Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Isolation and characterization of the fall Chinook aquareovirus

Authors: Negar Makhsous, Nicole L. Jensen, Katherine H. Haman, William N. Batts, Keith R. Jerome, James R. Winton, Alexander L. Greninger

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Salmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.

Methods

The virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE.

Results

The genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells.

Conclusions

This sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.
Literature
1.
go back to reference Dermody TS. Molecular mechanisms of persistent infection by reovirus. Curr Top Microbiol Immunol. 1998;233:1–22.PubMed Dermody TS. Molecular mechanisms of persistent infection by reovirus. Curr Top Microbiol Immunol. 1998;233:1–22.PubMed
2.
go back to reference Zhang Q, Gui J-F. Virus genomes and virus-host interactions in aquaculture animals. Sci China Life Sci. 2015;58:156–69.CrossRefPubMed Zhang Q, Gui J-F. Virus genomes and virus-host interactions in aquaculture animals. Sci China Life Sci. 2015;58:156–69.CrossRefPubMed
4.
go back to reference Subramanian K, McPhillips TH, Samal SK. Characterization of the polypeptides and determination of genome coding assignments of an aquareovirus. Virology. 1994;205:75–81.CrossRefPubMed Subramanian K, McPhillips TH, Samal SK. Characterization of the polypeptides and determination of genome coding assignments of an aquareovirus. Virology. 1994;205:75–81.CrossRefPubMed
5.
go back to reference Kibenge FSB, Godoy MG. Aquaculture virology. In: Reoviruses of aquatic organisms; 2016. p. 205–36. Kibenge FSB, Godoy MG. Aquaculture virology. In: Reoviruses of aquatic organisms; 2016. p. 205–36.
6.
go back to reference Winton JR, Lannan C., Yoshimizu M, Kimura T. Response of Salmonid Fish to Artificial Infection with Chum Salmon Virus, p. 270–278. In Viruses of Lower Vertebrates. Berlin: Springer-Verlag; 1987. Winton JR, Lannan C., Yoshimizu M, Kimura T. Response of Salmonid Fish to Artificial Infection with Chum Salmon Virus, p. 270–278. In Viruses of Lower Vertebrates. Berlin: Springer-Verlag; 1987.
7.
go back to reference LaPatra SE, Lauda KA, Jones GR. Aquareovirus interference mediated resistance to infectious hematopoietic necrosis virus. Vet Res. 1995;26:455–9.PubMed LaPatra SE, Lauda KA, Jones GR. Aquareovirus interference mediated resistance to infectious hematopoietic necrosis virus. Vet Res. 1995;26:455–9.PubMed
8.
go back to reference Chen Z-Y, Gao X-C, Zhang Q-Y. Whole-genome analysis of a novel fish reovirus (MsReV) discloses aquareovirus genomic structure relationship with host in saline environments. Viruses. 2015;7:4282–302.CrossRefPubMedPubMedCentral Chen Z-Y, Gao X-C, Zhang Q-Y. Whole-genome analysis of a novel fish reovirus (MsReV) discloses aquareovirus genomic structure relationship with host in saline environments. Viruses. 2015;7:4282–302.CrossRefPubMedPubMedCentral
9.
go back to reference Greninger AL, Chen EC, Sittler T, Scheinerman A, Roubinian N, Yu G, Kim E, Pillai DR, Guyard C, Mazzulli T, Isa P, Arias CF, Hackett J, Schochetman G, Miller S, Tang P, Chiu CY. A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS One. 2010;5:e13381.CrossRefPubMedPubMedCentral Greninger AL, Chen EC, Sittler T, Scheinerman A, Roubinian N, Yu G, Kim E, Pillai DR, Guyard C, Mazzulli T, Isa P, Arias CF, Hackett J, Schochetman G, Miller S, Tang P, Chiu CY. A metagenomic analysis of pandemic influenza A (2009 H1N1) infection in patients from North America. PLoS One. 2010;5:e13381.CrossRefPubMedPubMedCentral
10.
go back to reference Greninger AL, Zerr DM, Qin X, Adler AL, Sampoleo R, Kuypers JM, Englund JA, Jerome KR. Rapid metagenomic next-generation sequencing during an investigation of hospital-acquired human parainfluenza virus 3 infections. J Clin Microbiol. 2017;55:177–82.CrossRefPubMed Greninger AL, Zerr DM, Qin X, Adler AL, Sampoleo R, Kuypers JM, Englund JA, Jerome KR. Rapid metagenomic next-generation sequencing during an investigation of hospital-acquired human parainfluenza virus 3 infections. J Clin Microbiol. 2017;55:177–82.CrossRefPubMed
11.
go back to reference Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CrossRefPubMedPubMedCentral Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CrossRefPubMedPubMedCentral
12.
go back to reference Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CrossRefPubMed Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CrossRefPubMed
13.
go back to reference Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R. MEGAN Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.CrossRefPubMedPubMedCentral Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, Ruscheweyh H-J, Tappu R. MEGAN Community Edition - Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.CrossRefPubMedPubMedCentral
14.
go back to reference Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CrossRefPubMedPubMedCentral Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CrossRefPubMedPubMedCentral
15.
go back to reference Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinforma Oxf Engl. 2001;17:754–5.CrossRef Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinforma Oxf Engl. 2001;17:754–5.CrossRef
16.
go back to reference Scotto-Lavino E, Du G, Frohman MA. 3′ End cDNA amplification using classic RACE. Nat Protoc. 2007;1:2742–5.CrossRef Scotto-Lavino E, Du G, Frohman MA. 3′ End cDNA amplification using classic RACE. Nat Protoc. 2007;1:2742–5.CrossRef
17.
go back to reference Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q, Cantaloube J-F, Biagini P, de Micco P, Mertens PPC, Attoui H. Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology. 2008;373:310–21.CrossRefPubMed Mohd Jaafar F, Goodwin AE, Belhouchet M, Merry G, Fang Q, Cantaloube J-F, Biagini P, de Micco P, Mertens PPC, Attoui H. Complete characterisation of the American grass carp reovirus genome (genus Aquareovirus: family Reoviridae) reveals an evolutionary link between aquareoviruses and coltiviruses. Virology. 2008;373:310–21.CrossRefPubMed
Metadata
Title
Isolation and characterization of the fall Chinook aquareovirus
Authors
Negar Makhsous
Nicole L. Jensen
Katherine H. Haman
William N. Batts
Keith R. Jerome
James R. Winton
Alexander L. Greninger
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0839-9

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue