Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2020

01-12-2020 | Sarcopenia | Research

Age-specific differences in the time-frequency representation of surface electromyographic data recorded during a submaximal cyclic back extension exercise: a promising biomarker to detect early signs of sarcopenia

Authors: R. Habenicht, G. Ebenbichler, P. Bonato, J. Kollmitzer, S. Ziegelbecker, L. Unterlerchner, P. Mair, T. Kienbacher

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2020

Login to get access

Abstract

Purpose

Motivated by the goal of developing new methods to detect early signs of sarcopenia, we investigated if surface electromyographic (SEMG) data recorded during the performance of cyclic, submaximal back extensions are marked by age-specific differences in their time and frequency characteristics. Furthermore, day-to-day retest reliability of the EMG measures was examined.

Methods

A total of 86 healthy volunteers used a back dynamometer to perform a series of three maximal voluntary contractions (MVC) consisting of isometric back extensions, followed by an isometric back extension at 80% MVC, and finally 25 slow cyclic back extensions at 50% MVC. SEMG data was recorded bilaterally at L1, L2, and L5 from the iliocostalis lumborum, longissimus, and multifidus muscles, respectively. Tests were repeated two days and six weeks later. A linear mixed-effects model with fixed effects “age, sex, test number” and the random effect “person” was performed to investigate age-specific differences in both the initial value and the time-course (as defined by the slope of the regression line) of the root mean square (RMS-SEMG) values and instantaneous median frequency (IMDF-SEMG) values calculated separately for the shortening and lengthening phases of the exercise cycles. Generalizability Theory was used to examine reliability of the EMG measures.

Results

Back extensor strength was comparable in younger and older adults. The initial value of RMS-SEMG and IMDF-SEMG as well as the RMS-SEMG time-course did not significantly differ between the two age groups. Conversely, the IMDF-SEMG time-course showed more rapid changes in younger than in older individuals. Absolute and relative reliability of the SEMG time-frequency representations were comparable in older and younger individuals with good to excellent relative reliability but variable absolute reliability levels.

Conclusions

The IMDF-SEMG time-course derived from submaximal, cyclic back extension exercises performed at moderate effort showed significant differences in younger vs. older adults even though back extension strength was found to be comparable in the two age groups. We conclude that the SEMG method proposed in this study has great potential to be used as a biomarker to detect early signs of sarcopenic back muscle function.
Literature
1.
go back to reference Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39:412–23.PubMedPubMedCentralCrossRef Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39:412–23.PubMedPubMedCentralCrossRef
2.
go back to reference Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31.PubMedCrossRef Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31.PubMedCrossRef
3.
go back to reference Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985). 2003;95:1717–27.CrossRef Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985). 2003;95:1717–27.CrossRef
4.
go back to reference Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985). 2016;121:982–95.CrossRef Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985). 2016;121:982–95.CrossRef
5.
go back to reference Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511.PubMedCrossRef Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511.PubMedCrossRef
6.
go back to reference Erim Z, Beg MF, Burke DT, de Luca CJ. Effects of aging on motor-unit control properties. J Neurophysiol. 1999;82:2081–91.PubMedCrossRef Erim Z, Beg MF, Burke DT, de Luca CJ. Effects of aging on motor-unit control properties. J Neurophysiol. 1999;82:2081–91.PubMedCrossRef
7.
go back to reference Christie A, Kamen G. Motor unit firing behavior during prolonged 50% MVC dorsiflexion contractions in young and older adults. J Electromyogr Kinesiol. 2009;19:543–52.PubMedCrossRef Christie A, Kamen G. Motor unit firing behavior during prolonged 50% MVC dorsiflexion contractions in young and older adults. J Electromyogr Kinesiol. 2009;19:543–52.PubMedCrossRef
8.
go back to reference Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594:4525–36.PubMedCrossRef Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016;594:4525–36.PubMedCrossRef
9.
go back to reference Watanabe K, Holobar A, Kouzaki M, Ogawa M, Akima H, Moritani T. Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age (Dordr). 2016;38:48.CrossRef Watanabe K, Holobar A, Kouzaki M, Ogawa M, Akima H, Moritani T. Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age (Dordr). 2016;38:48.CrossRef
10.
go back to reference Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9:3–19.PubMedCrossRef Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9:3–19.PubMedCrossRef
11.
go back to reference Stenholm S, Tiainen K, Rantanen T, Sainio P, Heliovaara M, Impivaara O, Koskinen S. Long-term determinants of muscle strength decline: prospective evidence from the 22-year mini-Finland follow-up survey. J Am Geriatr Soc. 2012;60:77–85.PubMedCrossRef Stenholm S, Tiainen K, Rantanen T, Sainio P, Heliovaara M, Impivaara O, Koskinen S. Long-term determinants of muscle strength decline: prospective evidence from the 22-year mini-Finland follow-up survey. J Am Geriatr Soc. 2012;60:77–85.PubMedCrossRef
12.
go back to reference Landi F, Calvani R, Tosato M, Martone AM, Bernabei R, Onder G, Marzetti E. Impact of physical function impairment and multimorbidity on mortality among community-living older persons with sarcopaenia: results from the ilSIRENTE prospective cohort study. BMJ Open. 2016;6:e008281.PubMedPubMedCentralCrossRef Landi F, Calvani R, Tosato M, Martone AM, Bernabei R, Onder G, Marzetti E. Impact of physical function impairment and multimorbidity on mortality among community-living older persons with sarcopaenia: results from the ilSIRENTE prospective cohort study. BMJ Open. 2016;6:e008281.PubMedPubMedCentralCrossRef
13.
go back to reference Calvani R, Marini F, Cesari M, Tosato M, Picca A, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F, et al. Biomarkers for physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29:29–34.PubMedCrossRef Calvani R, Marini F, Cesari M, Tosato M, Picca A, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F, et al. Biomarkers for physical frailty and sarcopenia. Aging Clin Exp Res. 2017;29:29–34.PubMedCrossRef
14.
go back to reference Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F. Marzetti E, consortium S: biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle. 2015;6:278–86.PubMedPubMedCentralCrossRef Calvani R, Marini F, Cesari M, Tosato M, Anker SD, von Haehling S, Miller RR, Bernabei R, Landi F. Marzetti E, consortium S: biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle. 2015;6:278–86.PubMedPubMedCentralCrossRef
15.
go back to reference Ciolac EG, Rodrigues-da-Silva JM. Resistance training as a tool for preventing and treating musculoskeletal disorders. Sports Med. 2016;46:1239–48.PubMedCrossRef Ciolac EG, Rodrigues-da-Silva JM. Resistance training as a tool for preventing and treating musculoskeletal disorders. Sports Med. 2016;46:1239–48.PubMedCrossRef
17.
go back to reference Muehlbauer T, Gollhofer A, Granacher U. Associations between measures of balance and lower-extremity muscle strength/Power in healthy individuals across the lifespan: a systematic review and meta-analysis. Sports Med. 2015;45:1671–92.PubMedPubMedCentralCrossRef Muehlbauer T, Gollhofer A, Granacher U. Associations between measures of balance and lower-extremity muscle strength/Power in healthy individuals across the lifespan: a systematic review and meta-analysis. Sports Med. 2015;45:1671–92.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Fortin M, Videman T, Gibbons LE, Battie MC. Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc. 2014;46:893–901.PubMedCrossRef Fortin M, Videman T, Gibbons LE, Battie MC. Paraspinal muscle morphology and composition: a 15-yr longitudinal magnetic resonance imaging study. Med Sci Sports Exerc. 2014;46:893–901.PubMedCrossRef
20.
go back to reference Suri P, Kiely DK, Leveille SG, Frontera WR, Bean JF. Increased trunk extension endurance is associated with meaningful improvement in balance among older adults with mobility problems. Arch Phys Med Rehabil. 2011;92:1038–43.PubMedPubMedCentralCrossRef Suri P, Kiely DK, Leveille SG, Frontera WR, Bean JF. Increased trunk extension endurance is associated with meaningful improvement in balance among older adults with mobility problems. Arch Phys Med Rehabil. 2011;92:1038–43.PubMedPubMedCentralCrossRef
21.
go back to reference Suri P, Kiely DK, Leveille SG, Frontera WR, Bean JF. Trunk muscle attributes are associated with balance and mobility in older adults: a pilot study. PM R. 2009;1:916–24.PubMedPubMedCentralCrossRef Suri P, Kiely DK, Leveille SG, Frontera WR, Bean JF. Trunk muscle attributes are associated with balance and mobility in older adults: a pilot study. PM R. 2009;1:916–24.PubMedPubMedCentralCrossRef
22.
go back to reference Ward RE, Beauchamp MK, Latham NK, Leveille SG, Percac-Lima S, Kurlinski L, Ni P, Goldstein R, Jette AM, Bean JF. Neuromuscular impairments contributing to persistently poor and declining lower-extremity mobility among older adults: new findings informing geriatric rehabilitation. Arch Phys Med Rehabil. 2016;97:1316–22.PubMedPubMedCentralCrossRef Ward RE, Beauchamp MK, Latham NK, Leveille SG, Percac-Lima S, Kurlinski L, Ni P, Goldstein R, Jette AM, Bean JF. Neuromuscular impairments contributing to persistently poor and declining lower-extremity mobility among older adults: new findings informing geriatric rehabilitation. Arch Phys Med Rehabil. 2016;97:1316–22.PubMedPubMedCentralCrossRef
23.
go back to reference Beauchamp MK, Jette AM, Ni P, Latham NK, Ward RE, Kurlinski LA, Percac-Lima S, Leveille SG, Bean JF. Leg and trunk impairments predict participation in life roles in older adults: results from Boston RISE. J Gerontol A Biol Sci Med Sci. 2016;71:663–9.PubMedCrossRef Beauchamp MK, Jette AM, Ni P, Latham NK, Ward RE, Kurlinski LA, Percac-Lima S, Leveille SG, Bean JF. Leg and trunk impairments predict participation in life roles in older adults: results from Boston RISE. J Gerontol A Biol Sci Med Sci. 2016;71:663–9.PubMedCrossRef
24.
go back to reference Kienbacher T, Habenicht R, Starek C, Mair P, Wolf M, Paul B, Riegler S, Kollmitzer J, Ebenbichler G. The potential use of spectral electromyographic fatigue as a screening and outcome monitoring tool of sarcopenic back muscle alterations. J Neuroeng Rehabil. 2014;11:106.PubMedPubMedCentralCrossRef Kienbacher T, Habenicht R, Starek C, Mair P, Wolf M, Paul B, Riegler S, Kollmitzer J, Ebenbichler G. The potential use of spectral electromyographic fatigue as a screening and outcome monitoring tool of sarcopenic back muscle alterations. J Neuroeng Rehabil. 2014;11:106.PubMedPubMedCentralCrossRef
25.
go back to reference Silva MF, Dias JM, Pereira LM, Mazuquin BF, Lindley S, Richards J, Cardoso JR. Determination of the motor unit behavior of lumbar erector spinae muscles through surface EMG decomposition technology in healthy female subjects. Muscle Nerve. 2017;55:28–34.PubMedCrossRef Silva MF, Dias JM, Pereira LM, Mazuquin BF, Lindley S, Richards J, Cardoso JR. Determination of the motor unit behavior of lumbar erector spinae muscles through surface EMG decomposition technology in healthy female subjects. Muscle Nerve. 2017;55:28–34.PubMedCrossRef
26.
go back to reference Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, McPhee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep. 2016;4:e12987.PubMedPubMedCentralCrossRef Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, McPhee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep. 2016;4:e12987.PubMedPubMedCentralCrossRef
27.
go back to reference Piasecki M, Ireland A, Piasecki J, Stashuk DW, Swiecicka A, Rutter MK, Jones DA, McPhee JS. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol. 2018;596:1627–37.PubMedPubMedCentralCrossRef Piasecki M, Ireland A, Piasecki J, Stashuk DW, Swiecicka A, Rutter MK, Jones DA, McPhee JS. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol. 2018;596:1627–37.PubMedPubMedCentralCrossRef
28.
go back to reference Mazzeo RS, Cavanagh P, Evans WJ, Fiatarone M, Hagberg J, McAuley E, Startzell J. Medicine & science in sports & exercise ® Volume 30, Number 6 June 1998 position stand exercise and physical activity for older adults. Med Sci Sports Exerc. 1998;30:992–1008. Mazzeo RS, Cavanagh P, Evans WJ, Fiatarone M, Hagberg J, McAuley E, Startzell J. Medicine & science in sports & exercise ® Volume 30, Number 6 June 1998 position stand exercise and physical activity for older adults. Med Sci Sports Exerc. 1998;30:992–1008.
29.
go back to reference American College of Sports M, Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–30.CrossRef American College of Sports M, Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–30.CrossRef
30.
go back to reference Bonato P, Gagliati G, Knaflitz M. Analysis of myoelectric signals recorded during dynamic contractions. IEEE Eng Med Biol Mag. 1996;15:102–11.CrossRef Bonato P, Gagliati G, Knaflitz M. Analysis of myoelectric signals recorded during dynamic contractions. IEEE Eng Med Biol Mag. 1996;15:102–11.CrossRef
31.
go back to reference Costa MV, Pereira LA, Oliveira RS, Pedro RE, Camata TV, Abrao T, Brunetto MA, Altimari LR. Fourier and wavelet spectral analysis of EMG signals in maximal constant load dynamic exercise. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4622–5. Costa MV, Pereira LA, Oliveira RS, Pedro RE, Camata TV, Abrao T, Brunetto MA, Altimari LR. Fourier and wavelet spectral analysis of EMG signals in maximal constant load dynamic exercise. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:4622–5.
32.
go back to reference Ryan ED, Cramer JT, Egan AD, Hartman MJ, Herda TJ. Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms. J Electromyogr Kinesiol. 2008;18:54–67.PubMedCrossRef Ryan ED, Cramer JT, Egan AD, Hartman MJ, Herda TJ. Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: a comparison of the short-time Fourier and continuous wavelet transforms. J Electromyogr Kinesiol. 2008;18:54–67.PubMedCrossRef
33.
go back to reference Bonato P, Roy SH, Knaflitz M, De Luca CJ. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans Biomed Eng. 2001;48:745–53.PubMedCrossRef Bonato P, Roy SH, Knaflitz M, De Luca CJ. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans Biomed Eng. 2001;48:745–53.PubMedCrossRef
34.
go back to reference Ebenbichler GR, Bonato P, Roy SH, Lehr S, Posch M, Kollmitzer J, Della Croce U. Reliability of EMG time-frequency measures of fatigue during repetitive lifting. Med Sci Sports Exerc. 2002;34:1316–23.PubMedCrossRef Ebenbichler GR, Bonato P, Roy SH, Lehr S, Posch M, Kollmitzer J, Della Croce U. Reliability of EMG time-frequency measures of fatigue during repetitive lifting. Med Sci Sports Exerc. 2002;34:1316–23.PubMedCrossRef
35.
go back to reference Knaflitz M, Bonato P. Time-frequency methods applied to muscle fatigue assessment during dynamic contractions. J Electromyogr Kinesiol. 1999;9:337–50.PubMedCrossRef Knaflitz M, Bonato P. Time-frequency methods applied to muscle fatigue assessment during dynamic contractions. J Electromyogr Kinesiol. 1999;9:337–50.PubMedCrossRef
36.
go back to reference Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? J Neurol Sci. 1988;84:275–94.PubMedCrossRef Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? J Neurol Sci. 1988;84:275–94.PubMedCrossRef
37.
go back to reference Mannion AF, Dumas GA, Stevenson JM, Cooper RG. The influence of muscle fiber size and type distribution on electromyographic measures of back muscle fatigability. Spine (Phila Pa 1976). 1998;23:576–84.CrossRef Mannion AF, Dumas GA, Stevenson JM, Cooper RG. The influence of muscle fiber size and type distribution on electromyographic measures of back muscle fatigability. Spine (Phila Pa 1976). 1998;23:576–84.CrossRef
38.
go back to reference Kienbacher T, Paul B, Habenicht R, Starek C, Wolf M, Kollmitzer J, Ebenbichler G. Reliability of isometric trunk moment measurements in healthy persons over 50 years of age. J Rehabil Med. 2014;46:241–9.PubMedCrossRef Kienbacher T, Paul B, Habenicht R, Starek C, Wolf M, Kollmitzer J, Ebenbichler G. Reliability of isometric trunk moment measurements in healthy persons over 50 years of age. J Rehabil Med. 2014;46:241–9.PubMedCrossRef
39.
go back to reference Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G. European recommendations for surface electromyography. Roessingh Res Dev. 1999;8:13–54. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G. European recommendations for surface electromyography. Roessingh Res Dev. 1999;8:13–54.
40.
go back to reference Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P. Evaluation of measurement strategies to increase the reliability of EMG indices to assess back muscle fatigue and recovery. J Electromyogr Kinesiol. 2002;12:91–102.PubMedCrossRef Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P. Evaluation of measurement strategies to increase the reliability of EMG indices to assess back muscle fatigue and recovery. J Electromyogr Kinesiol. 2002;12:91–102.PubMedCrossRef
41.
go back to reference Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.CrossRefPubMed Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95.CrossRefPubMed
42.
go back to reference Cohen L. Time-frequency analysis. Englewood Cliffs: Prentice Hall PTR; 1995. Cohen L. Time-frequency analysis. Englewood Cliffs: Prentice Hall PTR; 1995.
43.
go back to reference Loughlin PJ, Pitton JW, Atlas LE. Construction of positive time-frequency distributions. IEEE Trans Signal Process. 1994;42:2697–705.CrossRef Loughlin PJ, Pitton JW, Atlas LE. Construction of positive time-frequency distributions. IEEE Trans Signal Process. 1994;42:2697–705.CrossRef
44.
go back to reference Cohen L, Posch T. Positive time-frequency distribution functions. IEEE Trans Acoust Speech Signal Process. 1985;33:31–8.CrossRef Cohen L, Posch T. Positive time-frequency distribution functions. IEEE Trans Acoust Speech Signal Process. 1985;33:31–8.CrossRef
45.
go back to reference Lariviere C, da Silva RA, Arsenault AB, Nadeau S, Plamondon A, Vadeboncoeur R. Specificity of a back muscle exercise machine in healthy and low back pain subjects. Med Sci Sports Exerc. 2010;42:592–9.CrossRef Lariviere C, da Silva RA, Arsenault AB, Nadeau S, Plamondon A, Vadeboncoeur R. Specificity of a back muscle exercise machine in healthy and low back pain subjects. Med Sci Sports Exerc. 2010;42:592–9.CrossRef
46.
go back to reference Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P, Vadeboncoeur R. Electromyographic assessment of back muscle weakness and muscle composition: reliability and validity issues. Arch Phys Med Rehabil. 2002;83:1206–14.PubMedCrossRef Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P, Vadeboncoeur R. Electromyographic assessment of back muscle weakness and muscle composition: reliability and validity issues. Arch Phys Med Rehabil. 2002;83:1206–14.PubMedCrossRef
47.
go back to reference Ebenbichler GR, Unterlerchner L, Habenicht R, Bonato P, Kollmitzer J, Mair P, Riegler S, Kienbacher T. Estimating neural control from Concentric vs. Eccentric surface electromyographic representations during fatiguing, cyclic submaximal back extension exercises. Front Physiol. 2017;8:299.PubMedPubMedCentralCrossRef Ebenbichler GR, Unterlerchner L, Habenicht R, Bonato P, Kollmitzer J, Mair P, Riegler S, Kienbacher T. Estimating neural control from Concentric vs. Eccentric surface electromyographic representations during fatiguing, cyclic submaximal back extension exercises. Front Physiol. 2017;8:299.PubMedPubMedCentralCrossRef
49.
go back to reference Liu XS. Statistical power analysis for the social and behavioral sciences: basic and advanced techniques. New York: Routledge; 2013.CrossRef Liu XS. Statistical power analysis for the social and behavioral sciences: basic and advanced techniques. New York: Routledge; 2013.CrossRef
50.
go back to reference Clark BC, Manini TM, The DJ, Doldo NA, Ploutz-Snyder LL. Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol (1985). 2003;94:2263–72.CrossRef Clark BC, Manini TM, The DJ, Doldo NA, Ploutz-Snyder LL. Gender differences in skeletal muscle fatigability are related to contraction type and EMG spectral compression. J Appl Physiol (1985). 2003;94:2263–72.CrossRef
51.
go back to reference Brennan RL, Rolph J, S- V, Fienberg S, Lievesley D. Generalizability Theory. New York: Springer; 2001.CrossRef Brennan RL, Rolph J, S- V, Fienberg S, Lievesley D. Generalizability Theory. New York: Springer; 2001.CrossRef
52.
go back to reference Cronbach LJ, Rajaratnam N, Gleser GC. Theory of generalizability: a liberalization of reliability theory. Br J Math Stat Psychol. 1963;16:137–63.CrossRef Cronbach LJ, Rajaratnam N, Gleser GC. Theory of generalizability: a liberalization of reliability theory. Br J Math Stat Psychol. 1963;16:137–63.CrossRef
53.
go back to reference Shavelson RJ, Webb NM. Generalizability theory: a primer. California: Sage; 1991. Shavelson RJ, Webb NM. Generalizability theory: a primer. California: Sage; 1991.
54.
go back to reference World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010. p. 60. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010. p. 60.
55.
go back to reference Smith SS, Mayer TG, Gatchel RJ, Becker TJ. Quantification of lumbar function. Part 1: isometric and multispeed isokinetic trunk strength measures in sagittal and axial planes in normal subjects. Spine (Phila Pa 1976). 1985;10:757–64.CrossRef Smith SS, Mayer TG, Gatchel RJ, Becker TJ. Quantification of lumbar function. Part 1: isometric and multispeed isokinetic trunk strength measures in sagittal and axial planes in normal subjects. Spine (Phila Pa 1976). 1985;10:757–64.CrossRef
56.
go back to reference Power GA, Dalton BH, Behm DG, Doherty TJ, Vandervoort AA, Rice CL. Motor unit survival in lifelong runners is muscle dependent. Med Sci Sports Exerc. 2012;44:1235–42.PubMedCrossRef Power GA, Dalton BH, Behm DG, Doherty TJ, Vandervoort AA, Rice CL. Motor unit survival in lifelong runners is muscle dependent. Med Sci Sports Exerc. 2012;44:1235–42.PubMedCrossRef
58.
go back to reference Roos MR, Rice CL, Connelly DM, Vandervoort AA. Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve. 1999;22:1094–103.PubMedCrossRef Roos MR, Rice CL, Connelly DM, Vandervoort AA. Quadriceps muscle strength, contractile properties, and motor unit firing rates in young and old men. Muscle Nerve. 1999;22:1094–103.PubMedCrossRef
59.
go back to reference Klass M, Baudry S, Duchateau J. Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol (1985). 2008;104:739–46.CrossRef Klass M, Baudry S, Duchateau J. Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol (1985). 2008;104:739–46.CrossRef
60.
go back to reference Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM. Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol (1985). 2005;98:120–31.CrossRef Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM. Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol (1985). 2005;98:120–31.CrossRef
62.
go back to reference Bonato P, Ebenbichler GR, Roy SH, Lehr S, Posch M, Kollmitzer J, Della Croce U. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task. Spine (Phila Pa 1976). 2003;28:1810–20.CrossRef Bonato P, Ebenbichler GR, Roy SH, Lehr S, Posch M, Kollmitzer J, Della Croce U. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task. Spine (Phila Pa 1976). 2003;28:1810–20.CrossRef
64.
go back to reference De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13:135–63.CrossRef De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13:135–63.CrossRef
65.
go back to reference Contessa P, De Luca CJ, Kline JC. The compensatory interaction between motor unit firing behavior and muscle force during fatigue. J Neurophysiol. 2016;116:1579–85.PubMedPubMedCentralCrossRef Contessa P, De Luca CJ, Kline JC. The compensatory interaction between motor unit firing behavior and muscle force during fatigue. J Neurophysiol. 2016;116:1579–85.PubMedPubMedCentralCrossRef
67.
go back to reference Pasquet B, Carpentier A, Duchateau J. Specific modulation of motor unit discharge for a similar change in fascicle length during shortening and lengthening contractions in humans. J Physiol. 2006;577:753–65.PubMedPubMedCentralCrossRef Pasquet B, Carpentier A, Duchateau J. Specific modulation of motor unit discharge for a similar change in fascicle length during shortening and lengthening contractions in humans. J Physiol. 2006;577:753–65.PubMedPubMedCentralCrossRef
68.
go back to reference Kallio J, Sogaard K, Avela J, Komi PV, Selanne H, Linnamo V. Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions. PLoS One. 2013;8:e53425.PubMedPubMedCentralCrossRef Kallio J, Sogaard K, Avela J, Komi PV, Selanne H, Linnamo V. Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions. PLoS One. 2013;8:e53425.PubMedPubMedCentralCrossRef
69.
go back to reference Duclay J, Pasquet B, Martin A, Duchateau J. Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles. J Appl Physiol (1985). 2014;117:1440–50.CrossRef Duclay J, Pasquet B, Martin A, Duchateau J. Specific modulation of spinal and cortical excitabilities during lengthening and shortening submaximal and maximal contractions in plantar flexor muscles. J Appl Physiol (1985). 2014;117:1440–50.CrossRef
70.
go back to reference Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P. Effect of step and ramp static contractions on the median frequency of electromyograms of back muscles in humans. Eur J Appl Physiol. 2001;85:552–9.PubMedCrossRef Lariviere C, Arsenault AB, Gravel D, Gagnon D, Loisel P. Effect of step and ramp static contractions on the median frequency of electromyograms of back muscles in humans. Eur J Appl Physiol. 2001;85:552–9.PubMedCrossRef
71.
go back to reference De Luca CJ, Sabbahi MA, Roy SH. Median frequency of the myoelectric signal. Effects of hand dominance. Eur J Appl Physiol Occup Physiol. 1986;55:457–64.PubMedCrossRef De Luca CJ, Sabbahi MA, Roy SH. Median frequency of the myoelectric signal. Effects of hand dominance. Eur J Appl Physiol Occup Physiol. 1986;55:457–64.PubMedCrossRef
72.
go back to reference Merletti R, Roy S. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. J Orthop Sports Phys Ther. 1996;24:342–53.PubMedCrossRef Merletti R, Roy S. Myoelectric and mechanical manifestations of muscle fatigue in voluntary contractions. J Orthop Sports Phys Ther. 1996;24:342–53.PubMedCrossRef
73.
go back to reference De Luca CJ, Kline JC. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons. J Neural Eng. 2012;9:016007.PubMedCrossRef De Luca CJ, Kline JC. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons. J Neural Eng. 2012;9:016007.PubMedCrossRef
74.
go back to reference McGibbon CA, Krebs DE. Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol. 2001;85:1923–31.PubMedCrossRef McGibbon CA, Krebs DE. Age-related changes in lower trunk coordination and energy transfer during gait. J Neurophysiol. 2001;85:1923–31.PubMedCrossRef
75.
76.
go back to reference Caiozzo VJ, Baker MJ, Huang K, Chou H, Wu YZ, Baldwin KM. Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions? Am J Physiol Regul Integr Comp Physiol. 2003;285:R570–80.PubMedCrossRef Caiozzo VJ, Baker MJ, Huang K, Chou H, Wu YZ, Baldwin KM. Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions? Am J Physiol Regul Integr Comp Physiol. 2003;285:R570–80.PubMedCrossRef
77.
go back to reference Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–95.PubMedCrossRef Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–95.PubMedCrossRef
78.
go back to reference Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol. 2016;594:5105–23.PubMedCrossRef Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol. 2016;594:5105–23.PubMedCrossRef
79.
go back to reference Moreillon M, Conde Alonso S, Broskey NT, Greggio C, Besson C, Rousson V, Amati F. Hybrid fiber alterations in exercising seniors suggest contribution to fast-to-slow muscle fiber shift. J Cachexia Sarcopenia Muscle. 2019;10:687–95.PubMedPubMedCentralCrossRef Moreillon M, Conde Alonso S, Broskey NT, Greggio C, Besson C, Rousson V, Amati F. Hybrid fiber alterations in exercising seniors suggest contribution to fast-to-slow muscle fiber shift. J Cachexia Sarcopenia Muscle. 2019;10:687–95.PubMedPubMedCentralCrossRef
80.
go back to reference Dennison EM, Sayer AA, Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol. 2017;13:340–7.PubMedCrossRef Dennison EM, Sayer AA, Cooper C. Epidemiology of sarcopenia and insight into possible therapeutic targets. Nat Rev Rheumatol. 2017;13:340–7.PubMedCrossRef
81.
go back to reference Welch C, Z KH-S, C AG, J ML, T AJ. Acute sarcopenia secondary to hospitalisation - an emerging condition affecting older adults. Aging Dis. 2018;9:151–64.PubMedPubMedCentralCrossRef Welch C, Z KH-S, C AG, J ML, T AJ. Acute sarcopenia secondary to hospitalisation - an emerging condition affecting older adults. Aging Dis. 2018;9:151–64.PubMedPubMedCentralCrossRef
82.
go back to reference Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, Fielding RA. Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol (1985). 2008;105:637–42.CrossRef Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, Fielding RA. Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol (1985). 2008;105:637–42.CrossRef
84.
go back to reference Verdijk LB, Snijders T, Holloway TM, J Van K, LJ Van L. Resistance training increases skeletal muscle Capillarization in healthy older men. Med Sci Sports Exerc. 2016;48:2157–64.PubMedCrossRef Verdijk LB, Snijders T, Holloway TM, J Van K, LJ Van L. Resistance training increases skeletal muscle Capillarization in healthy older men. Med Sci Sports Exerc. 2016;48:2157–64.PubMedCrossRef
85.
go back to reference Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27:479–89.PubMedCrossRef Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T. Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci. 2009;27:479–89.PubMedCrossRef
86.
go back to reference Barnes WS, Williams JH. Effects of ischemia on myo-electrical signal characteristics during rest and recovery from static work. Am J Phys Med. 1987;66:249–63.PubMedCrossRef Barnes WS, Williams JH. Effects of ischemia on myo-electrical signal characteristics during rest and recovery from static work. Am J Phys Med. 1987;66:249–63.PubMedCrossRef
87.
go back to reference Mannion AF. Fibre type characteristics and function of the human paraspinal muscles: normal values and changes in association with low back pain. J Electromyogr Kinesiol. 1999;9:363–77.PubMedCrossRef Mannion AF. Fibre type characteristics and function of the human paraspinal muscles: normal values and changes in association with low back pain. J Electromyogr Kinesiol. 1999;9:363–77.PubMedCrossRef
88.
go back to reference Lariviere C, Da Silva RA, Arsenault AB, Nadeau S, Plamondon A, Vadeboncoeur R. Specificity of a back muscle roman chair exercise in healthy and back pain subjects. Med Sci Sports Exerc. 2011;43:157–64.PubMedCrossRef Lariviere C, Da Silva RA, Arsenault AB, Nadeau S, Plamondon A, Vadeboncoeur R. Specificity of a back muscle roman chair exercise in healthy and back pain subjects. Med Sci Sports Exerc. 2011;43:157–64.PubMedCrossRef
89.
go back to reference Sinaki M. Exercise for patients with osteoporosis: management of vertebral compression fractures and trunk strengthening for fall prevention. PM R. 2012;4:882–8.CrossRefPubMed Sinaki M. Exercise for patients with osteoporosis: management of vertebral compression fractures and trunk strengthening for fall prevention. PM R. 2012;4:882–8.CrossRefPubMed
90.
go back to reference Kienbacher T, Achim-Gunacker G, Pachner M, Kerschan-Schindl K, Gunacker P, Habenicht R, Klepetko W, Jaksch P, Doblhammer S, Ebenbichler G. Feasibility and reliability of functional muscle tests in lung transplant recipients. Am J Phys Med Rehabil. 2018;97:390–6.PubMedCrossRef Kienbacher T, Achim-Gunacker G, Pachner M, Kerschan-Schindl K, Gunacker P, Habenicht R, Klepetko W, Jaksch P, Doblhammer S, Ebenbichler G. Feasibility and reliability of functional muscle tests in lung transplant recipients. Am J Phys Med Rehabil. 2018;97:390–6.PubMedCrossRef
Metadata
Title
Age-specific differences in the time-frequency representation of surface electromyographic data recorded during a submaximal cyclic back extension exercise: a promising biomarker to detect early signs of sarcopenia
Authors
R. Habenicht
G. Ebenbichler
P. Bonato
J. Kollmitzer
S. Ziegelbecker
L. Unterlerchner
P. Mair
T. Kienbacher
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2020
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-0645-2

Other articles of this Issue 1/2020

Journal of NeuroEngineering and Rehabilitation 1/2020 Go to the issue