol. 2014;32:147–56.PubMedCrossRef
6.
go back to reference Swayne DE, Spackman E. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza. Dev Biol (Basel). 2013;135:79–94. Swayne DE, Spackman E. Current status and future needs in diagnostics and vaccines for high pathogenicity avian influenza. Dev Biol (Basel). 2013;135:79–94.
7.
go back to reference Swayne DE. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis. 2012;56:818–28.PubMedCrossRef Swayne DE. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis. 2012;56:818–28.PubMedCrossRef
8.
go back to reference Soema PC, Kompier R, Amorij JP, Kersten GF. Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm. 2015;94:251–63.PubMedCrossRef Soema PC, Kompier R, Amorij JP, Kersten GF. Current and next generation influenza vaccines: formulation and production strategies. Eur J Pharm Biopharm. 2015;94:251–63.PubMedCrossRef
9.
go back to reference Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol. 2000;68:793–806.PubMed Shedlock DJ, Weiner DB. DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol. 2000;68:793–806.PubMed
10.
go back to reference Stachyra A, Gora-Sochacka A, Sirko A. DNA vaccines against influenza. Acta Biochim Pol. 2014;61:515–22.PubMed Stachyra A, Gora-Sochacka A, Sirko A. DNA vaccines against influenza. Acta Biochim Pol. 2014;61:515–22.PubMed
11.
go back to reference Wu CY, Lin CW, Tsai TI, Lee CD, Chuang HY, Chen JB, Tsai MH, Chen BR, Lo PW, Liu CP, et al. Influenza a surface glycosylation and vaccine design. Proc Natl Acad Sci U S A. 2017;114:280–5.PubMedCrossRef Wu CY, Lin CW, Tsai TI, Lee CD, Chuang HY, Chen JB, Tsai MH, Chen BR, Lo PW, Liu CP, et al. Influenza a surface glycosylation and vaccine design. Proc Natl Acad Sci U S A. 2017;114:280–5.PubMedCrossRef
12.
go back to reference Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines. 2010;9:73–87.PubMedCrossRef Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. Expert Rev Vaccines. 2010;9:73–87.PubMedCrossRef
13.
go back to reference Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: the current status in 2015. Vaccine. 2016;34:202–11.PubMedCrossRef Meunier M, Chemaly M, Dory D. DNA vaccination of poultry: the current status in 2015. Vaccine. 2016;34:202–11.PubMedCrossRef
14.
go back to reference Shan S, Fenwick S, Ellis T, Poinern E, Edwards J, Le X, Jiang Z. Evaluation of different chemical adjuvants on an avian influenza H6 DNA vaccine in chickens. Avian Pathol. 2016;45:649–56.PubMedCrossRef Shan S, Fenwick S, Ellis T, Poinern E, Edwards J, Le X, Jiang Z. Evaluation of different chemical adjuvants on an avian influenza H6 DNA vaccine in chickens. Avian Pathol. 2016;45:649–56.PubMedCrossRef
16.
go back to reference Stachyra A, Gora-Sochacka A, Radomski JP, Sirko A. Sequential DNA immunization of chickens with bivalent heterologous vaccines induce highly reactive and cross-specific antibodies against influenza hemagglutinin. Poult Sci. 2019;98:199–208.PubMedCrossRef Stachyra A, Gora-Sochacka A, Radomski JP, Sirko A. Sequential DNA immunization of chickens with bivalent heterologous vaccines induce highly reactive and cross-specific antibodies against influenza hemagglutinin. Poult Sci. 2019;98:199–208.PubMedCrossRef
17.
go back to reference Stachyra A, Gora-Sochacka A, Sawicka R, Florys K, Sączynska V, Olszewska M, Pikuła A, Śmietanka K, Minta Z, Szewczyk B, et al. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus. Trials Vaccinology. 2014;3:40–6.CrossRef Stachyra A, Gora-Sochacka A, Sawicka R, Florys K, Sączynska V, Olszewska M, Pikuła A, Śmietanka K, Minta Z, Szewczyk B, et al. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus. Trials Vaccinology. 2014;3:40–6.CrossRef
18.
go back to reference Stachyra A, Pietrzak M, Maciola A, Protasiuk A, Olszewska M, Smietanka K, Minta Z, Gora-Sochacka A, Kopera E, Sirko A. A prime/boost vaccination with HA DNA and Pichia-produced HA protein elicits a strong humoral response in chickens against H5N1. Virus Res. 2017;232:41–7.PubMedCrossRef Stachyra A, Pietrzak M, Maciola A, Protasiuk A, Olszewska M, Smietanka K, Minta Z, Gora-Sochacka A, Kopera E, Sirko A. A prime/boost vaccination with HA DNA and Pichia-produced HA protein elicits a strong humoral response in chickens against H5N1. Virus Res. 2017;232:41–7.PubMedCrossRef
19.
go back to reference Stachyra A, Rak M, Redkiewicz P, Madeja Z, Gawarecka K, Chojnacki T, Swiezewska E, Masnyk M, Chmielewski M, Sirko A, Gora-Sochacka A. Effective usage of cationic derivatives of polyprenols as carriers of DNA vaccines against influenza virus. Virol J. 2017;14:168.PubMedPubMedCentralCrossRef Stachyra A, Rak M, Redkiewicz P, Madeja Z, Gawarecka K, Chojnacki T, Swiezewska E, Masnyk M, Chmielewski M, Sirko A, Gora-Sochacka A. Effective usage of cationic derivatives of polyprenols as carriers of DNA vaccines against influenza virus. Virol J. 2017;14:168.PubMedPubMedCentralCrossRef
20.
go back to reference Stachyra A, Redkiewicz P, Kosson P, Protasiuk A, Gora-Sochacka A, Kudla G, Sirko A. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens. Virol J. 2016;13:143.PubMedPubMedCentralCrossRef Stachyra A, Redkiewicz P, Kosson P, Protasiuk A, Gora-Sochacka A, Kudla G, Sirko A. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens. Virol J. 2016;13:143.PubMedPubMedCentralCrossRef
22.
go back to reference Wang IM, Bett AJ, Cristescu R, Loboda A, ter Meulen J. Transcriptional profiling of vaccine-induced immune responses in humans and non-human primates. Microb Biotechnol. 2012;5:177–87.PubMedPubMedCentralCrossRef Wang IM, Bett AJ, Cristescu R, Loboda A, ter Meulen J. Transcriptional profiling of vaccine-induced immune responses in humans and non-human primates. Microb Biotechnol. 2012;5:177–87.PubMedPubMedCentralCrossRef
23.
go back to reference Degen WG, Smith J, Simmelink B, Glass EJ, Burt DW, Schijns VE. Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza a (H9N2) virus infection. Vaccine. 2006;24:6096–109.PubMedCrossRef Degen WG, Smith J, Simmelink B, Glass EJ, Burt DW, Schijns VE. Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza a (H9N2) virus infection. Vaccine. 2006;24:6096–109.PubMedCrossRef
24.
go back to reference Reemers SS, Jansen C, Koerkamp MJ, van Haarlem D, van de Haar P, Degen WG, van Eden W, Vervelde L. Reduced immune reaction prevents immunopathology after challenge with avian influenza virus: a transcriptomics analysis of adjuvanted vaccines. Vaccine. 2010;28:6351–60.PubMedCrossRef Reemers SS, Jansen C, Koerkamp MJ, van Haarlem D, van de Haar P, Degen WG, van Eden W, Vervelde L. Reduced immune reaction prevents immunopathology after challenge with avian influenza virus: a transcriptomics analysis of adjuvanted vaccines. Vaccine. 2010;28:6351–60.PubMedCrossRef
25.
go back to reference Kalenik BM, Gora-Sochacka A, Stachyra A, Pietrzak M, Kopera E, Fogtman A, Sirko A. Transcriptional response to a prime/boost vaccination of chickens with three vaccine variants based on HA DNA and Pichia-produced HA protein. Dev Comp Immunol. 2018;88:8–18.PubMedCrossRef Kalenik BM, Gora-Sochacka A, Stachyra A, Pietrzak M, Kopera E, Fogtman A, Sirko A. Transcriptional response to a prime/boost vaccination of chickens with three vaccine variants based on HA DNA and Pichia-produced HA protein. Dev Comp Immunol. 2018;88:8–18.PubMedCrossRef
27.
go back to reference Tadano R, Kinoshita K, Mizutani M, Tsudzuki M. Comparison of microsatellite variations between red Junglefowl and a commercial chicken gene pool. Poult Sci. 2014;93:318–25.PubMedCrossRef Tadano R, Kinoshita K, Mizutani M, Tsudzuki M. Comparison of microsatellite variations between red Junglefowl and a commercial chicken gene pool. Poult Sci. 2014;93:318–25.PubMedCrossRef
28.
go back to reference Zahoor I, de Koning DJ, Hocking PM. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature. Genet Sel Evol. 2017;49:69.PubMedPubMedCentralCrossRef Zahoor I, de Koning DJ, Hocking PM. Transcriptional profile of breast muscle in heat stressed layers is similar to that of broiler chickens at control temperature. Genet Sel Evol. 2017;49:69.PubMedPubMedCentralCrossRef
30.
go back to reference Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, Markovic C, Bouk N, Pruitt KD, Thibaud-Nissen F, et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 (Bethesda). 2017;7:109–17.CrossRef Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, Markovic C, Bouk N, Pruitt KD, Thibaud-Nissen F, et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 (Bethesda). 2017;7:109–17.CrossRef
32.
go back to reference Kuo RI, Tseng E, Eory L, Paton IR, Archibald AL, Burt DW. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics. 2017;18:323.PubMedPubMedCentralCrossRef Kuo RI, Tseng E, Eory L, Paton IR, Archibald AL, Burt DW. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics. 2017;18:323.PubMedPubMedCentralCrossRef
33.
go back to reference Hu J, Hu Z, Wang X, Gu M, Gao Z, Liang Y, Ma C, Liu X, Hu S, Chen S, et al. Deep sequencing of the mouse lung transcriptome reveals distinct long non-coding RNAs expression associated with the high virulence of H5N1 avian influenza virus in mice. Virulence. 2018;9:1092–111.PubMedPubMedCentralCrossRef Hu J, Hu Z, Wang X, Gu M, Gao Z, Liang Y, Ma C, Liu X, Hu S, Chen S, et al. Deep sequencing of the mouse lung transcriptome reveals distinct long non-coding RNAs expression associated with the high virulence of H5N1 avian influenza virus in mice. Virulence. 2018;9:1092–111.PubMedPubMedCentralCrossRef
34.
go back to reference Lu C, Xing Y, Cai H, Shi Y, Liu J, Huang Y. Identification and analysis of long non-coding RNAs in response to H5N1 influenza viruses in duck (Anas platyrhynchos). BMC Genomics. 2019;20:36.PubMedPubMedCentralCrossRef Lu C, Xing Y, Cai H, Shi Y, Liu J, Huang Y. Identification and analysis of long non-coding RNAs in response to H5N1 influenza viruses in duck (Anas platyrhynchos). BMC Genomics. 2019;20:36.PubMedPubMedCentralCrossRef
35.
go back to reference Li T, Wu R, Zhang Y, Zhu D. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics. 2011;12:186.PubMedPubMedCentralCrossRef Li T, Wu R, Zhang Y, Zhu D. A systematic analysis of the skeletal muscle miRNA transcriptome of chicken varieties with divergent skeletal muscle growth identifies novel miRNAs and differentially expressed miRNAs. BMC Genomics. 2011;12:186.PubMedPubMedCentralCrossRef
36.
go back to reference Wang Y, Brahmakshatriya V, Lupiani B, Reddy SM, Soibam B, Benham AL, Gunaratne P, Liu HC, Trakooljul N, Ing N, et al. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics. 2012;13:278.PubMedPubMedCentralCrossRef Wang Y, Brahmakshatriya V, Lupiani B, Reddy SM, Soibam B, Benham AL, Gunaratne P, Liu HC, Trakooljul N, Ing N, et al. Integrated analysis of microRNA expression and mRNA transcriptome in lungs of avian influenza virus infected broilers. BMC Genomics. 2012;13:278.PubMedPubMedCentralCrossRef
37.
go back to reference Mleczko AM, Bakowska-Zywicka K. When small RNAs become smaller: emerging functions of snoRNAs and their derivatives. Acta Biochim Pol. 2016;63:601–7.PubMed Mleczko AM, Bakowska-Zywicka K. When small RNAs become smaller: emerging functions of snoRNAs and their derivatives. Acta Biochim Pol. 2016;63:601–7.PubMed
38.
go back to reference Swiatowy W, Jagodzinski PP. Molecules derived from tRNA and snoRNA: entering the degradome pool. Biomed Pharmacother. 2018;108:36–42.PubMedCrossRef Swiatowy W, Jagodzinski PP. Molecules derived from tRNA and snoRNA: entering the degradome pool. Biomed Pharmacother. 2018;108:36–42.PubMedCrossRef
39.
go back to reference Michael J, Milligan MJ, Lipovich L. Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front Genet. 2014;5:476. Michael J, Milligan MJ, Lipovich L. Pseudogene-derived lncRNAs: emerging regulators of gene expression. Front Genet. 2014;5:476.
40.
go back to reference Hu J, Mo Y, Wang X, Gu M, Hu Z, Zhong L, Wu Q, Hao X, Hu S, Liu W, et al. PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza a virus in avian species by inhibiting virus replication and host response. J Virol. 2015;89:4126–42.PubMedPubMedCentralCrossRef Hu J, Mo Y, Wang X, Gu M, Hu Z, Zhong L, Wu Q, Hao X, Hu S, Liu W, et al. PA-X decreases the pathogenicity of highly pathogenic H5N1 influenza a virus in avian species by inhibiting virus replication and host response. J Virol. 2015;89:4126–42.PubMedPubMedCentralCrossRef
41.
go back to reference Barber MR, Aldridge JR Jr, Fleming-Canepa X, Wang YD, Webster RG, Magor KE. Identification of avian RIG-I responsive genes during influenza infection. Mol Immunol. 2013;54:89–97.PubMedCrossRef Barber MR, Aldridge JR Jr, Fleming-Canepa X, Wang YD, Webster RG, Magor KE. Identification of avian RIG-I responsive genes during influenza infection. Mol Immunol. 2013;54:89–97.PubMedCrossRef
42.
go back to reference Sutejo R, Yeo DS, Myaing MZ, Hui C, Xia J, Ko D, Cheung PC, Tan BH, Sugrue RJ. Activation of type I and III interferon signalling pathways occurs in lung epithelial cells infected with low pathogenic avian influenza viruses. PLoS One. 2012;7:e33732.PubMedPubMedCentralCrossRef Sutejo R, Yeo DS, Myaing MZ, Hui C, Xia J, Ko D, Cheung PC, Tan BH, Sugrue RJ. Activation of type I and III interferon signalling pathways occurs in lung epithelial cells infected with low pathogenic avian influenza viruses. PLoS One. 2012;7:e33732.PubMedPubMedCentralCrossRef
43.
go back to reference Ranaware PB, Mishra A, Vijayakumar P, Gandhale PN, Kumar H, Kulkarni DD, Raut AA. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS One. 2016;11:e0153671.PubMedPubMedCentralCrossRef Ranaware PB, Mishra A, Vijayakumar P, Gandhale PN, Kumar H, Kulkarni DD, Raut AA. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS One. 2016;11:e0153671.PubMedPubMedCentralCrossRef
Metadata
Title
Response to a DNA vaccine against the H5N1 virus depending on the chicken line and number of doses
Authors
Barbara Małgorzata Kalenik
Anna Góra-Sochacka
Anna Stachyra
Monika Olszewska-Tomczyk
Anna Fogtman
Róża Sawicka
Krzysztof Śmietanka
Agnieszka Sirko
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01335-9

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue