Skip to main content
Top
Published in: Virology Journal 1/2016

Open Access 01-12-2016 | Research

Monoclonal antibodies for differentiating infections of three serological-related tospoviruses prevalent in Southwestern China

Authors: Yu-Han Chen, Jiahong Dong, Wan-Chu Chien, Kuanyu Zheng, Kuo Wu, Shyi-Dong Yeh, Jing-Hua Sun, Yun-Chi Wang, Tsung-Chi Chen

Published in: Virology Journal | Issue 1/2016

Login to get access

Abstract

Background

The thrips-borne tospoviruses Calla lily chlorotic spot virus (CCSV), Tomato zonate spot virus (TZSV) and a new species provisionally named Tomato necrotic spot associated virus (TNSaV) infect similar crops in southwestern China. The symptoms exhibiting on virus-infected crops are similar, which is difficult for distinguishing virus species by symptomatology. The sequences of nucleocapsid proteins (NPs) of CCSV, TNSaV and TZSV share high degrees of amino acid identity with each other, and their serological relationship was currently demonstrated from the responses of the previously reported monoclonal antibodies (MAbs) against the NP of CCSV (MAb-CCSV-NP) and the nonstructural NSs protein of Watermelon silver mottle virus (WSMoV) (MAb-WNSs). Therefore, the production of virus-specific antibodies for identification of CCSV, TNSaV and TZSV is demanded to improve field surveys.

Methods

The NP of TZSV-13YV639 isolated from Crinum asiaticum in Yunnan Province, China was bacterially expressed and purified for producing MAbs. Indirect enzyme-linked immunosorbent assay (ELISA) and immunoblotting were conducted to test the serological response of MAbs to 18 tospovirus species. Additionally, the virus-specific primers were designed to verify the identity of CCSV, TNSaV and TZSV in one-step reverse transcription-polymerase chain reaction (RT-PCR).

Results

Two MAbs, denoted MAb-TZSV-NP(S15) and MAb-TZSV-NP(S18), were screened for test. MAb-TZSV-NP(S15) reacted with CCSV and TZSV while MAb-TZSV-NP(S18) reacted specifically to TZSV in both indirect ELISA and immunoblotting. Both MAbs can be used to detect TZSV in field-collected plant samples. The epitope of MAb-TZSV-NP(S18) was further identified consisting of amino acids 78–86 (HKIVASGAD) of the TZSV-13YV639 NP that is a highly conserved region among known TZSV isolates but is distinct from TNSaV and TZSV.

Conclusions

In this study, two MAbs targeting to different portions of the TZSV NP were obtained. Unlike MAb-CCSV-NP reacted with TNSaV as well as CCSV and TZSV, both TZSV MAbs can be used to differentiate CCSV, TNSaV and TZSV. The identity of CCSV, TNSaV and TZSV was proven by individual virus-specific primer pairs to indicate the correctness of serological responses. We also proposed an serological detection platform using MAb-CCSV-NP, MAb-TZSV-NP(S15) and MAb-TZSV-NP(S18) to allow researchers and quarantine staff to efficiently diagnose the infections of CCSV, TNSaV and TZSV in China and other countries.
Appendix
Available only for authorised users
Literature
1.
go back to reference Pappu HR, Jones RA, Jain RK. Global status of tospovirus epidemics in diverse cropping systems: successes gained and challenges that lie ahead. Virus Res. 2009;141:219–36.CrossRefPubMed Pappu HR, Jones RA, Jain RK. Global status of tospovirus epidemics in diverse cropping systems: successes gained and challenges that lie ahead. Virus Res. 2009;141:219–36.CrossRefPubMed
3.
go back to reference Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, et al. Bunyaviridae. In: King AMQ, Lefkowitz E, Adams MJ, Carstens E, editors. Virus taxonomy-9th reports of the international committee on taxonomy of viruses. New York: Elsevier; 2011. p. 725–41. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, et al. Bunyaviridae. In: King AMQ, Lefkowitz E, Adams MJ, Carstens E, editors. Virus taxonomy-9th reports of the international committee on taxonomy of viruses. New York: Elsevier; 2011. p. 725–41.
4.
go back to reference de Haan P, Kormelink R, Resende RO, van Poelwijk F, Peters D, Goldbach R. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol. 1991;72:2207–16.CrossRefPubMed de Haan P, Kormelink R, Resende RO, van Poelwijk F, Peters D, Goldbach R. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol. 1991;72:2207–16.CrossRefPubMed
5.
go back to reference van Knippenberg I, Goldbach R, Kormelink R. Purified Tomato spotted wilt virus particles support both genome replication and transcription in vitro. Virology. 2002;303:278–86.CrossRefPubMed van Knippenberg I, Goldbach R, Kormelink R. Purified Tomato spotted wilt virus particles support both genome replication and transcription in vitro. Virology. 2002;303:278–86.CrossRefPubMed
6.
go back to reference Kormelink R, Storms M, van Lent J, Peters D, Goldbach R. Expression and subcellular location of the NSm protein of Tomato spotted wiltvirus (TSWV), a putative viral movement protein. Virology. 1994;200:56–65.CrossRefPubMed Kormelink R, Storms M, van Lent J, Peters D, Goldbach R. Expression and subcellular location of the NSm protein of Tomato spotted wiltvirus (TSWV), a putative viral movement protein. Virology. 1994;200:56–65.CrossRefPubMed
7.
go back to reference Kikkert M, Verschoor AD, Kormelink R, Peters D, Goldbach R. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J Virol. 2001;75:1004–12.CrossRefPubMedPubMedCentral Kikkert M, Verschoor AD, Kormelink R, Peters D, Goldbach R. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J Virol. 2001;75:1004–12.CrossRefPubMedPubMedCentral
8.
go back to reference de Haan P, Wagemakers L, Peters D, Goldbach RW. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J Gen Virol. 1990;71:1001–7.CrossRefPubMed de Haan P, Wagemakers L, Peters D, Goldbach RW. The S RNA segment of Tomato spotted wilt virus has an ambisense character. J Gen Virol. 1990;71:1001–7.CrossRefPubMed
9.
go back to reference Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, et al. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 2002;532:75–9.CrossRefPubMed Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, et al. Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett. 2002;532:75–9.CrossRefPubMed
10.
go back to reference Bucher E, Sijen T, de Haan P, Goldbach R, Prins M. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol. 2003;77:1329–36.CrossRefPubMedPubMedCentral Bucher E, Sijen T, de Haan P, Goldbach R, Prins M. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol. 2003;77:1329–36.CrossRefPubMedPubMedCentral
11.
go back to reference Goldbach R, Kuo G. Introduction of tospoviruses and thrips of floral and vegetable crops. Acta Hortic. 1996;431:21–6.CrossRef Goldbach R, Kuo G. Introduction of tospoviruses and thrips of floral and vegetable crops. Acta Hortic. 1996;431:21–6.CrossRef
12.
go back to reference Jan FJ, Chen TC, Yeh SD. Occurrence, importance, taxonomy, and control of thrips-borne tospoviruses. In: Haung H, Acharya SN, editors. Advances in plant disease management. Kerala: Research Signpost; 2003. p. 391–411. Jan FJ, Chen TC, Yeh SD. Occurrence, importance, taxonomy, and control of thrips-borne tospoviruses. In: Haung H, Acharya SN, editors. Advances in plant disease management. Kerala: Research Signpost; 2003. p. 391–411.
13.
go back to reference Chen TC, Lu YY, Cheng YH, Li JT, Yeh YC, Kang YC, et al. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch Virol. 2010;155:1085–95.CrossRefPubMed Chen TC, Lu YY, Cheng YH, Li JT, Yeh YC, Kang YC, et al. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch Virol. 2010;155:1085–95.CrossRefPubMed
14.
go back to reference Kang YC, Yeh SD, Liao CH, Chou WC, Liu FL, Dong JH, et al. Verification of serological relationship between two phylogenetically related peanut-infecting Tospovirus species. Eur J Plant Pathol. 2014;140:815–28.CrossRef Kang YC, Yeh SD, Liao CH, Chou WC, Liu FL, Dong JH, et al. Verification of serological relationship between two phylogenetically related peanut-infecting Tospovirus species. Eur J Plant Pathol. 2014;140:815–28.CrossRef
15.
go back to reference Wu PR, Chien WC, Okuda M, Takeshita M, Yeh SD, Wang YC, et al. Genetic and serological characterization of chrysanthemum stem necrosis virus, a member of the genus Tospovirus. Arch Virol. 2015;160:529–36.CrossRefPubMed Wu PR, Chien WC, Okuda M, Takeshita M, Yeh SD, Wang YC, et al. Genetic and serological characterization of chrysanthemum stem necrosis virus, a member of the genus Tospovirus. Arch Virol. 2015;160:529–36.CrossRefPubMed
16.
go back to reference Seepiban C, Gajanandana O, Attathom T, Attathom S. Tomato necrotic ringspot virus, a new tospovirus isolated in Thailand. Arch Virol. 2011;156:263–74.CrossRefPubMed Seepiban C, Gajanandana O, Attathom T, Attathom S. Tomato necrotic ringspot virus, a new tospovirus isolated in Thailand. Arch Virol. 2011;156:263–74.CrossRefPubMed
17.
go back to reference Chen TC, Hsu HT, Jain RK, Huang CW, Lin CH, Liu FL, et al. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector in squash. J Virol Methods. 2005;129:113–24.CrossRefPubMed Chen TC, Hsu HT, Jain RK, Huang CW, Lin CH, Liu FL, et al. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector in squash. J Virol Methods. 2005;129:113–24.CrossRefPubMed
18.
go back to reference Zheng X, Liu CM, Li HG, Zhang J, Dong JH, Zhang ZK. Investigation of thrips, host plants of tospoviruses in Honghe of Yunnan Province. China Plant Prot. 2013;33:41–4. Zheng X, Liu CM, Li HG, Zhang J, Dong JH, Zhang ZK. Investigation of thrips, host plants of tospoviruses in Honghe of Yunnan Province. China Plant Prot. 2013;33:41–4.
19.
go back to reference Yin YY, Zheng KY, Dong JH, Fang Q, Wu SP, Wang LH, et al. Identification of a new tospovirus causing necrotic ringspot on tomato in China. Virol J. 2014;11:213.CrossRefPubMedPubMedCentral Yin YY, Zheng KY, Dong JH, Fang Q, Wu SP, Wang LH, et al. Identification of a new tospovirus causing necrotic ringspot on tomato in China. Virol J. 2014;11:213.CrossRefPubMedPubMedCentral
20.
go back to reference Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, et al. Characterization of tomato zonate spot virus, a new tospovirus in China. Arch Virol. 2008;153:855–64.CrossRefPubMed Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, et al. Characterization of tomato zonate spot virus, a new tospovirus in China. Arch Virol. 2008;153:855–64.CrossRefPubMed
21.
go back to reference Cai JH, Qin BX, Wei XP, Huang J, Zhou WL, Lin BS, et al. Molecular identification and characterization of Tomato zonate spot virus in tobacco in Guangxi, China. Plant Dis. 2011;95:1483.CrossRef Cai JH, Qin BX, Wei XP, Huang J, Zhou WL, Lin BS, et al. Molecular identification and characterization of Tomato zonate spot virus in tobacco in Guangxi, China. Plant Dis. 2011;95:1483.CrossRef
22.
go back to reference Liu Y, Huang CJ, Tao XR, Yu HQ. First report of Tomato zonate spot virus in Iris tectorum in China. Plant Dis. 2015;99:164.CrossRef Liu Y, Huang CJ, Tao XR, Yu HQ. First report of Tomato zonate spot virus in Iris tectorum in China. Plant Dis. 2015;99:164.CrossRef
23.
go back to reference Chen CC, Chen TC, Lin YH, Yeh SD, Hsu HT. A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Dis. 2005;89:440–5.CrossRef Chen CC, Chen TC, Lin YH, Yeh SD, Hsu HT. A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Dis. 2005;89:440–5.CrossRef
24.
go back to reference Liu Y, Lu X, Zhi L, Zheng Y, Chen X, Xu Y, et al. Calla lily chlorotic spot virus from spider lily (Hymenocallis litteralis) and tobacco (Nicotiana tabacum) in the south-west of China. J Phytopathol. 2012;160:201–5.CrossRef Liu Y, Lu X, Zhi L, Zheng Y, Chen X, Xu Y, et al. Calla lily chlorotic spot virus from spider lily (Hymenocallis litteralis) and tobacco (Nicotiana tabacum) in the south-west of China. J Phytopathol. 2012;160:201–5.CrossRef
25.
go back to reference Lin YH, Chen TC, Hsu HT, Liu FL, Chu FH, Chen CC, et al. Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology. 2005;95:1482–8.CrossRefPubMed Lin YH, Chen TC, Hsu HT, Liu FL, Chu FH, Chen CC, et al. Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology. 2005;95:1482–8.CrossRefPubMed
26.
go back to reference Chen TC, Huang CW, Kuo YW, Liu FL, Hsuan Yuan CH, Hsu HT, et al. Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology. 2006;96:1296–304.CrossRefPubMed Chen TC, Huang CW, Kuo YW, Liu FL, Hsuan Yuan CH, Hsu HT, et al. Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology. 2006;96:1296–304.CrossRefPubMed
27.
go back to reference Dong JH, Yin YY, Fang Q, McBeath JH, Zhang ZK. A new tospovirus causing chlorotic ringspot on Hippeastrum sp. in China. Virus Genes. 2013;46:567–70.CrossRefPubMed Dong JH, Yin YY, Fang Q, McBeath JH, Zhang ZK. A new tospovirus causing chlorotic ringspot on Hippeastrum sp. in China. Virus Genes. 2013;46:567–70.CrossRefPubMed
28.
go back to reference Chu FH, Chao CH, Peng YC, Lin SS, Chen CC, Yeh SD. Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology. 2001;91:856–63.CrossRefPubMed Chu FH, Chao CH, Peng YC, Lin SS, Chen CC, Yeh SD. Serological and molecular characterization of Peanut chlorotic fan-spot virus, a new species of the genus Tospovirus. Phytopathology. 2001;91:856–63.CrossRefPubMed
29.
go back to reference Chen TC, Lu YY, Cheng YH, Chang CA, Yeh SD. Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathol. 2008;54:765.CrossRef Chen TC, Lu YY, Cheng YH, Chang CA, Yeh SD. Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathol. 2008;54:765.CrossRef
30.
go back to reference Chen SM, Wang YC, Wu PR, Chen TC. Production of antiserum against the nucleocapsid protein of Tomato spotted wilt virus and investigation of its serological relationship with other tospoviruses. Plant Prot Bull. 2014;56:55–74. Chen SM, Wang YC, Wu PR, Chen TC. Production of antiserum against the nucleocapsid protein of Tomato spotted wilt virus and investigation of its serological relationship with other tospoviruses. Plant Prot Bull. 2014;56:55–74.
31.
go back to reference Pang SZ, Slightom JL, Gonsalves D. The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology. 1993;83:728–33.CrossRef Pang SZ, Slightom JL, Gonsalves D. The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology. 1993;83:728–33.CrossRef
32.
go back to reference de Avila AC, de Haan P, Kormelink R, Resende RO, Goldback RW, Peters D. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol. 1993;74:153–9.CrossRefPubMed de Avila AC, de Haan P, Kormelink R, Resende RO, Goldback RW, Peters D. Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol. 1993;74:153–9.CrossRefPubMed
33.
go back to reference Law MD, Moyer JW. A tomato spotted wilt-like virus with a serologically distinct N protein. J Gen Virol. 1990;71:933–8.CrossRef Law MD, Moyer JW. A tomato spotted wilt-like virus with a serologically distinct N protein. J Gen Virol. 1990;71:933–8.CrossRef
34.
go back to reference Cortes I, Livierations IC, Derks A, Peters D, Kormelink R. Molecular and serological characterization of iris yellow spot virus, a new and distinct tospovirus species. Phytopathology. 1998;88:1276–82.CrossRefPubMed Cortes I, Livierations IC, Derks A, Peters D, Kormelink R. Molecular and serological characterization of iris yellow spot virus, a new and distinct tospovirus species. Phytopathology. 1998;88:1276–82.CrossRefPubMed
35.
go back to reference Hassani-Mehraban A, Saaijer J, Peters D, Goldbach RW, Kormelink R. A new tomato-infecting tospovirus from Iran. Phytopathology. 2005;95:852–8.CrossRefPubMed Hassani-Mehraban A, Saaijer J, Peters D, Goldbach RW, Kormelink R. A new tomato-infecting tospovirus from Iran. Phytopathology. 2005;95:852–8.CrossRefPubMed
36.
go back to reference Hassani-Mehraban A, Botermans M, Verhoeven JTJ, Meekes E, Saaijer J, Peters D, et al. A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch Virol. 2010;155:423–8.CrossRefPubMedPubMedCentral Hassani-Mehraban A, Botermans M, Verhoeven JTJ, Meekes E, Saaijer J, Peters D, et al. A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch Virol. 2010;155:423–8.CrossRefPubMedPubMedCentral
37.
go back to reference Li JT, Yeh YC, Yeh SD, Raja JA, Rajagopalan PA, Liu LY, et al. Complete genomic sequence of watermelon bud necrosis virus. Arch Virol. 2011;156:359–62.CrossRefPubMed Li JT, Yeh YC, Yeh SD, Raja JA, Rajagopalan PA, Liu LY, et al. Complete genomic sequence of watermelon bud necrosis virus. Arch Virol. 2011;156:359–62.CrossRefPubMed
38.
go back to reference Hsu HT, Aebig J, Rochow WF. Differences among monoclonal antibodies to Barley yellow dwarf viruses. Phytopathology. 1984;74:600–5.CrossRef Hsu HT, Aebig J, Rochow WF. Differences among monoclonal antibodies to Barley yellow dwarf viruses. Phytopathology. 1984;74:600–5.CrossRef
39.
go back to reference Yeh SD, Gonsalves D. Purification and immunological analysis of cylindrical-inclusion protein induced by Papaya ringspot virus and Watermelon mosaic virus I. Phytopathology. 1984;74:1273–8.CrossRef Yeh SD, Gonsalves D. Purification and immunological analysis of cylindrical-inclusion protein induced by Papaya ringspot virus and Watermelon mosaic virus I. Phytopathology. 1984;74:1273–8.CrossRef
40.
go back to reference Hsu CH, Lin SS, Liu FL, Su WC, Yeh SD. Oral administration of a mite allergen expressed by Zucchini yellow mosaic virus in cucurbit species down-regulates allergen-induced airway inflammation and IgE synthesis. J Allergy Clin Immunol. 2004;113:1079–85.CrossRefPubMed Hsu CH, Lin SS, Liu FL, Su WC, Yeh SD. Oral administration of a mite allergen expressed by Zucchini yellow mosaic virus in cucurbit species down-regulates allergen-induced airway inflammation and IgE synthesis. J Allergy Clin Immunol. 2004;113:1079–85.CrossRefPubMed
Metadata
Title
Monoclonal antibodies for differentiating infections of three serological-related tospoviruses prevalent in Southwestern China
Authors
Yu-Han Chen
Jiahong Dong
Wan-Chu Chien
Kuanyu Zheng
Kuo Wu
Shyi-Dong Yeh
Jing-Hua Sun
Yun-Chi Wang
Tsung-Chi Chen
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2016
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0525-3

Other articles of this Issue 1/2016

Virology Journal 1/2016 Go to the issue