Skip to main content
Top
Published in: Virology Journal 1/2019

Open Access 01-12-2019 | Influenza Virus | Research

Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies

Authors: Natalia A. Ilyushina, Takashi E. Komatsu, William L. Ince, Eric F. Donaldson, Nicolette Lee, Julian J. O’Rear, Raymond P. Donnelly

Published in: Virology Journal | Issue 1/2019

Login to get access

Abstract

Background

Vaccination and the use of neuraminidase inhibitors (NAIs) are currently the front lines of defense against seasonal influenza. The activity of influenza vaccines and antivirals drugs such as the NAIs can be affected by mutations in the influenza hemagglutinin (HA) protein. Numerous HA substitutions have been identified in nonclinical NAI resistance-selection experiments as well as in clinical specimens from NAI treatment or surveillance studies. These mutations are listed in the prescribing information (package inserts) for FDA-approved NAIs, including oseltamivir, zanamivir, and peramivir.

Methods

NAI treatment-emergent H1 HA mutations were mapped onto the H1N1 HA1 trimeric crystal structure and most of them localized to the HA antigenic sites predicted to be important for anti-influenza immunity. Recombinant A/California/04/09 (H1N1)-like viruses carrying HA V152I, G155E, S162 N, S183P, and D222G mutations were generated. We then evaluated the impact of these mutations on the immune reactivity and replication potential of the recombinant viruses in a human respiratory epithelial cell line, Calu− 3.

Results

We found that the G155E and D222G mutations significantly increased viral titers ~ 13-fold compared to the wild-type virus. The hemagglutination and microneutralization activity of goat and ferret antisera, monoclonal antibodies, and human serum samples raised against pandemic A(H1N1)pdm09 viruses was ~ 100-fold lower against mutants carrying G155E or D222G compared to the wild-type virus.

Conclusions

Although the mechanism by which HA mutations emerge during NAI treatment is uncertain, some NAI treatment-emergent HA mutations correlate with decreased immunity to influenza virus.
Literature
1.
go back to reference Rolfes MA, Foppa IM, Garg S, Flannery B, Brammer L, Singleton JA, et al. Annual estimates of the burden of seasonal influenza in the United States: a tool for strengthening influenza surveillance and preparedness. Influenza Other Respir Viruses. 2018;12(1):132–7.CrossRef Rolfes MA, Foppa IM, Garg S, Flannery B, Brammer L, Singleton JA, et al. Annual estimates of the burden of seasonal influenza in the United States: a tool for strengthening influenza surveillance and preparedness. Influenza Other Respir Viruses. 2018;12(1):132–7.CrossRef
2.
go back to reference Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982;31(2Pt1):417–27.CrossRef Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982;31(2Pt1):417–27.CrossRef
3.
go back to reference Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science. 2009;326(5953):734–6.CrossRef Hensley SE, Das SR, Bailey AL, Schmidt LM, Hickman HD, Jayaraman A, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science. 2009;326(5953):734–6.CrossRef
4.
go back to reference Koel BF, Burke DF, Bestebroer TM, van der Vilet S, Zondag GC, Vervaet G, et al. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science. 2013;342(6161):976–9.CrossRef Koel BF, Burke DF, Bestebroer TM, van der Vilet S, Zondag GC, Vervaet G, et al. Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science. 2013;342(6161):976–9.CrossRef
5.
go back to reference McKimm-Breschkin JL. Resistance of influenza viruses to neuraminidase inhibitors – a review. Antivir Res. 2000;47(1):1–17.CrossRef McKimm-Breschkin JL. Resistance of influenza viruses to neuraminidase inhibitors – a review. Antivir Res. 2000;47(1):1–17.CrossRef
6.
go back to reference McKimm-Breschkin JL, Blick TJ, Sahasrabudhe A, Tiong T, Marshall D, Hart GJ, et al. Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en. Antimicrob Agents Chemother. 1996;40(1):40–6.CrossRef McKimm-Breschkin JL, Blick TJ, Sahasrabudhe A, Tiong T, Marshall D, Hart GJ, et al. Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en. Antimicrob Agents Chemother. 1996;40(1):40–6.CrossRef
7.
go back to reference Blick TJ, Sahasrabudhe A, McDonald M, Owens IJ, Morley PJ, Fenton RJ, et al. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology. 1998;246(1):95–103.CrossRef Blick TJ, Sahasrabudhe A, McDonald M, Owens IJ, Morley PJ, Fenton RJ, et al. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology. 1998;246(1):95–103.CrossRef
8.
go back to reference Gubareva LV, Matrosovich MN, Brenner MK, Bethell RC, Webster RG. Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. J Infect Dis. 1998;178(5):1257–62.CrossRef Gubareva LV, Matrosovich MN, Brenner MK, Bethell RC, Webster RG. Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. J Infect Dis. 1998;178(5):1257–62.CrossRef
9.
go back to reference Baz M, Abed Y, Boivin G. Characterization of drug-resistant recombinant influenza A/H1N1 viruses selected in vitro with peramivir and zanamivir. Antivir Res. 2007;74(2):159–62.CrossRef Baz M, Abed Y, Boivin G. Characterization of drug-resistant recombinant influenza A/H1N1 viruses selected in vitro with peramivir and zanamivir. Antivir Res. 2007;74(2):159–62.CrossRef
10.
go back to reference McKimm-Breschkin JL, Rootes C, Mohr PG, Barrett S, Streltsov VA. In vitro passaging of a pandemic H1N1/09 virus selects for viruses with neuraminidase mutations conferring high-level resistance to oseltamivir and peramivir, but not to zanamivir. J Antimicrob Chemother. 2012;67(8):1874–83.CrossRef McKimm-Breschkin JL, Rootes C, Mohr PG, Barrett S, Streltsov VA. In vitro passaging of a pandemic H1N1/09 virus selects for viruses with neuraminidase mutations conferring high-level resistance to oseltamivir and peramivir, but not to zanamivir. J Antimicrob Chemother. 2012;67(8):1874–83.CrossRef
11.
go back to reference McKimm-Breschkin JL, Williams J, Barrett S, Jachno K, McDonald M, Mohr PG, et al. Reduced susceptibility to all neuraminidase inhibitors of influenza H1N1 viruses with haemagglutinin mutations and mutations in non-conserved residues of the neuraminidase. J Antimicrob Chemother. 2013;68(10):2210–21.CrossRef McKimm-Breschkin JL, Williams J, Barrett S, Jachno K, McDonald M, Mohr PG, et al. Reduced susceptibility to all neuraminidase inhibitors of influenza H1N1 viruses with haemagglutinin mutations and mutations in non-conserved residues of the neuraminidase. J Antimicrob Chemother. 2013;68(10):2210–21.CrossRef
15.
go back to reference Hensley SE, Das SR, Gibbs JS, Bailey AL, Schmidt LM, Bennink JR, et al. Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS One. 2011;6(2):e15190.CrossRef Hensley SE, Das SR, Gibbs JS, Bailey AL, Schmidt LM, Bennink JR, et al. Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS One. 2011;6(2):e15190.CrossRef
16.
go back to reference Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97(11):6108–13.CrossRef Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A. 2000;97(11):6108–13.CrossRef
17.
go back to reference Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE Jr, Wilson IA. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science. 2010;328(5976):357–60.CrossRef Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE Jr, Wilson IA. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science. 2010;328(5976):357–60.CrossRef
18.
go back to reference Melidou A, Gioula G, Exindari M, Chatzidimitriou D, Malisiovas N. Genetic analysis of post-pandemic 2010−2011 influenza A(H1N1)pdm09 hemagglutinin virus variants that caused mild, severe, and fatal infections in northern Greece. J Med Virol. 2015;87(1):57–67.CrossRef Melidou A, Gioula G, Exindari M, Chatzidimitriou D, Malisiovas N. Genetic analysis of post-pandemic 2010−2011 influenza A(H1N1)pdm09 hemagglutinin virus variants that caused mild, severe, and fatal infections in northern Greece. J Med Virol. 2015;87(1):57–67.CrossRef
19.
go back to reference Barr IG, Cui L, Komadina N, Lee RT, Lin RT, Deng Y, et al. A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza seasoan in Australia, New Zealand and Singapore. Eurosurveillance. 2010;15(42):19692.CrossRef Barr IG, Cui L, Komadina N, Lee RT, Lin RT, Deng Y, et al. A new pandemic influenza A(H1N1) genetic variant predominated in the winter 2010 influenza seasoan in Australia, New Zealand and Singapore. Eurosurveillance. 2010;15(42):19692.CrossRef
20.
go back to reference Tisdale M. Influenza M2 ion-channel and neuraminidase inhibitors. In: Mayers DL, Lerner SA, Ouellette M, Sobel JD, editors. (ed), Antimicrobial drug resistance: mechanisms of drug resistance. 2009;1:421–447. Tisdale M. Influenza M2 ion-channel and neuraminidase inhibitors. In: Mayers DL, Lerner SA, Ouellette M, Sobel JD, editors. (ed), Antimicrobial drug resistance: mechanisms of drug resistance. 2009;1:421–447.
21.
go back to reference Marty FM, Vidal-Puigserver J, Clark C, Gupta SK, Merino E, Garot D, et al. Intravenous zanamivir or oral oseltamivir for hospitalized patientns with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial. Lancet Respir Med. 2017;5(2):135–46.CrossRef Marty FM, Vidal-Puigserver J, Clark C, Gupta SK, Merino E, Garot D, et al. Intravenous zanamivir or oral oseltamivir for hospitalized patientns with influenza: an international, randomised, double-blind, double-dummy, phase 3 trial. Lancet Respir Med. 2017;5(2):135–46.CrossRef
23.
go back to reference Yates PJ, Raimonde DS, Zhao HH, Man CY, Steel HM, Mehta N, et al. Phenotypic and genotypic analysis of influenza viruses isolated from adult subjects during a phase II study of intravenous zanamivir in hospitalised subjects. Antivir Res. 2016;134:144–52.CrossRef Yates PJ, Raimonde DS, Zhao HH, Man CY, Steel HM, Mehta N, et al. Phenotypic and genotypic analysis of influenza viruses isolated from adult subjects during a phase II study of intravenous zanamivir in hospitalised subjects. Antivir Res. 2016;134:144–52.CrossRef
24.
go back to reference Korsun N, Angelova S, Gregory V, Daniels R, Georgieva, McCauley J. Antigenic and genetic characterization of influenza viruses circulating in Bulgaria during the 2015/2016 season. Infect Genet Evol. 2017;49:241–50.CrossRef Korsun N, Angelova S, Gregory V, Daniels R, Georgieva, McCauley J. Antigenic and genetic characterization of influenza viruses circulating in Bulgaria during the 2015/2016 season. Infect Genet Evol. 2017;49:241–50.CrossRef
25.
go back to reference Burke DF, Smith DJ. A recommended numbering scheme for influenza A HA subtypes. PLoS One. 2014;9(11):e112302.CrossRef Burke DF, Smith DJ. A recommended numbering scheme for influenza A HA subtypes. PLoS One. 2014;9(11):e112302.CrossRef
26.
go back to reference Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim X, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol. 1999;37(4):937–43.PubMedPubMedCentral Rowe T, Abernathy RA, Hu-Primmer J, Thompson WW, Lu X, Lim X, et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J Clin Microbiol. 1999;37(4):937–43.PubMedPubMedCentral
27.
go back to reference Adams SE, Lee N, Lugovtsev VY, Kan A, Donnelly RP, Ilyushina NA. Effect of influenza H1N1 neuraminidase V116A and I117V mutations on NA activity and sensitivity to NA inhibitors. Antivir Res. 2019;169:104539.CrossRef Adams SE, Lee N, Lugovtsev VY, Kan A, Donnelly RP, Ilyushina NA. Effect of influenza H1N1 neuraminidase V116A and I117V mutations on NA activity and sensitivity to NA inhibitors. Antivir Res. 2019;169:104539.CrossRef
28.
go back to reference Fiore AE, Fry A, Shay D, Gubareva L, Bresee JS, Uyeki TM. Antiviral agents for the treatment and chemoprophylaxis of influenza - recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep. 2011;60(1):1–24.PubMed Fiore AE, Fry A, Shay D, Gubareva L, Bresee JS, Uyeki TM. Antiviral agents for the treatment and chemoprophylaxis of influenza - recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep. 2011;60(1):1–24.PubMed
29.
go back to reference Forns X, Lawitz E, Zeuzem S, Gane E, Bronowicki JP, Andreone P, et al. Simeprevir with peginterferon and ribavirin leads to high rates of SVR in patients with HCV genotype 1 who relapsed after previous therapy: a phase 3 trial. Gastroenterology. 2014;146(7):1669–79.CrossRef Forns X, Lawitz E, Zeuzem S, Gane E, Bronowicki JP, Andreone P, et al. Simeprevir with peginterferon and ribavirin leads to high rates of SVR in patients with HCV genotype 1 who relapsed after previous therapy: a phase 3 trial. Gastroenterology. 2014;146(7):1669–79.CrossRef
30.
go back to reference Jacobson IM, Dore GJ, Foster GR, Fried MW, Radu M, Rafalsky VV, et al. Simeprevir with pegylated interferon alfa 2a plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST−1): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2014;384(9941):403–13.CrossRef Jacobson IM, Dore GJ, Foster GR, Fried MW, Radu M, Rafalsky VV, et al. Simeprevir with pegylated interferon alfa 2a plus ribavirin in treatment-naive patients with chronic hepatitis C virus genotype 1 infection (QUEST−1): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2014;384(9941):403–13.CrossRef
31.
go back to reference Das SR, Hensley SE, Ince WL, Brooke CB, Subba A, Delboy MG, et al. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe. 2013;13(3):314–23.CrossRef Das SR, Hensley SE, Ince WL, Brooke CB, Subba A, Delboy MG, et al. Defining influenza A virus hemagglutinin antigenic drift by sequential monoclonal antibody selection. Cell Host Microbe. 2013;13(3):314–23.CrossRef
32.
go back to reference Lee N, Khalenkov AM, Lugovtsev VY, Ireland DD, Samsonova AP, Bovin NV, et al. The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity. PLoS One. 2018;13(4):e0195525.CrossRef Lee N, Khalenkov AM, Lugovtsev VY, Ireland DD, Samsonova AP, Bovin NV, et al. The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity. PLoS One. 2018;13(4):e0195525.CrossRef
33.
go back to reference Rudneva I, Ignatieva A, Timofeeva T, Shilov A, Kushch A, Masalova O, et al. Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Res. 2012;166(1–2):61–7.CrossRef Rudneva I, Ignatieva A, Timofeeva T, Shilov A, Kushch A, Masalova O, et al. Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. Virus Res. 2012;166(1–2):61–7.CrossRef
34.
go back to reference Kosik I, Ince WL, Gentles LE, Oler AJ, Kosikova M, Angel M, et al. Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathog. 2018;14(1):e1006796.CrossRef Kosik I, Ince WL, Gentles LE, Oler AJ, Kosikova M, Angel M, et al. Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathog. 2018;14(1):e1006796.CrossRef
35.
go back to reference Lin YP, Xiong X, Wharton SA, Martin SR, Coombs PJ, Vachieri SG, et al. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A. 2012;109(52):21474–9.CrossRef Lin YP, Xiong X, Wharton SA, Martin SR, Coombs PJ, Vachieri SG, et al. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A. 2012;109(52):21474–9.CrossRef
36.
go back to reference O’Donnell CD, Vogel L, Wright A, Das SR, Wrammert J, Li GM, et al. Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. MBio. 2012;3(3):e00120–12.CrossRef O’Donnell CD, Vogel L, Wright A, Das SR, Wrammert J, Li GM, et al. Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. MBio. 2012;3(3):e00120–12.CrossRef
37.
go back to reference Tisdale M. Monitoring of viral susceptibility: new challenges with the development of influenza NA inhibitors. Rev Med Virol. 2000;10(1):45–55.CrossRef Tisdale M. Monitoring of viral susceptibility: new challenges with the development of influenza NA inhibitors. Rev Med Virol. 2000;10(1):45–55.CrossRef
38.
go back to reference Ye J, Sorrell EM, Cai Y, Shao H, Xu K, Pena L, et al. Variations in the hemagglutinin of the 2009 H1N1 pandemic virus: potential for strains with altered virulence phenotype? PLoS Pathog. 2010;6(10):e1001145.CrossRef Ye J, Sorrell EM, Cai Y, Shao H, Xu K, Pena L, et al. Variations in the hemagglutinin of the 2009 H1N1 pandemic virus: potential for strains with altered virulence phenotype? PLoS Pathog. 2010;6(10):e1001145.CrossRef
39.
go back to reference Igarashi M, Ito K, Yoshida R, Tomabechi D, Kida H, Takada A. Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS One. 2010;5(1):e8553.CrossRef Igarashi M, Ito K, Yoshida R, Tomabechi D, Kida H, Takada A. Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin. PLoS One. 2010;5(1):e8553.CrossRef
40.
go back to reference Chan PK, Lee N, Joynt GM, Choi KW, Cheung JL, Yeung AC, et al. Clinical and virological course of infection with haemagglutinin D222G mutant strain of 2009 pandemic influenza A (H1N1) virus. J Clin Virol. 2011;50(4):320–4.CrossRef Chan PK, Lee N, Joynt GM, Choi KW, Cheung JL, Yeung AC, et al. Clinical and virological course of infection with haemagglutinin D222G mutant strain of 2009 pandemic influenza A (H1N1) virus. J Clin Virol. 2011;50(4):320–4.CrossRef
41.
go back to reference Kilander A, Rykkvin R, Dudman SG, Hungnes O. Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill. 2010;15(9). Kilander A, Rykkvin R, Dudman SG, Hungnes O. Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro Surveill. 2010;15(9).
42.
go back to reference Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, et al. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol. 2010;84(22):11802–13.CrossRef Chutinimitkul S, Herfst S, Steel J, Lowen AC, Ye J, van Riel D, et al. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J Virol. 2010;84(22):11802–13.CrossRef
43.
go back to reference Pan D, Xue W, Wang X, Guo J, Liu H, Yao X. Molecular mechanism of the enhanced virulence of 2009 pandemic influenza A(H1N1) virus from D222G mutation in the hemagglutinin: a molecular modeling study. J Mol Model. 2012;18(9):4355–66.CrossRef Pan D, Xue W, Wang X, Guo J, Liu H, Yao X. Molecular mechanism of the enhanced virulence of 2009 pandemic influenza A(H1N1) virus from D222G mutation in the hemagglutinin: a molecular modeling study. J Mol Model. 2012;18(9):4355–66.CrossRef
44.
go back to reference Das SR, Piugbo P, Hensley SE, Hurt DE, Bennink JR, Yewdell JW. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog. 2010;6(11):e1001211.CrossRef Das SR, Piugbo P, Hensley SE, Hurt DE, Bennink JR, Yewdell JW. Glycosylation focuses sequence variation in the influenza A virus H1 hemagglutinin globular domain. PLoS Pathog. 2010;6(11):e1001211.CrossRef
Metadata
Title
Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies
Authors
Natalia A. Ilyushina
Takashi E. Komatsu
William L. Ince
Eric F. Donaldson
Nicolette Lee
Julian J. O’Rear
Raymond P. Donnelly
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2019
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-019-1258-x

Other articles of this Issue 1/2019

Virology Journal 1/2019 Go to the issue