Skip to main content
Top
Published in: Virology Journal 1/2020

Open Access 01-12-2020 | Adenovirus | Research

Heterologous prime-boost: an important candidate immunization strategy against Tembusu virus

Authors: Yuting Pan, Renyong Jia, Juping Li, Mingshu Wang, Shun Chen, Mafeng Liu, Dekang Zhu, Xinxin Zhao, Ying Wu, Qiao Yang, Zhongqiong Yin, Bo Jing, Juan Huang, Shaqiu Zhang, Lin Zhang, Yunya Liu, Yanlin Yu, Bin Tian, Leichang Pan, Mujeeb Ur Rehman, Anchun Cheng

Published in: Virology Journal | Issue 1/2020

Login to get access

Abstract

Background

Tembusu virus (TMUV), a newly emerging pathogenic flavivirus, spreads rapidly between ducks, causing massive economic losses in the Chinese duck industry. Vaccination is the most effective method to prevent TMUV. Therefore, it is urgent to look for an effective vaccine strategy against TMUV. Heterologous prime-boost regimens priming with vaccines and boosting with recombinant adenovirus vaccines have been proven to be successful strategies for protecting against viruses in experimental animal models.

Methods

In this study, heterologous and homologous prime-boost strategies using an attenuated salmonella vaccine and a recombinant adenovirus vaccine expressing prM-E or the E gene of TMUV were evaluated to protect ducks against TMUV infection for the first time, including priming and boosting with the attenuated salmonella vaccine, priming and boosting with the recombinant adenovirus vaccine, and priming with the attenuated salmonella vaccine and boosting with the recombinant adenovirus vaccine. Humoral and cellular immune responses were detected and evaluated. We then challenged the ducks with TMUV at 12 days after boosting to assay for clinical symptoms, mortality, viral loads and histopathological lesions after these different strategies.

Results

Compared with the homologous prime-boost strategies, the heterologous prime-boost regimen produced higher levels of neutralizing antibodies and IgG antibodies against TMUV. Additionally, it could induce higher levels of IFN-γ than homologous prime-boost strategies in the later stage. Interestingly, the heterologous prime-boost strategy induced higher levels of IL-4 in the early stage, but the IL-4 levels gradually decreased and were even lower than those induced by the homologous prime-boost strategy in the later stage. Moreover, the heterologous prime-boost strategy could efficiently protect ducks, with low viral titres, no clinical symptoms and histopathological lesions in this experiment after challenge with TMUV, while slight clinical symptoms and histopathological lesions were observed with the homologous prime-boost strategies.

Conclusions

Our results indicated that the heterologous prime-boost strategy induced higher levels of humoral and cellular immune responses and better protection against TMUV infection in ducks than the homologous prime-boost strategies, suggesting that the heterologous prime-boost strategy is an important candidate for the design of a novel vaccine strategy against TMUV.
Literature
1.
go back to reference Thontiravong A, Ninvilai P, Tunterak W, et al. Tembusu-related Flavivirus in ducks. Thailand Emerg Infect Dis. 2015;21(12):2164–7.PubMedCrossRef Thontiravong A, Ninvilai P, Tunterak W, et al. Tembusu-related Flavivirus in ducks. Thailand Emerg Infect Dis. 2015;21(12):2164–7.PubMedCrossRef
2.
go back to reference Goto A, Yoshii K, Obara M, et al. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23(23):3043–52.PubMedCrossRef Goto A, Yoshii K, Obara M, et al. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23(23):3043–52.PubMedCrossRef
3.
go back to reference Mustafa MS, Rasotgi V, Jain S, et al. Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67–70.PubMedCrossRef Mustafa MS, Rasotgi V, Jain S, et al. Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67–70.PubMedCrossRef
4.
go back to reference Jimenez de Oya N, Escribano-Romero E, Camacho MC, et al. A recombinant subviral particle-based vaccine protects magpie (Pica pica) against West Nile virus infection. Front Microbiol. 2019; 10:1133–43. Jimenez de Oya N, Escribano-Romero E, Camacho MC, et al. A recombinant subviral particle-based vaccine protects magpie (Pica pica) against West Nile virus infection. Front Microbiol. 2019; 10:1133–43.
5.
go back to reference Kim JM, Yun SI, Song BH, et al. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol. 2008;82(16):7846–62.PubMedPubMedCentralCrossRef Kim JM, Yun SI, Song BH, et al. A single N-linked glycosylation site in the Japanese encephalitis virus prM protein is critical for cell type-specific prM protein biogenesis, virus particle release, and pathogenicity in mice. J Virol. 2008;82(16):7846–62.PubMedPubMedCentralCrossRef
6.
go back to reference Agrelli A, de Moura RR, Crovella S, et al. ZIKA virus entry mechanisms in human cells. Infect Genet Evol. 2019;69:22–9.PubMedCrossRef Agrelli A, de Moura RR, Crovella S, et al. ZIKA virus entry mechanisms in human cells. Infect Genet Evol. 2019;69:22–9.PubMedCrossRef
7.
go back to reference McLean JE, Wudzinska A, Datan E, et al. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem. 2011;286(25):22147–59.PubMedPubMedCentralCrossRef McLean JE, Wudzinska A, Datan E, et al. Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. J Biol Chem. 2011;286(25):22147–59.PubMedPubMedCentralCrossRef
8.
go back to reference Zhang X, Jia R, Shen H, et al. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses. 2017;9(11):338–52.PubMedCentralCrossRef Zhang X, Jia R, Shen H, et al. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses. 2017;9(11):338–52.PubMedCentralCrossRef
9.
go back to reference Huang J, Shen H, Jia R, et al. Oral vaccination with a DNA vaccine encoding capsid protein of duck Tembusu virus induces protection immunity. Viruses. 2018;10(4):180–92.PubMedCentralCrossRef Huang J, Shen H, Jia R, et al. Oral vaccination with a DNA vaccine encoding capsid protein of duck Tembusu virus induces protection immunity. Viruses. 2018;10(4):180–92.PubMedCentralCrossRef
10.
go back to reference Li N, Lv C, Yue R, et al. Effect of age on the pathogenesis of duck tembusu virus in Cherry Valley ducks. Front Microbiol. 2015;6:581.PubMedPubMedCentral Li N, Lv C, Yue R, et al. Effect of age on the pathogenesis of duck tembusu virus in Cherry Valley ducks. Front Microbiol. 2015;6:581.PubMedPubMedCentral
12.
go back to reference Huang X, Han K, Zhao D, et al. Identification and molecular characterization of a novel flavivirus isolated from geese in China. Res Vet Sci. 2013;94(3):774–80.PubMedCrossRef Huang X, Han K, Zhao D, et al. Identification and molecular characterization of a novel flavivirus isolated from geese in China. Res Vet Sci. 2013;94(3):774–80.PubMedCrossRef
13.
go back to reference Liu P, Lu H, Li S, et al. Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: genomic comparison with Tembusu and Sitiawan viruses. J Gen Virol. 2012; 93(Pt_10):2158–70. Liu P, Lu H, Li S, et al. Genomic and antigenic characterization of the newly emerging Chinese duck egg-drop syndrome flavivirus: genomic comparison with Tembusu and Sitiawan viruses. J Gen Virol. 2012; 93(Pt_10):2158–70.
14.
go back to reference Tang Y, Gao X, Diao Y, et al. Tembusu virus in human. China Transbound Emerg Dis. 2013;60(3):193–6.PubMedCrossRef Tang Y, Gao X, Diao Y, et al. Tembusu virus in human. China Transbound Emerg Dis. 2013;60(3):193–6.PubMedCrossRef
15.
go back to reference Wu KP, Wu CW, Tsao YP, et al. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem. 2003;278(46):46007–13.PubMedCrossRef Wu KP, Wu CW, Tsao YP, et al. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem. 2003;278(46):46007–13.PubMedCrossRef
16.
go back to reference Zhang HY, Sun SH, Guo YJ, et al. Optimization strategy for plasmid DNAs containing multiple-epitopes of foot-and-mouth disease virus by cis-expression with IL-2. Vaccine. 2008;26(6):769–77.PubMedCrossRef Zhang HY, Sun SH, Guo YJ, et al. Optimization strategy for plasmid DNAs containing multiple-epitopes of foot-and-mouth disease virus by cis-expression with IL-2. Vaccine. 2008;26(6):769–77.PubMedCrossRef
17.
go back to reference Li J, Yang T, Xu Q, et al. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1. Appl Microbiol Biotechnol. 2015;99(20):8643–52.PubMedCrossRef Li J, Yang T, Xu Q, et al. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1. Appl Microbiol Biotechnol. 2015;99(20):8643–52.PubMedCrossRef
18.
go back to reference Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016;34(4):413–23.PubMedCrossRef Kardani K, Bolhassani A, Shahbazi S. Prime-boost vaccine strategy against viral infections: mechanisms and benefits. Vaccine. 2016;34(4):413–23.PubMedCrossRef
20.
go back to reference Huang J, Jia R, Shen H, et al. Oral delivery of a DNA vaccine expressing the PrM and E genes: a promising vaccine strategy against flavivirus in ducks. Sci Rep. 2018;8(1):12360–71.PubMedPubMedCentralCrossRef Huang J, Jia R, Shen H, et al. Oral delivery of a DNA vaccine expressing the PrM and E genes: a promising vaccine strategy against flavivirus in ducks. Sci Rep. 2018;8(1):12360–71.PubMedPubMedCentralCrossRef
21.
go back to reference Yu X, Jia R, Huang J, et al. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res. 2012;43(1):56.PubMedPubMedCentralCrossRef Yu X, Jia R, Huang J, et al. Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res. 2012;43(1):56.PubMedPubMedCentralCrossRef
22.
go back to reference Zhang D, Huang X, Zhang X, et al. Construction of an oral vaccine for transmissible gastroenteritis virus based on the TGEV N gene expressed in an attenuated Salmonella typhimurium vector. J Virol Methods. 2016;27:6–13.CrossRef Zhang D, Huang X, Zhang X, et al. Construction of an oral vaccine for transmissible gastroenteritis virus based on the TGEV N gene expressed in an attenuated Salmonella typhimurium vector. J Virol Methods. 2016;27:6–13.CrossRef
23.
go back to reference Andrew T. C, Richard A. K, Mario R, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect Dis. 2006; 194(12):12. Andrew T. C, Richard A. K, Mario R, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect Dis. 2006; 194(12):12.
24.
go back to reference Gao W, Soloff AC, Lu X, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol. 2006;80(4):1959–64.PubMedPubMedCentralCrossRef Gao W, Soloff AC, Lu X, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. J Virol. 2006;80(4):1959–64.PubMedPubMedCentralCrossRef
25.
go back to reference Pacheco JM, Brum MCS, Moraes MP, et al. Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology. 2005;337(2):205–9.PubMedCrossRef Pacheco JM, Brum MCS, Moraes MP, et al. Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology. 2005;337(2):205–9.PubMedCrossRef
26.
go back to reference Chatfield SN, Dougan G. Roberts M. Modern Vaccinology: Progress in the development of multivalent oral vaccines based on live attenuated salmonella; 1994. Chatfield SN, Dougan G. Roberts M. Modern Vaccinology: Progress in the development of multivalent oral vaccines based on live attenuated salmonella; 1994.
27.
go back to reference Darji A, Guzman CA, Gerstel B. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell. 1997;91(6):765–75.PubMedCrossRef Darji A, Guzman CA, Gerstel B. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell. 1997;91(6):765–75.PubMedCrossRef
28.
go back to reference Deng J, Liu Y, Jia R, et al. Development of an immunochromatographic strip for detection of antibodies against duck Tembusu virus. J Virol Methods. 2017;249:137–42.PubMedCrossRef Deng J, Liu Y, Jia R, et al. Development of an immunochromatographic strip for detection of antibodies against duck Tembusu virus. J Virol Methods. 2017;249:137–42.PubMedCrossRef
29.
go back to reference Qi Y, Chen S, Zhao Q, et al. Molecular cloning, tissue distribution, and immune function of goose TLR7. Immunol Lett. 2015;163(2):135–42.PubMedCrossRef Qi Y, Chen S, Zhao Q, et al. Molecular cloning, tissue distribution, and immune function of goose TLR7. Immunol Lett. 2015;163(2):135–42.PubMedCrossRef
30.
go back to reference Zhang X, Jia R, Pan Y, et al. Therapeutic effects of duck tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Vet Microbiol. 2019;235:295–300.PubMedCrossRef Zhang X, Jia R, Pan Y, et al. Therapeutic effects of duck tembusu virus capsid protein fused with staphylococcal nuclease protein to target Tembusu infection in vitro. Vet Microbiol. 2019;235:295–300.PubMedCrossRef
31.
go back to reference Gu Y, Zhan B, Yang Y, et al. Protective effect of a prime-boost strategy with the Ts87 vaccine against trichinella spiralis infection in mice. Biomed Res Int. 2014;2014:326860–9.PubMedPubMedCentral Gu Y, Zhan B, Yang Y, et al. Protective effect of a prime-boost strategy with the Ts87 vaccine against trichinella spiralis infection in mice. Biomed Res Int. 2014;2014:326860–9.PubMedPubMedCentral
32.
go back to reference Rama Rao A, Francois V, John D. A, et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine. 2002; 20(15):69–74. Rama Rao A, Francois V, John D. A, et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine. 2002; 20(15):69–74.
33.
go back to reference Letvin NL, Huang Y, Chakrabarti BK, et al. Heterologous envelope immunogens contribute to AIDS vaccine protection in rhesus monkeys. J Virol. 2004;78(14):7490–7.PubMedPubMedCentralCrossRef Letvin NL, Huang Y, Chakrabarti BK, et al. Heterologous envelope immunogens contribute to AIDS vaccine protection in rhesus monkeys. J Virol. 2004;78(14):7490–7.PubMedPubMedCentralCrossRef
34.
go back to reference McConkey SJ, Reece WH, Moorthy VS, et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med. 2003;9(6):729–35.PubMedCrossRef McConkey SJ, Reece WH, Moorthy VS, et al. Enhanced T-cell immunogenicity of plasmid DNA vaccines boosted by recombinant modified vaccinia virus Ankara in humans. Nat Med. 2003;9(6):729–35.PubMedCrossRef
35.
go back to reference Rollier C, Verschoor E, Paranhos B, et al. Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus macaques by altering priming before adenovirus boosting. J Infect Dis. 2005;192(5):920–9.PubMedCrossRef Rollier C, Verschoor E, Paranhos B, et al. Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus macaques by altering priming before adenovirus boosting. J Infect Dis. 2005;192(5):920–9.PubMedCrossRef
36.
go back to reference Kim SJ, Kim HK, Han YW, et al. Multiple alternating immunizations with DNA vaccine and replication-incompetent adenovirus expressing gB of pseudorabies virus protect animals against lethal virus challenge. J Microbiol Biotechnol. 2008;18(7):1326–34.PubMed Kim SJ, Kim HK, Han YW, et al. Multiple alternating immunizations with DNA vaccine and replication-incompetent adenovirus expressing gB of pseudorabies virus protect animals against lethal virus challenge. J Microbiol Biotechnol. 2008;18(7):1326–34.PubMed
37.
go back to reference Dory D, Fischer T, Béven V, et al. Prime-boost immunization using DNA vaccine and recombinant Orf virus protects pigs against Pseudorabies virus (herpes suid 1). Vaccine. 2006;24(37–39):6256–63.PubMedCrossRef Dory D, Fischer T, Béven V, et al. Prime-boost immunization using DNA vaccine and recombinant Orf virus protects pigs against Pseudorabies virus (herpes suid 1). Vaccine. 2006;24(37–39):6256–63.PubMedCrossRef
38.
go back to reference Hong W, Xiao S, Rui Z, et al. Protection induced by intramuscular immunization with DNA vaccines of pseudorabies in mice, rabbits and piglets. Vaccine. 2002;20(7–8):1205–14.PubMedCrossRef Hong W, Xiao S, Rui Z, et al. Protection induced by intramuscular immunization with DNA vaccines of pseudorabies in mice, rabbits and piglets. Vaccine. 2002;20(7–8):1205–14.PubMedCrossRef
39.
go back to reference Passarinha LA, Diogo MM, Queiroz JA, et al. Production of ColE1 type plasmid by Escherichia coli DH5α cultured under non-selective conditions. J Microbiol Biotechnol. 2006;16(1):20–4. Passarinha LA, Diogo MM, Queiroz JA, et al. Production of ColE1 type plasmid by Escherichia coli DH5α cultured under non-selective conditions. J Microbiol Biotechnol. 2006;16(1):20–4.
40.
go back to reference Ishikawa T, Yamanaka A, Konishi E. A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine. 2014;32(12):1326–37.PubMedCrossRef Ishikawa T, Yamanaka A, Konishi E. A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine. 2014;32(12):1326–37.PubMedCrossRef
42.
go back to reference Whitehead SS, Blaney JE, Durbin AP, et al. Prospects for a dengue virus vaccine. Nat Rev Microbiol. 2007;5(7):518–28.PubMedCrossRef Whitehead SS, Blaney JE, Durbin AP, et al. Prospects for a dengue virus vaccine. Nat Rev Microbiol. 2007;5(7):518–28.PubMedCrossRef
43.
go back to reference Curtiss R. Antigen delivery systems for analysing host immune responses and for vaccine development. Trends Biotechnol. 1990;8(9):237–40.PubMedCrossRef Curtiss R. Antigen delivery systems for analysing host immune responses and for vaccine development. Trends Biotechnol. 1990;8(9):237–40.PubMedCrossRef
44.
go back to reference Lee G, Chung H-S, Lee K, et al. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice. Phytopharmacology. 2017;S094471131730017X. Lee G, Chung H-S, Lee K, et al. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice. Phytopharmacology. 2017;S094471131730017X.
45.
go back to reference Wasner T. Glucocorticoids and the Th1/Th2 balance. Horm Metab Res. 2003;35(10):628–48.CrossRef Wasner T. Glucocorticoids and the Th1/Th2 balance. Horm Metab Res. 2003;35(10):628–48.CrossRef
46.
go back to reference Groettrup M, Khan S, Schwarz K, et al. Interferon-?? Inducible exchanges of 20S proteasome active site subunits: why? Biochimie. 2001;83(3–4):367–72.PubMedCrossRef Groettrup M, Khan S, Schwarz K, et al. Interferon-?? Inducible exchanges of 20S proteasome active site subunits: why? Biochimie. 2001;83(3–4):367–72.PubMedCrossRef
47.
go back to reference Kallas EG, Precioso AR, Palacios R, et al. Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adults in Brazil: a two-step, double-blind, randomised placebo-controlled phase 2 trial. Lancet Infect Dis. 2020;3099(20):30023–35. Kallas EG, Precioso AR, Palacios R, et al. Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adults in Brazil: a two-step, double-blind, randomised placebo-controlled phase 2 trial. Lancet Infect Dis. 2020;3099(20):30023–35.
Metadata
Title
Heterologous prime-boost: an important candidate immunization strategy against Tembusu virus
Authors
Yuting Pan
Renyong Jia
Juping Li
Mingshu Wang
Shun Chen
Mafeng Liu
Dekang Zhu
Xinxin Zhao
Ying Wu
Qiao Yang
Zhongqiong Yin
Bo Jing
Juan Huang
Shaqiu Zhang
Lin Zhang
Yunya Liu
Yanlin Yu
Bin Tian
Leichang Pan
Mujeeb Ur Rehman
Anchun Cheng
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Adenovirus
Published in
Virology Journal / Issue 1/2020
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-020-01334-w

Other articles of this Issue 1/2020

Virology Journal 1/2020 Go to the issue