Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial

Authors: Rocco Salvatore Calabrò, Antonino Naro, Margherita Russo, Antonino Leo, Rosaria De Luca, Tina Balletta, Antonio Buda, Gianluca La Rosa, Alessia Bramanti, Placido Bramanti

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Many studies have demonstrated the usefulness of repetitive task practice by using robotic-assisted gait training (RAGT) devices, including Lokomat, for the treatment of lower limb paresis. Virtual reality (VR) has proved to be a valuable tool to improve neurorehabilitation training. The aim of our pilot randomized clinical trial was to understand the neurophysiological basis of motor function recovery induced by the association between RAGT (by using Lokomat device) and VR (an animated avatar in a 2D VR) by studying electroencephalographic (EEG) oscillations.

Methods

Twenty-four patients suffering from a first unilateral ischemic stroke in the chronic phase were randomized into two groups. One group performed 40 sessions of Lokomat with VR (RAGT + VR), whereas the other group underwent Lokomat without VR (RAGT-VR). The outcomes (clinical, kinematic, and EEG) were measured before and after the robotic intervention.

Results

As compared to the RAGT-VR group, all the patients of the RAGT + VR group improved in the Rivermead Mobility Index and Tinetti Performance Oriented Mobility Assessment. Moreover, they showed stronger event-related spectral perturbations in the high-γ and β bands and larger fronto-central cortical activations in the affected hemisphere.

Conclusions

The robotic-based rehabilitation combined with VR in patients with chronic hemiparesis induced an improvement in gait and balance. EEG data suggest that the use of VR may entrain several brain areas (probably encompassing the mirror neuron system) involved in motor planning and learning, thus leading to an enhanced motor performance.

Trial registration

Retrospectively registered in Clinical Trials on 21-11-2016, n.NCT02971371.
Literature
1.
go back to reference Holden MK. Virtual environments for motor rehabilitation: review. Cyber Psychol Behav. 2005;8:187–211.CrossRef Holden MK. Virtual environments for motor rehabilitation: review. Cyber Psychol Behav. 2005;8:187–211.CrossRef
2.
go back to reference Riva G, Anguera MT, Wiederhold BK, Mantovani F. From communication to presence: cognition, emotions and culture towards the ultimate communicative experience. Amsterdam: IOS Press; 2006. Riva G, Anguera MT, Wiederhold BK, Mantovani F. From communication to presence: cognition, emotions and culture towards the ultimate communicative experience. Amsterdam: IOS Press; 2006.
3.
go back to reference Nudo R, Milliken G, Jenkins W, Merzenich M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.PubMed Nudo R, Milliken G, Jenkins W, Merzenich M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci. 1996;16(2):785–807.PubMed
4.
go back to reference Boyd L, Vidoni E, Wessel B. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change. Neurosci Lett. 2010;482:21–5.PubMedCrossRef Boyd L, Vidoni E, Wessel B. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change. Neurosci Lett. 2010;482:21–5.PubMedCrossRef
5.
go back to reference Nudo R, Milliken G. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9.PubMed Nudo R, Milliken G. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75(5):2144–9.PubMed
6.
go back to reference Plautz E, Milliken G, Nudo R. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74:27–55.PubMedCrossRef Plautz E, Milliken G, Nudo R. Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem. 2000;74:27–55.PubMedCrossRef
7.
go back to reference Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004;11:10.CrossRef Sveistrup H. Motor rehabilitation using virtual reality. J Neuroeng Rehabil. 2004;11:10.CrossRef
9.
go back to reference Calabrò RS, Russo M, Naro A, De Luca R, Leo A, Tomasello P, Molonia F, Dattola V, Bramanti A, Bramanti P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci. 2017;377:25–30. Calabrò RS, Russo M, Naro A, De Luca R, Leo A, Tomasello P, Molonia F, Dattola V, Bramanti A, Bramanti P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. J Neurol Sci. 2017;377:25–30.
10.
go back to reference Kwakkel G, Kollen B, Wagenaar R. Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy. 1999;85(7):377–91.CrossRef Kwakkel G, Kollen B, Wagenaar R. Therapy impact on functional recovery in stroke rehabilitation: a critical review of the literature. Physiotherapy. 1999;85(7):377–91.CrossRef
11.
go back to reference Rossini P, Forno G. Neuronal post-stroke plasticity in the adult. Restorative Neurology and Neurosci. 2004;22(3-5):193–206. Rossini P, Forno G. Neuronal post-stroke plasticity in the adult. Restorative Neurology and Neurosci. 2004;22(3-5):193–206.
12.
go back to reference Maier I, Schwab M. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans of the R Soc B: Biol Sci. 2006;361(1473):1611–34.CrossRef Maier I, Schwab M. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans of the R Soc B: Biol Sci. 2006;361(1473):1611–34.CrossRef
13.
go back to reference Nudo R, Plautz E, Frost S. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001;24(8):1000–19.PubMedCrossRef Nudo R, Plautz E, Frost S. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve. 2001;24(8):1000–19.PubMedCrossRef
14.
go back to reference Stroemer R, Kent T, Hulsebosch C. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.PubMedCrossRef Stroemer R, Kent T, Hulsebosch C. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.PubMedCrossRef
15.
go back to reference Pavone EF, Tieri G, Rizza G, Tidoni E, Grisoni L, Aglioti SM. Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J Neurosci. 2016;36:268–79.PubMedCrossRef Pavone EF, Tieri G, Rizza G, Tidoni E, Grisoni L, Aglioti SM. Embodying others in immersive virtual reality: electro-cortical signatures of monitoring the errors in the actions of an avatar seen from a first-person perspective. J Neurosci. 2016;36:268–79.PubMedCrossRef
16.
go back to reference Fadiga L, Craighero L. Electrophysiology of action representation. Clin Neurophysiol. 2004;21:157–69.CrossRef Fadiga L, Craighero L. Electrophysiology of action representation. Clin Neurophysiol. 2004;21:157–69.CrossRef
17.
go back to reference Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.PubMed Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci. 2001;13:400–4.PubMed
18.
19.
go back to reference Pavlova M, Lutzenberger W, Sokolov A, Birbaumer N. Dissociable cortical processing of recognizable and non-recognizable biological movement: analyzing gamma MEG activity. Cereb Cortex. 2004;14:181–8.PubMedCrossRef Pavlova M, Lutzenberger W, Sokolov A, Birbaumer N. Dissociable cortical processing of recognizable and non-recognizable biological movement: analyzing gamma MEG activity. Cereb Cortex. 2004;14:181–8.PubMedCrossRef
20.
go back to reference Modroño C, Navarrete G, Rodríguez-Hernández AF, González-Mora JL. Activation of the human mirror neuron system during the observation of the manipulation of virtual tools in the absence of a visible effector limb. Neurosci Lett. 2013;555:220–4.PubMedCrossRef Modroño C, Navarrete G, Rodríguez-Hernández AF, González-Mora JL. Activation of the human mirror neuron system during the observation of the manipulation of virtual tools in the absence of a visible effector limb. Neurosci Lett. 2013;555:220–4.PubMedCrossRef
21.
go back to reference Buccino G, Solodkin A, Small S. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav Neurol. 2006;19:55–63.PubMedCrossRef Buccino G, Solodkin A, Small S. Functions of the mirror neuron system: implications for neurorehabilitation. Cogn Behav Neurol. 2006;19:55–63.PubMedCrossRef
22.
go back to reference Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med. 2015;51:497–506.PubMed Laver K, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review. Eur J Phys Rehabil Med. 2015;51:497–506.PubMed
23.
go back to reference Krakauer J. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.PubMedCrossRef Krakauer J. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90.PubMedCrossRef
24.
26.
go back to reference Miller R. Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int J Psychophysiol. 2007;64:18–23.PubMedCrossRef Miller R. Theory of the normal waking EEG: from single neurones to waveforms in the alpha, beta and gamma frequency ranges. Int J Psychophysiol. 2007;64:18–23.PubMedCrossRef
28.
go back to reference Oberman LM, Pineda JA, Ramachandran VS. The human mirror neuron system: a link between action observation and social skills. Soc Cogn Affect Neurosci. 2007;2(1):62–6.PubMedPubMedCentralCrossRef Oberman LM, Pineda JA, Ramachandran VS. The human mirror neuron system: a link between action observation and social skills. Soc Cogn Affect Neurosci. 2007;2(1):62–6.PubMedPubMedCentralCrossRef
29.
go back to reference Zarka D, Cevallos C, Petieau M, Hoellinger T, Dan B, Cheron G. Neural rhythmic symphony of human walking observation: upside-down and uncoordinated condition on cortical theta, alpha, beta and gamma oscillations. Front Syst Neurosci. 2014;8:169.PubMedPubMedCentralCrossRef Zarka D, Cevallos C, Petieau M, Hoellinger T, Dan B, Cheron G. Neural rhythmic symphony of human walking observation: upside-down and uncoordinated condition on cortical theta, alpha, beta and gamma oscillations. Front Syst Neurosci. 2014;8:169.PubMedPubMedCentralCrossRef
30.
go back to reference Cheron G, Petit G, Cheron J, et al. Brain oscillations in sport: toward EEG biomarkers of performance. Front Psychol. 2016;7:246.PubMedPubMedCentral Cheron G, Petit G, Cheron J, et al. Brain oscillations in sport: toward EEG biomarkers of performance. Front Psychol. 2016;7:246.PubMedPubMedCentral
31.
go back to reference Kazuhiro U, Masataka Y, Hongbo L, Chi Z. Effect of motor intensity on motion imagery with electroencephalogram signal analysis in mirror neuron system. J Neurosci Neuroeng. 2017;4(1):38–43.CrossRef Kazuhiro U, Masataka Y, Hongbo L, Chi Z. Effect of motor intensity on motion imagery with electroencephalogram signal analysis in mirror neuron system. J Neurosci Neuroeng. 2017;4(1):38–43.CrossRef
32.
go back to reference McGarry LMJ. The role of the mirror neuron system in bottom-up and top-down perception of human action. Canada: Toronto University Press; 2015. McGarry LMJ. The role of the mirror neuron system in bottom-up and top-down perception of human action. Canada: Toronto University Press; 2015.
33.
go back to reference Filimon F, Rieth CA, Sereno MI, Cottrell GW. Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas. Cereb Cortex. 2015;25(9):3144–58.PubMedCrossRef Filimon F, Rieth CA, Sereno MI, Cottrell GW. Observed, executed, and imagined action representations can be decoded from ventral and dorsal areas. Cereb Cortex. 2015;25(9):3144–58.PubMedCrossRef
34.
go back to reference Ferreira Dos Santos L, Christ O, Mate K, Schmidt H, Krüger J, Dohle C. Movement visualization in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng Online. 2016;15(Suppl 3):144.PubMedPubMedCentralCrossRef Ferreira Dos Santos L, Christ O, Mate K, Schmidt H, Krüger J, Dohle C. Movement visualization in virtual reality rehabilitation of the lower limb: a systematic review. Biomed Eng Online. 2016;15(Suppl 3):144.PubMedPubMedCentralCrossRef
35.
go back to reference de Rooij IJ, van de Port IG, Meijer JG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96(12):1905–18.PubMedCrossRef de Rooij IJ, van de Port IG, Meijer JG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. Phys Ther. 2016;96(12):1905–18.PubMedCrossRef
36.
go back to reference Chan L, Heinemann AW, Roberts J. Elevating the quality of disability and rehabilitation research: mandatory use of the reporting guidelines. Ann Phys Rehabil Med. 2014;57:558–60.PubMedCrossRef Chan L, Heinemann AW, Roberts J. Elevating the quality of disability and rehabilitation research: mandatory use of the reporting guidelines. Ann Phys Rehabil Med. 2014;57:558–60.PubMedCrossRef
37.
go back to reference Medical Research Council. Aids to the examination of the peripheral nervous system, memorandum no. 45. London: Pengragon House; 1978. Medical Research Council. Aids to the examination of the peripheral nervous system, memorandum no. 45. London: Pengragon House; 1978.
38.
go back to reference Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.PubMedCrossRef Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.PubMedCrossRef
40.
go back to reference You RX, McNeil JJ, O'Malley HM, Davis SM, Thrift AG, Donnan GA. Risk factors for stroke due to cerebral infarction in young adults. Stroke. 1997;28(10):1913–8.PubMedCrossRef You RX, McNeil JJ, O'Malley HM, Davis SM, Thrift AG, Donnan GA. Risk factors for stroke due to cerebral infarction in young adults. Stroke. 1997;28(10):1913–8.PubMedCrossRef
41.
go back to reference Song GB, Park EC. Effect of virtual reality games on stroke patients' balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015;27(7):2057–60.PubMedPubMedCentralCrossRef Song GB, Park EC. Effect of virtual reality games on stroke patients' balance, gait, depression, and interpersonal relationships. J Phys Ther Sci. 2015;27(7):2057–60.PubMedPubMedCentralCrossRef
42.
go back to reference de Rooij IJ, van de Port IG, Meijer JG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. J Neuroeng Rehabil. 2015;12:46.CrossRef de Rooij IJ, van de Port IG, Meijer JG. Effect of virtual reality training on balance and gait ability in patients with stroke: systematic review and meta-analysis. J Neuroeng Rehabil. 2015;12:46.CrossRef
43.
go back to reference Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. Biomed Res Int. 2016;2016:7309272. Darekar A, McFadyen BJ, Lamontagne A, Fung J. Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. Biomed Res Int. 2016;2016:7309272.
44.
go back to reference Ling C, Wai LAL, Yu RM, Ming HD, Qiang L, Hai L, et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016;2016:7309272. Ling C, Wai LAL, Yu RM, Ming HD, Qiang L, Hai L, et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. Biomed Res Int. 2016;2016:7309272.
45.
go back to reference Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neur Syst Reh. 2005;13(3):380–94.CrossRef Riener R, Lunenburger L, Jezernik S, Anderschitz M, Colombo G, Dietz V. Patient cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neur Syst Reh. 2005;13(3):380–94.CrossRef
46.
go back to reference Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–94.PubMedCrossRef Riener R, Lunenburger L, Colombo G. Human-centered robotics applied to gait training and assessment. J Rehabil Res Dev. 2006;43(5):679–94.PubMedCrossRef
47.
go back to reference Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.PubMedCrossRef Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80.PubMedCrossRef
48.
go back to reference Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.PubMed Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury. Phys Ther. 2005;85(1):52–66.PubMed
49.
go back to reference Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, Swerdlow NR, Braff DL. Electroencephalography (EEG) and Event-Related Potentials (ERP’s) with Human Participants. Curr Protoc Neurosci. 2010;6:2524. Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp R, Swerdlow NR, Braff DL. Electroencephalography (EEG) and Event-Related Potentials (ERP’s) with Human Participants. Curr Protoc Neurosci. 2010;6:2524.
51.
go back to reference Kilicarslan A, Grossman RG. Contreras-Vidal JL. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J Neural Eng. 2016;13:026013.PubMedCrossRef Kilicarslan A, Grossman RG. Contreras-Vidal JL. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements. J Neural Eng. 2016;13:026013.PubMedCrossRef
52.
go back to reference Fruhstorfer H, Langanke P, Meinzer K, Peter JH, Pfaff U. Neurophysiological vigilance indicators and operational analysis of a train vigilance monitoring device: a laboratory and field study. In: Mackie RR, editor. Vigilance. New York: Plenum Press; 1977. p. 147–62.CrossRef Fruhstorfer H, Langanke P, Meinzer K, Peter JH, Pfaff U. Neurophysiological vigilance indicators and operational analysis of a train vigilance monitoring device: a laboratory and field study. In: Mackie RR, editor. Vigilance. New York: Plenum Press; 1977. p. 147–62.CrossRef
53.
go back to reference Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci. 2004;8(5):204–10.PubMedCrossRef Makeig S, Debener S, Onton J, Delorme A. Mining event-related brain dynamics. Trends Cogn Sci. 2004;8(5):204–10.PubMedCrossRef
54.
go back to reference Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63:1203–11.PubMedCrossRef Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. NeuroImage. 2012;63:1203–11.PubMedCrossRef
55.
go back to reference Onton J, Westerfield M, Townsend J, Makeig S. Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev. 2006;30:808–22.PubMedCrossRef Onton J, Westerfield M, Townsend J, Makeig S. Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev. 2006;30:808–22.PubMedCrossRef
56.
go back to reference Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2010;54:1289–96.PubMedCrossRef Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2010;54:1289–96.PubMedCrossRef
57.
go back to reference Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.PubMedCrossRef Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21.PubMedCrossRef
58.
go back to reference Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. 1993;86:283–93.PubMedCrossRef Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol. 1993;86:283–93.PubMedCrossRef
59.
go back to reference Perry J, Burnfield JM. Gait analysis, normal and pathological function. J Sports Sci Med. 2010;9(2):353. Perry J, Burnfield JM. Gait analysis, normal and pathological function. J Sports Sci Med. 2010;9(2):353.
60.
go back to reference Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9.PubMedCrossRef Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9.PubMedCrossRef
61.
go back to reference Nathan K, Contreras-Vidal JL. Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking. Front Hum Neurosci. 2016;9:708.PubMedPubMedCentralCrossRef Nathan K, Contreras-Vidal JL. Negligible motion artifacts in scalp electroencephalography (EEG) during treadmill walking. Front Hum Neurosci. 2016;9:708.PubMedPubMedCentralCrossRef
62.
go back to reference Castermans T, Duvinage M, Cheron G, Dutoit T. Towards effective non-invasive brain-computer interfaces dedicated to gait rehabilitation systems. Brain Sci. 2014;4:1–48. Castermans T, Duvinage M, Cheron G, Dutoit T. Towards effective non-invasive brain-computer interfaces dedicated to gait rehabilitation systems. Brain Sci. 2014;4:1–48.
63.
go back to reference Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 1994;174:93–6.PubMedCrossRef Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 1994;174:93–6.PubMedCrossRef
64.
go back to reference Andrew C, Pfurtscheller G. On the existence of different alpha band rhythms in the hand area of man. Neurosci Lett. 1997;222(2):103–6.PubMedCrossRef Andrew C, Pfurtscheller G. On the existence of different alpha band rhythms in the hand area of man. Neurosci Lett. 1997;222(2):103–6.PubMedCrossRef
65.
go back to reference Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013;1509:43–57.PubMedCrossRef Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain Res. 2013;1509:43–57.PubMedCrossRef
66.
go back to reference Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression. NeuroImage. 2014;87:127–37.PubMedCrossRef Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression. NeuroImage. 2014;87:127–37.PubMedCrossRef
67.
go back to reference Taborri J, Palermo E, Rossi S, Cappa P. Gait Partitioning Methods: A Systematic Review. Sensors (Basel, Switzerland). 2016;16:66. Taborri J, Palermo E, Rossi S, Cappa P. Gait Partitioning Methods: A Systematic Review. Sensors (Basel, Switzerland). 2016;16:66.
68.
go back to reference Rajmohan V, Mohandas E. Mirror neuron system. Indian J Psychiatry. 2007;49:66–69. Rajmohan V, Mohandas E. Mirror neuron system. Indian J Psychiatry. 2007;49:66–69.
70.
go back to reference Schippers MB, Keysers C. Mapping the flow of information within the putative mirror neuron system during gesture observation. NeuroImage. 2011;57(1):37–44.PubMedCrossRef Schippers MB, Keysers C. Mapping the flow of information within the putative mirror neuron system during gesture observation. NeuroImage. 2011;57(1):37–44.PubMedCrossRef
71.
go back to reference Braadbaart L, Williams JH, Waiter GD. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol. 2013;89(1):99–105.PubMedCrossRef Braadbaart L, Williams JH, Waiter GD. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? Int J Psychophysiol. 2013;89(1):99–105.PubMedCrossRef
72.
go back to reference Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, et al. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol. 2007;64(1):24–30.PubMedCrossRef Demiralp T, Bayraktaroglu Z, Lenz D, Junge S, Busch NA, Maess B, et al. Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int J Psychophysiol. 2007;64(1):24–30.PubMedCrossRef
73.
go back to reference de Lange FP, Jensen O, Bauer M, Toni I. Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci. 2008;2:7.PubMedPubMedCentral de Lange FP, Jensen O, Bauer M, Toni I. Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci. 2008;2:7.PubMedPubMedCentral
74.
go back to reference Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 2011;174:93–6.CrossRef Pfurtscheller G, Neuper C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci Lett. 2011;174:93–6.CrossRef
75.
go back to reference Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. Int J Bioelectromagn. 1999;1:75–86. Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. Int J Bioelectromagn. 1999;1:75–86.
76.
go back to reference Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.PubMedCrossRef Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol. 1994;18:49–65.PubMedCrossRef
77.
go back to reference Fuchs M, Drenckhahn R, Wischmann HA, Wagner M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng. 1998;45:980–97.PubMedCrossRef Fuchs M, Drenckhahn R, Wischmann HA, Wagner M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng. 1998;45:980–97.PubMedCrossRef
78.
go back to reference Fuchs M, Kastner J, Wagner M, et al. A standardized boundary element method volume conductor model. Clin Neurophysiol. 2002;113:702–12.PubMedCrossRef Fuchs M, Kastner J, Wagner M, et al. A standardized boundary element method volume conductor model. Clin Neurophysiol. 2002;113:702–12.PubMedCrossRef
79.
go back to reference Basile LF, Yacubian J, Castro CC, Grattaz WF. Widespread electrical cortical dysfunction in schizophrenia. Schizophr Res. 2004;69:255–66.PubMedCrossRef Basile LF, Yacubian J, Castro CC, Grattaz WF. Widespread electrical cortical dysfunction in schizophrenia. Schizophr Res. 2004;69:255–66.PubMedCrossRef
80.
go back to reference Yao J, Dewald JP. Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage. 2005;25:369–82.PubMedCrossRef Yao J, Dewald JP. Evaluation of different cortical source localization methods using simulated and experimental EEG data. NeuroImage. 2005;25:369–82.PubMedCrossRef
81.
go back to reference Chen HM, Hsieh CL. Sing Kai lo, Liaw LJ, Chen SM, Lin JH. The test-retest reliability of 2 mobility performance tests in patients with chronic stroke. Neurorehabil Neural Repair. 2007;21(4):347–52.PubMedCrossRef Chen HM, Hsieh CL. Sing Kai lo, Liaw LJ, Chen SM, Lin JH. The test-retest reliability of 2 mobility performance tests in patients with chronic stroke. Neurorehabil Neural Repair. 2007;21(4):347–52.PubMedCrossRef
82.
go back to reference Canbek J, Fulk G, Nof L, Echternach J. Test-retest reliability and construct validity of the tinetti performance-oriented mobility assessment in people with stroke. J Neurol Phys Ther. 2013;37(1):14–9.PubMedCrossRef Canbek J, Fulk G, Nof L, Echternach J. Test-retest reliability and construct validity of the tinetti performance-oriented mobility assessment in people with stroke. J Neurol Phys Ther. 2013;37(1):14–9.PubMedCrossRef
83.
go back to reference Monge-Pereira E, Molina-Rueda F, Rivas-Montero FM, Ibáñez J, Serrano JI, Alguacil-Diego IM, et al. Electroencephalography as a post-stroke assessment method: an updated review. Neurologia. 2017;32(1):40–9.PubMedCrossRef Monge-Pereira E, Molina-Rueda F, Rivas-Montero FM, Ibáñez J, Serrano JI, Alguacil-Diego IM, et al. Electroencephalography as a post-stroke assessment method: an updated review. Neurologia. 2017;32(1):40–9.PubMedCrossRef
84.
go back to reference Knaepen K, Mierau A, Swinnen E, Fernandez Tellez H, Michielsen M, Kerckhofs E, et al. Human-robot interaction: does robotic guidance force affect gait-related brain dynamics during robot-assisted treadmill walking? PLoS One. 2015;10(10):e0140626.PubMedPubMedCentralCrossRef Knaepen K, Mierau A, Swinnen E, Fernandez Tellez H, Michielsen M, Kerckhofs E, et al. Human-robot interaction: does robotic guidance force affect gait-related brain dynamics during robot-assisted treadmill walking? PLoS One. 2015;10(10):e0140626.PubMedPubMedCentralCrossRef
85.
go back to reference Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26:308–17.PubMedPubMedCentralCrossRef Dobkin BH, Duncan PW. Should body weight-supported treadmill training and robotic-assistive steppers for locomotor training trot back to the starting gate? Neurorehabil Neural Repair. 2012;26:308–17.PubMedPubMedCentralCrossRef
86.
go back to reference Wutzke CJ, Mercer VS, Lewek MD. Influence of lower extremity sensory function on locomotor adaptation following stroke: a review. Top Stroke Rehabil. 2013;20(3):233–40.PubMedCrossRef Wutzke CJ, Mercer VS, Lewek MD. Influence of lower extremity sensory function on locomotor adaptation following stroke: a review. Top Stroke Rehabil. 2013;20(3):233–40.PubMedCrossRef
87.
89.
go back to reference Perry J. Gait analysis: normal and pathological function. Thorofare: Slack Incorporated; 1992. Perry J. Gait analysis: normal and pathological function. Thorofare: Slack Incorporated; 1992.
90.
go back to reference Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.CrossRef Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.CrossRef
91.
go back to reference Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.PubMedCrossRef Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–57.PubMedCrossRef
92.
go back to reference Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998;121:2271–99.PubMedCrossRef Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, et al. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain. 1998;121:2271–99.PubMedCrossRef
93.
go back to reference Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. J Neurosci. 2005;25:7771–9.PubMedCrossRef Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. J Neurosci. 2005;25:7771–9.PubMedCrossRef
94.
go back to reference Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 2011;34:611–8.PubMedCrossRef Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 2011;34:611–8.PubMedCrossRef
95.
go back to reference Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22:403–7.PubMedPubMedCentralCrossRef Joundi RA, Jenkinson N, Brittain JS, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol. 2012;22:403–7.PubMedPubMedCentralCrossRef
96.
go back to reference Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. J Neurosci. 2007;53:63–88. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. J Neurosci. 2007;53:63–88.
97.
go back to reference Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, et al. Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007;27:2424–32.PubMedCrossRef Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, et al. Spectral changes in cortical surface potentials during motor movement. J Neurosci. 2007;27:2424–32.PubMedCrossRef
98.
go back to reference Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol. 2001;43:41–58.PubMedCrossRef Neuper C, Pfurtscheller G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int J Psychophysiol. 2001;43:41–58.PubMedCrossRef
99.
go back to reference Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. J Neurosci. 2007;27:2424–32.CrossRef Neuper C, Wörtz M, Pfurtscheller G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. J Neurosci. 2007;27:2424–32.CrossRef
100.
go back to reference Knill DC, Maloney LT, Trommershäuser J. Sensorimotor Processing and Goal-Directed Movement. J Vis. 2007;7:1–2. Knill DC, Maloney LT, Trommershäuser J. Sensorimotor Processing and Goal-Directed Movement. J Vis. 2007;7:1–2.
101.
go back to reference Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003;114:1226–36.PubMedCrossRef Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA. Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol. 2003;114:1226–36.PubMedCrossRef
102.
go back to reference Pfurtscheller G, Stancak J, Neuper C. Post-movement beta synchronization. A correlate of an idling area. Electroencephalogr. Clin. Neurophysiology. 1996;98:281–93. Pfurtscheller G, Stancak J, Neuper C. Post-movement beta synchronization. A correlate of an idling area. Electroencephalogr. Clin. Neurophysiology. 1996;98:281–93.
103.
go back to reference Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J. Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp Brain Res. 2003;148:17–25.PubMedCrossRef Alegre M, Labarga A, Gurtubay IG, Iriarte J, Malanda A, Artieda J. Movement-related changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp Brain Res. 2003;148:17–25.PubMedCrossRef
104.
go back to reference Brown P. Cortical drives to human muscle: the piper and related rhythms. Prog Neurobiol. 2000;60:97–108.PubMedCrossRef Brown P. Cortical drives to human muscle: the piper and related rhythms. Prog Neurobiol. 2000;60:97–108.PubMedCrossRef
105.
go back to reference Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.PubMedCrossRef Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.PubMedCrossRef
106.
go back to reference Mima T, Steger J, Schulman AE, Gerloff C, Hallett M. Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol. 2000;111:326–37.PubMedCrossRef Mima T, Steger J, Schulman AE, Gerloff C, Hallett M. Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol. 2000;111:326–37.PubMedCrossRef
107.
go back to reference Müller-Putz P, Neuper C, Rupp R, Keinrath C, Gerner H, Pfurtscheller G. Event-related beta electroencephalographic changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Lett. 2003;340:143–7.CrossRef Müller-Putz P, Neuper C, Rupp R, Keinrath C, Gerner H, Pfurtscheller G. Event-related beta electroencephalographic changes during wrist movements induced by functional electrical stimulation of forearm muscles in man. Neurosci Lett. 2003;340:143–7.CrossRef
108.
go back to reference Müller-Putz P, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G. Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 2007;1137:84–91.PubMedCrossRef Müller-Putz P, Zimmermann D, Graimann B, Nestinger K, Korisek G, Pfurtscheller G. Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients. Brain Res. 2007;1137:84–91.PubMedCrossRef
109.
go back to reference Pfurtscheller G, Neuper C. Simultaneous EEG 10 Hz desynchronization and 40Hz synchronization during finger movements. Neuroreport. 1992;3:1057–60.PubMedCrossRef Pfurtscheller G, Neuper C. Simultaneous EEG 10 Hz desynchronization and 40Hz synchronization during finger movements. Neuroreport. 1992;3:1057–60.PubMedCrossRef
110.
go back to reference Pfurtscheller G, Neuper C, Kalcher J. 40-hz oscillations during motor behavior in man. Neurosci Lett. 1993;164:179–82.PubMedCrossRef Pfurtscheller G, Neuper C, Kalcher J. 40-hz oscillations during motor behavior in man. Neurosci Lett. 1993;164:179–82.PubMedCrossRef
111.
go back to reference Raethjen J, Govindan RB, Binder S, Zeuner KE, Deuschl G, Stolze H. Cortical representation of rhythmic foot movements. Brain Res. 2008;1236:79–84.PubMedCrossRef Raethjen J, Govindan RB, Binder S, Zeuner KE, Deuschl G, Stolze H. Cortical representation of rhythmic foot movements. Brain Res. 2008;1236:79–84.PubMedCrossRef
112.
go back to reference Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage. 2004;21(2):568–75.PubMedCrossRef Sahyoun C, Floyer-Lea A, Johansen-Berg H, Matthews PM. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage. 2004;21(2):568–75.PubMedCrossRef
113.
go back to reference Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2011;54(2):1289–96.PubMedCrossRef Gwin JT, Gramann K, Makeig S, Ferris DP. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage. 2011;54(2):1289–96.PubMedCrossRef
114.
115.
go back to reference Haefeli J, Vögeli S, Michel J, Dietz V. Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity. Eur J Neurosci. 2011;33:338–48.PubMedCrossRef Haefeli J, Vögeli S, Michel J, Dietz V. Preparation and performance of obstacle steps: interaction between brain and spinal neuronal activity. Eur J Neurosci. 2011;33:338–48.PubMedCrossRef
116.
go back to reference Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL. Cortical control of normal gait and precision stepping: an fNIRS study. NeuroImage. 2013;85:415–22.PubMedCrossRef Koenraadt KL, Roelofsen EG, Duysens J, Keijsers NL. Cortical control of normal gait and precision stepping: an fNIRS study. NeuroImage. 2013;85:415–22.PubMedCrossRef
117.
go back to reference Suzuki M, Miyai I, Ono T, Kubota K. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. NeuroImage. 2008;39:600–7.PubMedCrossRef Suzuki M, Miyai I, Ono T, Kubota K. Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. NeuroImage. 2008;39:600–7.PubMedCrossRef
118.
go back to reference Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage. 2004;23:1020–6.PubMedCrossRef Suzuki M, Miyai I, Ono T, Oda I, Konishi I, Kochiyama T, et al. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: an optical imaging study. NeuroImage. 2004;23:1020–6.PubMedCrossRef
119.
go back to reference Capotosto P, Babiloni C, Romani GL, Corbetta M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci. 2009;29:5863–72.PubMedPubMedCentralCrossRef Capotosto P, Babiloni C, Romani GL, Corbetta M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci. 2009;29:5863–72.PubMedPubMedCentralCrossRef
120.
go back to reference Capotosto P, Babiloni C, Romani GL, Corbetta M. Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG-rTMS study. Cereb Cortex. 2012;22:446–54.PubMedCrossRef Capotosto P, Babiloni C, Romani GL, Corbetta M. Differential contribution of right and left parietal cortex to the control of spatial attention: a simultaneous EEG-rTMS study. Cereb Cortex. 2012;22:446–54.PubMedCrossRef
121.
go back to reference Donner TH, Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci. 2011;15:191–9.PubMedCrossRef Donner TH, Siegel M. A framework for local cortical oscillation patterns. Trends Cogn Sci. 2011;15:191–9.PubMedCrossRef
122.
go back to reference Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron. 2011;69:387–96.PubMedCrossRef Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron. 2011;69:387–96.PubMedCrossRef
123.
go back to reference Perfetti B, Moisello C, Landsness EC, Kvint S, Pruski A, Onofrj M, et al. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. J Neurophysiol. 2011;105:18–27.PubMedCrossRef Perfetti B, Moisello C, Landsness EC, Kvint S, Pruski A, Onofrj M, et al. Temporal evolution of oscillatory activity predicts performance in a choice-reaction time reaching task. J Neurophysiol. 2011;105:18–27.PubMedCrossRef
124.
go back to reference Tombini M, Zappasodi F, Zollo L, Pellegrino G, Cavallo G, Tecchio F, et al. Brain activity preceding a 2D manual catching task. NeuroImage. 2009;47:1735–46.PubMedCrossRef Tombini M, Zappasodi F, Zollo L, Pellegrino G, Cavallo G, Tecchio F, et al. Brain activity preceding a 2D manual catching task. NeuroImage. 2009;47:1735–46.PubMedCrossRef
125.
126.
127.
go back to reference Brunel N, Wang XJ. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol. 2003;90:415–30.PubMedCrossRef Brunel N, Wang XJ. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol. 2003;90:415–30.PubMedCrossRef
128.
go back to reference Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, et al. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron. 2013;78:523–36.PubMedCrossRef Roberts MJ, Lowet E, Brunet NM, Ter Wal M, Tiesinga P, Fries P, et al. Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching. Neuron. 2013;78:523–36.PubMedCrossRef
129.
go back to reference Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. Movement intention after parietal cortex stimulation in humans. Science. 2009;324:811–3.PubMedCrossRef Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. Movement intention after parietal cortex stimulation in humans. Science. 2009;324:811–3.PubMedCrossRef
130.
go back to reference Drew T, Andujar JE, Lajoie K, Yakovenko S. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev. 2008;57:199–211.PubMedCrossRef Drew T, Andujar JE, Lajoie K, Yakovenko S. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev. 2008;57:199–211.PubMedCrossRef
131.
go back to reference Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308:662–7.PubMedCrossRef Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G. Parietal lobe: from action organization to intention understanding. Science. 2005;308:662–7.PubMedCrossRef
132.
go back to reference Wagner J, Solis-Escalante T, Scherer R, Neuper C, Muller-Putz G. It's how you get there: walking down a virtual alley activates premotor and parietal areas. Front Hum Neurosci. 2014;8:93.PubMedPubMedCentral Wagner J, Solis-Escalante T, Scherer R, Neuper C, Muller-Putz G. It's how you get there: walking down a virtual alley activates premotor and parietal areas. Front Hum Neurosci. 2014;8:93.PubMedPubMedCentral
133.
go back to reference Seeber M, Scherer R, Wagner J, Solis-Escalante T, Muller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485.PubMedPubMedCentralCrossRef Seeber M, Scherer R, Wagner J, Solis-Escalante T, Muller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485.PubMedPubMedCentralCrossRef
134.
go back to reference Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.PubMedCrossRef Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.PubMedCrossRef
135.
go back to reference Presacco A, Goodman R, Forrester L, Contreras-Vidal JL. Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J Neurophysiol. 2011;106:1875–87.PubMedPubMedCentralCrossRef Presacco A, Goodman R, Forrester L, Contreras-Vidal JL. Neural decoding of treadmill walking from noninvasive electroencephalographic signals. J Neurophysiol. 2011;106:1875–87.PubMedPubMedCentralCrossRef
136.
go back to reference Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:79.PubMedPubMedCentralCrossRef Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, et al. Effects of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil. 2013;10:79.PubMedPubMedCentralCrossRef
137.
go back to reference Aru J, Axmacher N, Do Lam ATA, Fell J, Elger CE, Singer W, et al. Local category-specific gamma band responses in the visual cortex do not reflect conscious perception. J Neurosci. 2012;32:14909–14.PubMedCrossRef Aru J, Axmacher N, Do Lam ATA, Fell J, Elger CE, Singer W, et al. Local category-specific gamma band responses in the visual cortex do not reflect conscious perception. J Neurosci. 2012;32:14909–14.PubMedCrossRef
138.
go back to reference Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590:2443–52.PubMedPubMedCentralCrossRef Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590:2443–52.PubMedPubMedCentralCrossRef
139.
go back to reference Vidal JR, Perrone-Bertolotti M, Levy J, De Palma L, Minotti L, Kahane P, et al. Neural repetition suppression in ventral occipito-temporal cortex occurs during conscious and unconscious. NeuroImage. 2012;95:129–35.CrossRef Vidal JR, Perrone-Bertolotti M, Levy J, De Palma L, Minotti L, Kahane P, et al. Neural repetition suppression in ventral occipito-temporal cortex occurs during conscious and unconscious. NeuroImage. 2012;95:129–35.CrossRef
140.
go back to reference Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD. Functional localization of the system for visuospatial attention using positron emission tomography. Brain. 1997;120:515–33.PubMedCrossRef Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RS, Frith CD. Functional localization of the system for visuospatial attention using positron emission tomography. Brain. 1997;120:515–33.PubMedCrossRef
141.
go back to reference Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci. 2006;7:160–6.PubMedCrossRef Serrien DJ, Ivry RB, Swinnen SP. Dynamics of hemispheric specialization and integration in the context of motor control. Nat Rev Neurosci. 2006;7:160–6.PubMedCrossRef
142.
go back to reference Cao Y, D’Olhaberriague L, Vikingstad EM, et al. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke. 1998;29:112–22.PubMedCrossRef Cao Y, D’Olhaberriague L, Vikingstad EM, et al. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke. 1998;29:112–22.PubMedCrossRef
143.
go back to reference Chen R, Gerloff C, Hallett M, Cohen LG. Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol. 1997;41:247–54.PubMedCrossRef Chen R, Gerloff C, Hallett M, Cohen LG. Involvement of the ipsilateral motor cortex in finger movements of different complexities. Ann Neurol. 1997;41:247–54.PubMedCrossRef
144.
go back to reference Mima T, Toma K, Koshy B, Hallett M. Coherence between cortical and muscular activities after subcortical stroke. Stroke. 2001;32:2597–601.PubMedCrossRef Mima T, Toma K, Koshy B, Hallett M. Coherence between cortical and muscular activities after subcortical stroke. Stroke. 2001;32:2597–601.PubMedCrossRef
145.
go back to reference Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129:791–808.PubMedCrossRef Gerloff C, Bushara K, Sailer A, et al. Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain. 2006;129:791–808.PubMedCrossRef
146.
go back to reference Roland PE, Skinhoj E, Lassen NA, Larsen B. Different cortical areas in man in organization of voluntary movements in extrapersonal space. J Neurophysiol. 1980;43:137–50.PubMed Roland PE, Skinhoj E, Lassen NA, Larsen B. Different cortical areas in man in organization of voluntary movements in extrapersonal space. J Neurophysiol. 1980;43:137–50.PubMed
147.
go back to reference Kim SG, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 1993;261:615–7.PubMedCrossRef Kim SG, Ashe J, Hendrich K, et al. Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science. 1993;261:615–7.PubMedCrossRef
148.
go back to reference Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature. 1997;386:167–70.PubMedCrossRef Snyder LH, Batista AP, Andersen RA. Coding of intention in the posterior parietal cortex. Nature. 1997;386:167–70.PubMedCrossRef
149.
go back to reference Petkova VI, Khoshnevis M, Ehrsson HH. The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Front Psychol. 2011;2:35.PubMedPubMedCentralCrossRef Petkova VI, Khoshnevis M, Ehrsson HH. The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Front Psychol. 2011;2:35.PubMedPubMedCentralCrossRef
150.
151.
go back to reference Tsakiris M, Longo MR, Haggard P. Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia. 2010;48:2740–9.PubMedCrossRef Tsakiris M, Longo MR, Haggard P. Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia. 2010;48:2740–9.PubMedCrossRef
152.
go back to reference Meadows CC, Gable PA, Lohse KR, Miller MW. Motivation and motor cortical activity can independently affect motor performance. Neuroscience. 2016;339:174–9.PubMedCrossRef Meadows CC, Gable PA, Lohse KR, Miller MW. Motivation and motor cortical activity can independently affect motor performance. Neuroscience. 2016;339:174–9.PubMedCrossRef
153.
go back to reference Brütsch K, Schuler T, Koenig A, Zimmerli L, Merillat-Koeneke S, Lünenburger L, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.PubMedPubMedCentralCrossRef Brütsch K, Schuler T, Koenig A, Zimmerli L, Merillat-Koeneke S, Lünenburger L, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil. 2010;7:15.PubMedPubMedCentralCrossRef
154.
go back to reference Brütsch K, Koenig A, Zimmerli L, Merillat-Koeneke S, Riener R, Jäncke L, et al. Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. J Rehabil Med. 2011;43:493–9.PubMedCrossRef Brütsch K, Koenig A, Zimmerli L, Merillat-Koeneke S, Riener R, Jäncke L, et al. Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. J Rehabil Med. 2011;43:493–9.PubMedCrossRef
155.
go back to reference Schuler T, Brütsch K, Müller R, van Hedel H, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: a surface electromyography study. NeuroRehabilitation. 2011;28:401–11.PubMed Schuler T, Brütsch K, Müller R, van Hedel H, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: a surface electromyography study. NeuroRehabilitation. 2011;28:401–11.PubMed
156.
go back to reference Zimmerli L, Jacky M, Lünenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality based motor rehabilitation. Arch Phys Med. 2013;94:1737–46.PubMedCrossRef Zimmerli L, Jacky M, Lünenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality based motor rehabilitation. Arch Phys Med. 2013;94:1737–46.PubMedCrossRef
157.
go back to reference Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–103.PubMedCrossRef Kaelin-Lang A, Sawaki L, Cohen LG. Role of voluntary drive in encoding an elementary motor memory. J Neurophysiol. 2005;93:1099–103.PubMedCrossRef
158.
go back to reference Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.PubMedCrossRef Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126:866–72.PubMedCrossRef
Metadata
Title
The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial
Authors
Rocco Salvatore Calabrò
Antonino Naro
Margherita Russo
Antonino Leo
Rosaria De Luca
Tina Balletta
Antonio Buda
Gianluca La Rosa
Alessia Bramanti
Placido Bramanti
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0268-4

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue