Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2017

Open Access 01-12-2017 | Research

Reactive stepping with functional neuromuscular stimulation in response to forward-directed perturbations

Authors: Alexander J. Hunt, Brooke M. Odle, Lisa M. Lombardo, Musa L. Audu, Ronald J. Triolo

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Implanted motor system neuroprostheses can be effective at increasing personal mobility of persons paralyzed by spinal cord injuries. However, currently available neural stimulation systems for standing employ patterns of constant activation and are unreactive to changing postural demands.

Methods

In this work, we developed a closed-loop controller for detecting forward-directed body disturbances and initiating a stabilizing step in a person with spinal cord injury. Forward-directed pulls at the waist were detected with three body-mounted triaxial accelerometers. A finite state machine was designed and tested to trigger a postural response and apply stimulation to appropriate muscles so as to produce a protective step when the simplified jerk signal exceeded predetermined thresholds.

Results

The controller effectively initiated steps for all perturbations with magnitude between 10 and 17.5 s body weight, and initiated a postural response with occasional steps at 5% body weight. For perturbations at 15 and 17.5% body weight, the dynamic responses of the subject exhibited very similar component time periods when compared with able-bodied subjects undergoing similar postural perturbations. Additionally, the reactive step occurred faster for stronger perturbations than for weaker ones (p < .005, unequal varience t-test.)

Conclusions

This research marks progress towards a controller which can improve the safety and independence of persons with spinal cord injury using implanted neuroprostheses for standing.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davis JAJ, Triolo RJ, Uhlir J, Bieri C, Rohde L, Lissy D, et al. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers--where do we stand? J Rehabil Res Dev. 2001;38:609–17.PubMed Davis JAJ, Triolo RJ, Uhlir J, Bieri C, Rohde L, Lissy D, et al. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers--where do we stand? J Rehabil Res Dev. 2001;38:609–17.PubMed
3.
go back to reference Marsolais EB, Kobetic R, Chizeck HJ, Jacobs JL. Orthoses and electrical stimulation for walking in complete paraplegia. Neurorehabil Neural Repair. 1991;5:13–22.CrossRef Marsolais EB, Kobetic R, Chizeck HJ, Jacobs JL. Orthoses and electrical stimulation for walking in complete paraplegia. Neurorehabil Neural Repair. 1991;5:13–22.CrossRef
4.
go back to reference Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepard JT, eds. Handbook of Physiology: Section 12, Exercise Regulation and Integration of Multiple Systems. New York: Oxford University Press; 1996;255–92. Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepard JT, eds. Handbook of Physiology: Section 12, Exercise Regulation and Integration of Multiple Systems. New York: Oxford University Press; 1996;255–92.
5.
go back to reference Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3:193–214.CrossRef Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3:193–214.CrossRef
6.
go back to reference Nataraj R, Audu ML, Triolo RJ. Center of Mass acceleration feedback control of standing balance by functional neuromuscular stimulation against external postural perturbations. IEEE Trans Biomed Eng. 2013;60:10–9.CrossRefPubMed Nataraj R, Audu ML, Triolo RJ. Center of Mass acceleration feedback control of standing balance by functional neuromuscular stimulation against external postural perturbations. IEEE Trans Biomed Eng. 2013;60:10–9.CrossRefPubMed
8.
go back to reference Nataraj R, Audu ML, Triolo RJ. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation. J Neuroeng Rehabil. 2012;9. doi:10.1109/TBME.2012.2218601. Nataraj R, Audu ML, Triolo RJ. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation. J Neuroeng Rehabil. 2012;9. doi:10.​1109/​TBME.​2012.​2218601.
9.
go back to reference Pai YC, Rogers MW, Patton J, Cain TD, Hanke TA. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J Biomech. 1998;31:1111–8.CrossRefPubMed Pai YC, Rogers MW, Patton J, Cain TD, Hanke TA. Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults. J Biomech. 1998;31:1111–8.CrossRefPubMed
10.
go back to reference Pai YC, Patton J. Center of mass velocity-position predictions for balance control. J Biomech. 1997;30:347–54.CrossRefPubMed Pai YC, Patton J. Center of mass velocity-position predictions for balance control. J Biomech. 1997;30:347–54.CrossRefPubMed
11.
go back to reference McIlroy WE, Maki BE. The control of lateral stability during rapid stepping reactions evoked by antero-posterior perturbation: does anticipatory control play a role? Gait Posture. 1999;9:190–8.CrossRefPubMed McIlroy WE, Maki BE. The control of lateral stability during rapid stepping reactions evoked by antero-posterior perturbation: does anticipatory control play a role? Gait Posture. 1999;9:190–8.CrossRefPubMed
12.
go back to reference McIlroy WE, Maki BE. Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance. Brain Res. 1993;616:30–8.CrossRefPubMed McIlroy WE, Maki BE. Task constraints on foot movement and the incidence of compensatory stepping following perturbation of upright stance. Brain Res. 1993;616:30–8.CrossRefPubMed
13.
go back to reference Bhadra N, Kilgore KL, Peckham PH. Implanted stimulators for restoration of function in spinal cord injury. Med Eng Phys. 2001;23:19–28.CrossRefPubMed Bhadra N, Kilgore KL, Peckham PH. Implanted stimulators for restoration of function in spinal cord injury. Med Eng Phys. 2001;23:19–28.CrossRefPubMed
15.
go back to reference Smith B, Tang Z, Johnson MW, Pourmehdi S, Gazdik MM, Buckett JR, et al. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng. 1998;45:463–75.CrossRefPubMed Smith B, Tang Z, Johnson MW, Pourmehdi S, Gazdik MM, Buckett JR, et al. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans Biomed Eng. 1998;45:463–75.CrossRefPubMed
16.
go back to reference Maki BE, WE MI. The control of foot placement during compensatory stepping reactions: does speed of response take precedence over stability? In: IEEE Trans Rehabil Eng; 1999. p. 80–90. Maki BE, WE MI. The control of foot placement during compensatory stepping reactions: does speed of response take precedence over stability? In: IEEE Trans Rehabil Eng; 1999. p. 80–90.
17.
go back to reference Rogers MW, Hedman LD, Johnson ME, Martinez KM, Mille ML. Triggering of protective stepping for the control of human balance: age and contextual dependence. Cogn Brain Res. 2003;16:192–8.CrossRef Rogers MW, Hedman LD, Johnson ME, Martinez KM, Mille ML. Triggering of protective stepping for the control of human balance: age and contextual dependence. Cogn Brain Res. 2003;16:192–8.CrossRef
18.
go back to reference Mansfield A, Maki BE. Are age-related impairments in change-in-support balance reactions dependent on the method of balance perturbation? J Biomech. 2009;42:1023–31.CrossRefPubMed Mansfield A, Maki BE. Are age-related impairments in change-in-support balance reactions dependent on the method of balance perturbation? J Biomech. 2009;42:1023–31.CrossRefPubMed
19.
go back to reference Odle BM, Hunt AJ, Audu ML, Lombardo LM, Triolo RJ. Center of Pressure Feedback Control of task-dependant postures. In: North American neuromodulation society and neural interfaces; 2016. Odle BM, Hunt AJ, Audu ML, Lombardo LM, Triolo RJ. Center of Pressure Feedback Control of task-dependant postures. In: North American neuromodulation society and neural interfaces; 2016.
20.
go back to reference Odle BM, Hunt AJ, Lombardo LM, Audu ML, Triolo RJ. Center of Pressure Feedback Control of posture in an implanted standing Neuroprosthesis. In: Engineering in medicine and biology conference; 2016. Odle BM, Hunt AJ, Lombardo LM, Audu ML, Triolo RJ. Center of Pressure Feedback Control of posture in an implanted standing Neuroprosthesis. In: Engineering in medicine and biology conference; 2016.
21.
go back to reference El-Gohary M, Peterson D, Gera G, Horak FB, Huisinga JM. Validity of the instrumented push and release test to quantify postural responses in persons with multiple sclerosis. Arch Phys Med Rehabil. 2017:1–7. doi:10.1016/j.apmr.2017.01.030. El-Gohary M, Peterson D, Gera G, Horak FB, Huisinga JM. Validity of the instrumented push and release test to quantify postural responses in persons with multiple sclerosis. Arch Phys Med Rehabil. 2017:1–7. doi:10.​1016/​j.​apmr.​2017.​01.​030.
22.
go back to reference Smith B, Crish TJ, Buckett JR, Kilgore KL, Peckham PH. Development of an implantable networked neuroprosthesis. 2nd Int IEEE EMBS Conf Neural Eng. 2005;2005:454–7. Smith B, Crish TJ, Buckett JR, Kilgore KL, Peckham PH. Development of an implantable networked neuroprosthesis. 2nd Int IEEE EMBS Conf Neural Eng. 2005;2005:454–7.
23.
go back to reference Kilgore KL, Hoyen HA, Keith MW, Triolo RJ, Bryden AM, Lombardo L, et al. Implanted network for motor function in cervical SCI. Philadelphia: American Spinal Injury Association (ASIA) Meeting; 2016. Kilgore KL, Hoyen HA, Keith MW, Triolo RJ, Bryden AM, Lombardo L, et al. Implanted network for motor function in cervical SCI. Philadelphia: American Spinal Injury Association (ASIA) Meeting; 2016.
24.
go back to reference Kilgore KL, Keith M, Hoyen H, Anderson JS, Triolo R, Bryden A, et al. Fully-implanted trunk and upper extremity neuroprostheis for cervical SCI. San Antonio: American Spinal Injury Society (ASIA) Meeting; 2014. Kilgore KL, Keith M, Hoyen H, Anderson JS, Triolo R, Bryden A, et al. Fully-implanted trunk and upper extremity neuroprostheis for cervical SCI. San Antonio: American Spinal Injury Society (ASIA) Meeting; 2014.
25.
go back to reference Hunter Peckham P, Michael AD. Implantable Neural Stimulators. In: Neuromodulation; 2009. p. 215–28. Hunter Peckham P, Michael AD. Implantable Neural Stimulators. In: Neuromodulation; 2009. p. 215–28.
26.
go back to reference Nataraj R, Audu ML, Triolo RJ. Simulating the restoration of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury. Med Biol Eng Comput. 2016;54:163–76.CrossRefPubMed Nataraj R, Audu ML, Triolo RJ. Simulating the restoration of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury. Med Biol Eng Comput. 2016;54:163–76.CrossRefPubMed
27.
go back to reference Saffer M, Jeka J. Coherence analysis of muscle activity during quiet stance. Brain. 2009;185:215–26. Saffer M, Jeka J. Coherence analysis of muscle activity during quiet stance. Brain. 2009;185:215–26.
28.
29.
go back to reference Chang Y-J, Shields RK. Doublet electrical stimulation enhances torque production in people with spinal cord injury. Neurorehabil Neural Repair. 2011;25:423–32.CrossRefPubMedPubMedCentral Chang Y-J, Shields RK. Doublet electrical stimulation enhances torque production in people with spinal cord injury. Neurorehabil Neural Repair. 2011;25:423–32.CrossRefPubMedPubMedCentral
30.
go back to reference Kara ZZ, Durfee WK, Barzilai AM. Reducing muscle fatigue in FES applications by stimulating with TV-let pulse trains. IEEE Trans Biomed Eng. 1995;42:809–17.CrossRef Kara ZZ, Durfee WK, Barzilai AM. Reducing muscle fatigue in FES applications by stimulating with TV-let pulse trains. IEEE Trans Biomed Eng. 1995;42:809–17.CrossRef
Metadata
Title
Reactive stepping with functional neuromuscular stimulation in response to forward-directed perturbations
Authors
Alexander J. Hunt
Brooke M. Odle
Lisa M. Lombardo
Musa L. Audu
Ronald J. Triolo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2017
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/s12984-017-0266-6

Other articles of this Issue 1/2017

Journal of NeuroEngineering and Rehabilitation 1/2017 Go to the issue