Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2020

Open Access 01-12-2020 | Spinal Cord Stimulation | Research

Supporting front crawl swimming in paraplegics using electrical stimulation: a feasibility study

Authors: Constantin Wiesener, Lotta Spieker, Jens Axelgaard, Rachel Horton, Andreas Niedeggen, Nikolaus Wenger, Thomas Seel, Thomas Schauer

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2020

Login to get access

Abstract

Background

Participation in physical and therapeutic activities is usually severely restricted after a spinal cord injury (SCI). Reasons for this are the associated loss of voluntary motor function, inefficient temperature regulation of the affected extremities, and early muscle fatigue. Hydrotherapy or swim training offer an inherent weight relief, reduce spasticity and improve coordination, muscle strength and fitness.

Methods

We present a new hybrid exercise modality that combines functional electrical stimulation (FES) of the knee extensors and transcutaneous spinal cord stimulation (tSCS) with paraplegic front crawl swimming. tSCS is used to stimulate the afferent fibers of the L2–S2 posterior roots for spasticity reduction. By activating the tSCS, the trunk musculature is recruited at a motor level. This shall improve trunk stability and straighten the upper body. Within this feasibility study, two complete SCI subjects (both ASIA scale A, lesion level Th5/6), who have been proficient front crawl swimmers, conducted a 10-week swim training with stimulation support. In an additional assessment swim session nine months after the training, the knee extension, hip extension, and trunk roll angles where measured using waterproof inertial measurement units (IMUs) and compared for different swimming conditions (no stimulation, tSCS, FES, FES plus tSCS).

Results

For both subjects, a training effect over the 10-week swim training was observed in terms of measured lap times (16 m pool) for all swimming conditions. Swimming supported by FES reduced lap times by 15.4% and 8.7% on average for Subject A and Subject B, respectively. Adding tSCS support yielded even greater mean decreases of 19.3% and 20.9% for Subjects A and B, respectively. Additionally, both subjects individually reported that swimming with tSCS for 30–45 minutes eliminated spasticity in the lower extremities for up to 4 hours beyond the duration of the session. Comparing the median as well as the interquartile range of all different settings, the IMU-based motion analysis revealed that FES as well as FES+tSCS improve knee extension in both subjects, while hip extension was only increased in one subject. Trunk roll angles were similar for all swimming conditions. tSCS had no influence on the knee and hip joint angles. Both subjects reported that stimulation-assisted swimming is comfortable, enjoyable, and they would like to use such a device for recreational training and rehabilitation in the future.

Conclusions

Stimulation-assisted swimming seems to be a promising new form of hybrid exercise for SCI people. It is safe to use with reusable silicone electrodes and can be performed independently by experienced paraplegic swimmers except for transfer to water. The study results indicate that swimming speed can be increased by the proposed methods and spasticity can be reduced by prolonged swim sessions with tSCS and FES. The combination of stimulation with hydrotherapy might be a promising therapy for neurologic rehabilitation in incomplete SCI, stroke or multiples sclerosis patients. Therefore, further studies shall incorporate other neurologic disorders and investigate the potential benefits of FES and tSCS therapy in the water for gait and balance.
Appendix
Available only for authorised users
Footnotes
1
Ethical approval of Berlin Chamber of Physicians Eth-28/17
 
Literature
1.
go back to reference Tawashy AE, Eng JJ, Lin KH, Tang PF, Hung C. Physical activity is related to lower levels of pain, fatigue and depression in individuals with spinal-cord injury: A correlational study. Spinal Cord. 2009; 47(4):301–6.CrossRef Tawashy AE, Eng JJ, Lin KH, Tang PF, Hung C. Physical activity is related to lower levels of pain, fatigue and depression in individuals with spinal-cord injury: A correlational study. Spinal Cord. 2009; 47(4):301–6.CrossRef
2.
go back to reference Hicks AL, Martin KA, Ditor DS, Latimer AE, Craven C, Bugaresti J, McCartney N. Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord. 2003; 41(1):34–43.CrossRef Hicks AL, Martin KA, Ditor DS, Latimer AE, Craven C, Bugaresti J, McCartney N. Long-term exercise training in persons with spinal cord injury: effects on strength, arm ergometry performance and psychological well-being. Spinal Cord. 2003; 41(1):34–43.CrossRef
3.
go back to reference Nash MS. Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther. 2005; 29(2):87–106.CrossRef Nash MS. Exercise as a health-promoting activity following spinal cord injury. J Neurol Phys Ther. 2005; 29(2):87–106.CrossRef
4.
go back to reference Bromley I. Tetraplegia and Paraplegia : a Guide for Physiotherapists: Churchill Livingstone; 2006. Bromley I. Tetraplegia and Paraplegia : a Guide for Physiotherapists: Churchill Livingstone; 2006.
5.
go back to reference Newham DJ, Donaldson NDN. FES cycling. Suppl Acta Neurochir. 2007; 97(97 PART 1):395–402. Newham DJ, Donaldson NDN. FES cycling. Suppl Acta Neurochir. 2007; 97(97 PART 1):395–402.
6.
go back to reference Gibbons RS, Stock CG, Andrews BJ, Gall A, Shave RE. The effect of FES-rowing training on cardiac structure and function: Pilot studies in people with spinal cord injury. Spinal Cord. 2016; 54(10):822–9.CrossRef Gibbons RS, Stock CG, Andrews BJ, Gall A, Shave RE. The effect of FES-rowing training on cardiac structure and function: Pilot studies in people with spinal cord injury. Spinal Cord. 2016; 54(10):822–9.CrossRef
7.
go back to reference Wiesener C, Schauer T. The Cybathlon RehaBike: Inertial-Sensor-Driven Functional Electrical Stimulation Cycling by Team Hasomed. IEEE Robot Autom Mag. 2017; 24(4):49–57.CrossRef Wiesener C, Schauer T. The Cybathlon RehaBike: Inertial-Sensor-Driven Functional Electrical Stimulation Cycling by Team Hasomed. IEEE Robot Autom Mag. 2017; 24(4):49–57.CrossRef
8.
go back to reference Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014; 37(2):202–11.CrossRef Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014; 37(2):202–11.CrossRef
9.
go back to reference Hofstoetter US, Freundl B, Danner SM, Krenn MJ, Mayr W, Binder H, Minassian K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J Neurotrauma. 2020; 37(3):481–93.CrossRef Hofstoetter US, Freundl B, Danner SM, Krenn MJ, Mayr W, Binder H, Minassian K. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J Neurotrauma. 2020; 37(3):481–93.CrossRef
10.
go back to reference Pachalski A, Mekarski T. Effect of swimming on increasing of cardio-respiratory capacity in paraplegics. Paraplegia. 1980; 18(3):190–6.PubMed Pachalski A, Mekarski T. Effect of swimming on increasing of cardio-respiratory capacity in paraplegics. Paraplegia. 1980; 18(3):190–6.PubMed
11.
go back to reference Ellapen TJ, Hammill HV, Swanepoel M, Strydom GL. The benefits of hydrotherapy to patients with spinal cord injuries,. Afr J Disabil. 2018; 7(0):450.PubMedPubMedCentral Ellapen TJ, Hammill HV, Swanepoel M, Strydom GL. The benefits of hydrotherapy to patients with spinal cord injuries,. Afr J Disabil. 2018; 7(0):450.PubMedPubMedCentral
12.
go back to reference Chunxiao L, Khoo S, Adnan A. Effects of aquatic exercise on physical function and fitness among people with spinal cord injury. Medicine (Baltimore). 2017; 96(11):e6328.CrossRef Chunxiao L, Khoo S, Adnan A. Effects of aquatic exercise on physical function and fitness among people with spinal cord injury. Medicine (Baltimore). 2017; 96(11):e6328.CrossRef
13.
go back to reference Recio AC, Stiens SA, Kubrova E. Aquatic-Based Therapy in Spinal Cord Injury Rehabilitation: Effective Yet Underutilized. Curr Phys Med Rehab Rep. 2017; 5(3):108–12.CrossRef Recio AC, Stiens SA, Kubrova E. Aquatic-Based Therapy in Spinal Cord Injury Rehabilitation: Effective Yet Underutilized. Curr Phys Med Rehab Rep. 2017; 5(3):108–12.CrossRef
14.
go back to reference Becker BE. Aquatic Therapy: Scientific Foundations and Clinical Rehabilitation Applications. PM&R. 2009; 1(9):859–72.CrossRef Becker BE. Aquatic Therapy: Scientific Foundations and Clinical Rehabilitation Applications. PM&R. 2009; 1(9):859–72.CrossRef
15.
go back to reference Van Houtte S, Vanlandewijck Y, Gosselink R. Respiratory muscle training in persons with spinal cord injury. Syst Rev. 2006; 100(11):1886–95. Van Houtte S, Vanlandewijck Y, Gosselink R. Respiratory muscle training in persons with spinal cord injury. Syst Rev. 2006; 100(11):1886–95.
16.
go back to reference Jung J, Chung E, Kim K, Lee B-H, Lee J. The Effects of Aquatic Exercise on Pulmonary Function in Patients with Spinal Cord Injury. J Phys Ther Sci. 2014; 26(5):707–9.CrossRef Jung J, Chung E, Kim K, Lee B-H, Lee J. The Effects of Aquatic Exercise on Pulmonary Function in Patients with Spinal Cord Injury. J Phys Ther Sci. 2014; 26(5):707–9.CrossRef
17.
go back to reference Gass EM, Gass GC. Thermoregulatory responses to repeated warm water immersion in subjects who are paraplegic. Spinal Cord. 2001; 39(3):149–55.CrossRef Gass EM, Gass GC. Thermoregulatory responses to repeated warm water immersion in subjects who are paraplegic. Spinal Cord. 2001; 39(3):149–55.CrossRef
18.
go back to reference Kesiktas N, Paker N, Erdogan N, Gülsen G, Biçki D, Yilmaz H. The Use of Hydrotherapy for the Management of Spasticity. Neurorehabil Neural Repair. 2004; 18(4):268–73.CrossRef Kesiktas N, Paker N, Erdogan N, Gülsen G, Biçki D, Yilmaz H. The Use of Hydrotherapy for the Management of Spasticity. Neurorehabil Neural Repair. 2004; 18(4):268–73.CrossRef
19.
go back to reference Howard M. Electric Bath. Patent US1193018A, Aug. 1, 1916. Howard M. Electric Bath. Patent US1193018A, Aug. 1, 1916.
20.
go back to reference Nakamura T, Katoh M, Hachisu T, Okazaki R, Sato M, Kajimoto H. Localization Ability and Polarity Effect of Underwater Electro-Tactile Stimulation In: Auvray M, Duriez C, editors. Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science, vol 8618. Berlin: Springer: 2014. p. 216–23. https://doi.org/10.1007/978-3-662-44193-0_28. Nakamura T, Katoh M, Hachisu T, Okazaki R, Sato M, Kajimoto H. Localization Ability and Polarity Effect of Underwater Electro-Tactile Stimulation In: Auvray M, Duriez C, editors. Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science, vol 8618. Berlin: Springer: 2014. p. 216–23. https://​doi.​org/​10.​1007/​978-3-662-44193-0_​28.
21.
go back to reference Wiesener C, Axelgaard J, Horton R, Niedeggen A, Schauer T. Functional electrical stimulation assisted swimming for paraplegics. In: Proc. of 22nd Annual IFESS Conference. Nottwil: 2018. Wiesener C, Axelgaard J, Horton R, Niedeggen A, Schauer T. Functional electrical stimulation assisted swimming for paraplegics. In: Proc. of 22nd Annual IFESS Conference. Nottwil: 2018.
22.
go back to reference Wiesener C, Seel T, Axelgaard J, Horton R, Niedeggen A, Schauer T. An Inertial Sensor-based Trigger Algorithm for Functional Electrical Stimulation-Assisted Swimming in Paraplegics. IFAC-PapersOnLine. 2019; 52(34):278–83.CrossRef Wiesener C, Seel T, Axelgaard J, Horton R, Niedeggen A, Schauer T. An Inertial Sensor-based Trigger Algorithm for Functional Electrical Stimulation-Assisted Swimming in Paraplegics. IFAC-PapersOnLine. 2019; 52(34):278–83.CrossRef
23.
go back to reference Seifert L, Leblanc H, Chollet D, Delignières D. Inter-limb coordination in swimming: Effect of speed and skill level. Hum Mov Sci. 2010; 29(1):103–13.CrossRef Seifert L, Leblanc H, Chollet D, Delignières D. Inter-limb coordination in swimming: Effect of speed and skill level. Hum Mov Sci. 2010; 29(1):103–13.CrossRef
25.
go back to reference Wiesener C, Niedeggen A, Schauer T. Electrotactile Feedback for FES-Assisted Swimming. In: Converging Clinical and Engineering Research on Neurorehabilitation III: Proceedings of the 4th International Conference on NeuroRehabilitation (ICNR2018), volume 21. 1st edn. Pisa: Springer, Cham: 2018. p. 922–5. Wiesener C, Niedeggen A, Schauer T. Electrotactile Feedback for FES-Assisted Swimming. In: Converging Clinical and Engineering Research on Neurorehabilitation III: Proceedings of the 4th International Conference on NeuroRehabilitation (ICNR2018), volume 21. 1st edn. Pisa: Springer, Cham: 2018. p. 922–5.
27.
go back to reference Hofstoetter US, Freundl B, Binder H, Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE. 2018; 13(1):0192013.CrossRef Hofstoetter US, Freundl B, Binder H, Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE. 2018; 13(1):0192013.CrossRef
28.
go back to reference Silvers WM, Dolny DG. Comparison and reproducibility of sEMG during manual muscle testing on land and in water. J Electromyogr Kinesiol. 2011; 21(1):95–101.CrossRef Silvers WM, Dolny DG. Comparison and reproducibility of sEMG during manual muscle testing on land and in water. J Electromyogr Kinesiol. 2011; 21(1):95–101.CrossRef
29.
go back to reference Benfield RD, Newton ER, Hortobágyi T. Waterproofing EMG instrumentation. Biol Res Nurs. 2007; 8(3):195–201.CrossRef Benfield RD, Newton ER, Hortobágyi T. Waterproofing EMG instrumentation. Biol Res Nurs. 2007; 8(3):195–201.CrossRef
30.
go back to reference Axelgaard J. Current-Controlling Electrode with Adjustable Contact Area. Patent US6745082B2. Jun. 1, 2004. Axelgaard J. Current-Controlling Electrode with Adjustable Contact Area. Patent US6745082B2. Jun. 1, 2004.
31.
go back to reference Axelgaard J. Moisture Resistant Electrode with Edge Protection. Patent US7697999B2. Apr. 13, 2010. Axelgaard J. Moisture Resistant Electrode with Edge Protection. Patent US7697999B2. Apr. 13, 2010.
32.
go back to reference Seel T, Ruppin S. Eliminating the Effect of Magnetic Disturbances on the Inclination Estimates of Inertial Sensors. IFAC-PapersOnLine. 2017; 50(1):8798–803.CrossRef Seel T, Ruppin S. Eliminating the Effect of Magnetic Disturbances on the Inclination Estimates of Inertial Sensors. IFAC-PapersOnLine. 2017; 50(1):8798–803.CrossRef
33.
Metadata
Title
Supporting front crawl swimming in paraplegics using electrical stimulation: a feasibility study
Authors
Constantin Wiesener
Lotta Spieker
Jens Axelgaard
Rachel Horton
Andreas Niedeggen
Nikolaus Wenger
Thomas Seel
Thomas Schauer
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2020
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-020-00682-6

Other articles of this Issue 1/2020

Journal of NeuroEngineering and Rehabilitation 1/2020 Go to the issue