Skip to main content
Top
Published in: AIDS Research and Therapy 1/2017

Open Access 01-12-2017 | Review

Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update

Authors: Faysal Bin Hamid, Jinsun Kim, Cha-Gyun Shin

Published in: AIDS Research and Therapy | Issue 1/2017

Login to get access

Abstract

Reverse transcription of viral RNA and the subsequent integration of reverse transcripts are the classical early events of the HIV-1 life-cycle. Simultaneously, abundant unintegrated DNAs (uDNAs), are formed in cells ubiquitously. The uDNAs either undergo recombination or degradation or persist inactively for long periods in the nucleus as future resources. Among them, 2-LTR circles are considered a dead-end for viral spread. Their contribution to the HIV-1 infection is still poorly understood. Nevertheless, the preintegration transcription of the aberrant DNAs and the consequent alterations of cellular factors have already been reported. Since the major fate of the viral genome is to persist as episomal DNA, precise characterization is required for studying the biology of HIV-1. This review compiles the biochemical and genetic updates on uDNA in the HIV-1 life cycle and could provide direction to further study of their roles in HIV-1 replication and application in HIV-1 pathogenesis.
Literature
1.
go back to reference Farnet CM, Haseltine WA. Circularization of human immunodeficiency virus type 1 DNA in vitro. J Virol. 1991;65:6942–52.PubMedPubMedCentral Farnet CM, Haseltine WA. Circularization of human immunodeficiency virus type 1 DNA in vitro. J Virol. 1991;65:6942–52.PubMedPubMedCentral
2.
go back to reference Varmus HE, Brown PO. Retroviruses. In: Berg DE, Howe MM, editors. Mobile DNA. Washington, D.C.: American Society for Microbiology; 1989. p. 53–108. Varmus HE, Brown PO. Retroviruses. In: Berg DE, Howe MM, editors. Mobile DNA. Washington, D.C.: American Society for Microbiology; 1989. p. 53–108.
4.
go back to reference Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegration HIV DNA. Science. 2001;293:1503–6.CrossRefPubMed Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegration HIV DNA. Science. 2001;293:1503–6.CrossRefPubMed
8.
go back to reference Kelly J, Beddall M, Yu D, et al. Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology. 2008;372:300–12.CrossRefPubMed Kelly J, Beddall M, Yu D, et al. Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology. 2008;372:300–12.CrossRefPubMed
9.
go back to reference Overbaugh J, Miller AD, Eiden MV. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidyl inositol-anchored and secreted proteins. Microbiol Mol Biol Rev. 2001;65:371–89.CrossRefPubMedPubMedCentral Overbaugh J, Miller AD, Eiden MV. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidyl inositol-anchored and secreted proteins. Microbiol Mol Biol Rev. 2001;65:371–89.CrossRefPubMedPubMedCentral
10.
go back to reference Hamid FB, Kim J, Shin CG. Cellular and viral determinants of retroviral nuclear entry. Can J Microbiol. 2016;62:1–15.CrossRef Hamid FB, Kim J, Shin CG. Cellular and viral determinants of retroviral nuclear entry. Can J Microbiol. 2016;62:1–15.CrossRef
13.
go back to reference Kilzer JM, Stracker T, Beitzel B, et al. Roles of host cell factors in circularization of retroviral dna. Virology. 2003;314:460–7.CrossRefPubMed Kilzer JM, Stracker T, Beitzel B, et al. Roles of host cell factors in circularization of retroviral dna. Virology. 2003;314:460–7.CrossRefPubMed
14.
go back to reference Chan CN, Trinité B, Lee CS, et al. HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology. 2016;13:1.CrossRefPubMedPubMedCentral Chan CN, Trinité B, Lee CS, et al. HIV-1 latency and virus production from unintegrated genomes following direct infection of resting CD4 T cells. Retrovirology. 2016;13:1.CrossRefPubMedPubMedCentral
16.
go back to reference Serhan F, Penaud M, Petit C, et al. Early detection of a two-long-terminal-repeat junction molecule in the cytoplasm of recombinant murine leukemia virus-infected cells. J Virol. 2004;78:6190–9.CrossRefPubMedPubMedCentral Serhan F, Penaud M, Petit C, et al. Early detection of a two-long-terminal-repeat junction molecule in the cytoplasm of recombinant murine leukemia virus-infected cells. J Virol. 2004;78:6190–9.CrossRefPubMedPubMedCentral
17.
go back to reference Miller MD, Wang B, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J Virol. 1995;69:3938–44.PubMedPubMedCentral Miller MD, Wang B, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J Virol. 1995;69:3938–44.PubMedPubMedCentral
18.
go back to reference Cara A, Klotman ME. Retroviral E-DNA: persistence and gene expression in nondividing immune cells. J Leukoc Biol. 2006;80:1013–7.CrossRefPubMed Cara A, Klotman ME. Retroviral E-DNA: persistence and gene expression in nondividing immune cells. J Leukoc Biol. 2006;80:1013–7.CrossRefPubMed
19.
go back to reference Li L, Olvera JM, Yoder KE, et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 2001;20:3272–81.CrossRefPubMedPubMedCentral Li L, Olvera JM, Yoder KE, et al. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 2001;20:3272–81.CrossRefPubMedPubMedCentral
21.
go back to reference Coffin JM, Hughes SH, Varmus HE. Retroviruses. New York: Cold Spring Harbor Laboratory Press; 1997. Coffin JM, Hughes SH, Varmus HE. Retroviruses. New York: Cold Spring Harbor Laboratory Press; 1997.
22.
go back to reference Shoemaker C, Hoffman J, Goff SP, et al. Intramolecular integration within Moloney murine leukemia virus DNA. J Virol. 1981;40:164–72.PubMedPubMedCentral Shoemaker C, Hoffman J, Goff SP, et al. Intramolecular integration within Moloney murine leukemia virus DNA. J Virol. 1981;40:164–72.PubMedPubMedCentral
23.
go back to reference Yan YM, Coffin JM. Efficient autointegration of avian retrovirus DNA in vitro. J Virol. 1990;64:5958–65. Yan YM, Coffin JM. Efficient autointegration of avian retrovirus DNA in vitro. J Virol. 1990;64:5958–65.
26.
go back to reference Delelis O, Parissi V, Leh H, et al. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase. PLoS ONE. 2007;2(7):e608.CrossRefPubMedPubMedCentral Delelis O, Parissi V, Leh H, et al. Efficient and specific internal cleavage of a retroviral palindromic DNA sequence by tetrameric HIV-1 integrase. PLoS ONE. 2007;2(7):e608.CrossRefPubMedPubMedCentral
27.
go back to reference Munir S, Thierry S, Subra F, et al. Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology. 2013;10:87.CrossRefPubMedPubMedCentral Munir S, Thierry S, Subra F, et al. Quantitative analysis of the time-course of viral DNA forms during the HIV-1 life cycle. Retrovirology. 2013;10:87.CrossRefPubMedPubMedCentral
28.
go back to reference Vatakis DN, Bristol G, Wilkinson TA, et al. Immediate activation fails to rescue efficient human immunodeficiency virus replication in quiescent CD4+ T cells. J Virol. 2007;81:3574–82.CrossRefPubMedPubMedCentral Vatakis DN, Bristol G, Wilkinson TA, et al. Immediate activation fails to rescue efficient human immunodeficiency virus replication in quiescent CD4+ T cells. J Virol. 2007;81:3574–82.CrossRefPubMedPubMedCentral
29.
go back to reference Badralmaa Y, Natarajan V. Impact of the DNA extraction method on 2-LTR DNA circle recovery from HIV-1 infected cells. J Virol Methods. 2013;193:184–9.CrossRefPubMedPubMedCentral Badralmaa Y, Natarajan V. Impact of the DNA extraction method on 2-LTR DNA circle recovery from HIV-1 infected cells. J Virol Methods. 2013;193:184–9.CrossRefPubMedPubMedCentral
30.
go back to reference Olivares I, Sánchez-Jiménez C, Vieira CR, et al. Evidence of ongoing replication in a human immunodeficiency virus type 1 persistently infected cell line. J Gen Virol. 2013;94:944–54.CrossRefPubMed Olivares I, Sánchez-Jiménez C, Vieira CR, et al. Evidence of ongoing replication in a human immunodeficiency virus type 1 persistently infected cell line. J Gen Virol. 2013;94:944–54.CrossRefPubMed
31.
go back to reference Sonza S, Kiernan RE, Maerz AL, et al. Accumulation of unintegrated circular viral DNA in monocytes and growth-arrested T cells following infection with HIV-1. J Leukoc Biol. 1994;56:289–93.PubMed Sonza S, Kiernan RE, Maerz AL, et al. Accumulation of unintegrated circular viral DNA in monocytes and growth-arrested T cells following infection with HIV-1. J Leukoc Biol. 1994;56:289–93.PubMed
32.
go back to reference Bayer M, Kantor B, Cockrell A, et al. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector. Mol Ther. 2008;16:1968–76.CrossRefPubMedPubMedCentral Bayer M, Kantor B, Cockrell A, et al. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector. Mol Ther. 2008;16:1968–76.CrossRefPubMedPubMedCentral
34.
go back to reference Cara A, Reitz MS Jr. New insight on the role of extrachromosomal retroviral DNA. Leukemia. 1997;11:1395–9.CrossRefPubMed Cara A, Reitz MS Jr. New insight on the role of extrachromosomal retroviral DNA. Leukemia. 1997;11:1395–9.CrossRefPubMed
35.
go back to reference Guntaka RV, Richards OC, Shank PR, et al. Covalently closed circular DNA of avian sarcoma virus: purification from nuclei of infected quail tumor cells and measurement by electron microscopy and gel electrophoresis. J Mol Biol. 1976;106:337–57.CrossRefPubMed Guntaka RV, Richards OC, Shank PR, et al. Covalently closed circular DNA of avian sarcoma virus: purification from nuclei of infected quail tumor cells and measurement by electron microscopy and gel electrophoresis. J Mol Biol. 1976;106:337–57.CrossRefPubMed
36.
go back to reference Shank P, Hughes S, Kung H, et al. Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell. 1978;15:1383–95.CrossRefPubMed Shank P, Hughes S, Kung H, et al. Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell. 1978;15:1383–95.CrossRefPubMed
37.
go back to reference Pang S, Koyanagi Y, Miles S, et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990;343:85–9.CrossRefPubMed Pang S, Koyanagi Y, Miles S, et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990;343:85–9.CrossRefPubMed
38.
go back to reference Casabianca A, Orlandi C, Canovari B, et al. A real time PCR platform for the simultaneous quantification of total and extrachromosomal HIV DNA forms in blood of HIV-1 infected patients. PLoS ONE. 2014;9:e111919.CrossRefPubMedPubMedCentral Casabianca A, Orlandi C, Canovari B, et al. A real time PCR platform for the simultaneous quantification of total and extrachromosomal HIV DNA forms in blood of HIV-1 infected patients. PLoS ONE. 2014;9:e111919.CrossRefPubMedPubMedCentral
39.
go back to reference Meyerhans A, Breinig T, Vartanian J, et al. Forms and function of intracellular HIV DNA. In: Leitner T, Foley B, Hahn B, Marx P, McCutchan F, Mellors JW, Wolinsky S, Korber B, editors. HIV sequence compendium 2003. Los Alamos: Theoretical Biology and Biophysics Group; 2004. p. 14–21. Meyerhans A, Breinig T, Vartanian J, et al. Forms and function of intracellular HIV DNA. In: Leitner T, Foley B, Hahn B, Marx P, McCutchan F, Mellors JW, Wolinsky S, Korber B, editors. HIV sequence compendium 2003. Los Alamos: Theoretical Biology and Biophysics Group; 2004. p. 14–21.
41.
go back to reference Butler SL, Hansen MS, Bushman FD. A quantitative assay for HIV DNA integration in vivo. Nat Med. 2001;7:631–4.CrossRefPubMed Butler SL, Hansen MS, Bushman FD. A quantitative assay for HIV DNA integration in vivo. Nat Med. 2001;7:631–4.CrossRefPubMed
42.
go back to reference Vandegraaff N, Kumar R, Burrell CJ, et al. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J Virol. 2001;75:11253–60.CrossRefPubMedPubMedCentral Vandegraaff N, Kumar R, Burrell CJ, et al. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J Virol. 2001;75:11253–60.CrossRefPubMedPubMedCentral
43.
44.
go back to reference Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity. 2006;24:93–103.CrossRefPubMed Stetson DB, Medzhitov R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity. 2006;24:93–103.CrossRefPubMed
45.
go back to reference Gillim-Ross L, Cara A, Klotman ME. HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol. 2005;18:190–6.CrossRefPubMed Gillim-Ross L, Cara A, Klotman ME. HIV-1 extrachromosomal 2-LTR circular DNA is long-lived in human macrophages. Viral Immunol. 2005;18:190–6.CrossRefPubMed
46.
go back to reference Butler SL, Johnson EP, Bushman FD. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J Virol. 2002;76:3739–47.CrossRefPubMedPubMedCentral Butler SL, Johnson EP, Bushman FD. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J Virol. 2002;76:3739–47.CrossRefPubMedPubMedCentral
47.
go back to reference Kantor B, Ma H, Webster-Cyriaque J, et al. Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. Proc Natl Acad Sci USA. 2009;106:18786–91.CrossRefPubMedPubMedCentral Kantor B, Ma H, Webster-Cyriaque J, et al. Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. Proc Natl Acad Sci USA. 2009;106:18786–91.CrossRefPubMedPubMedCentral
48.
go back to reference Ruis BL, Fattah KR, Hendrickson EA. The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol Cell Biol. 2008;28:6182–95.CrossRefPubMedPubMedCentral Ruis BL, Fattah KR, Hendrickson EA. The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells. Mol Cell Biol. 2008;28:6182–95.CrossRefPubMedPubMedCentral
49.
50.
go back to reference Shoemaker C, Goff S, Gilboa E, et al. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci USA. 1980;77:3932–6.CrossRefPubMedPubMedCentral Shoemaker C, Goff S, Gilboa E, et al. Structure of a cloned circular Moloney murine leukemia virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc Natl Acad Sci USA. 1980;77:3932–6.CrossRefPubMedPubMedCentral
51.
go back to reference Jeanson L, Subra F, Vaganay S, et al. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology. 2002;300:100–8.CrossRefPubMed Jeanson L, Subra F, Vaganay S, et al. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology. 2002;300:100–8.CrossRefPubMed
52.
go back to reference Zheng Y, Ao Z, Wang B, et al. Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem. 2011;286:17722–35.CrossRefPubMedPubMedCentral Zheng Y, Ao Z, Wang B, et al. Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem. 2011;286:17722–35.CrossRefPubMedPubMedCentral
53.
go back to reference Pierson TC, Kieffer TL, Ruff CT, et al. Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J Virol. 2002;76:4138–44.CrossRefPubMedPubMedCentral Pierson TC, Kieffer TL, Ruff CT, et al. Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J Virol. 2002;76:4138–44.CrossRefPubMedPubMedCentral
54.
go back to reference Swiggard WJ, O’Doherty U, McGain D, et al. Long HIV type 1 reverse transcripts can accumulate stably within resting CD4+ T cells while short ones are degraded. AIDS Res Hum Retroviruses. 2004;20:285–95.CrossRefPubMed Swiggard WJ, O’Doherty U, McGain D, et al. Long HIV type 1 reverse transcripts can accumulate stably within resting CD4+ T cells while short ones are degraded. AIDS Res Hum Retroviruses. 2004;20:285–95.CrossRefPubMed
55.
go back to reference Zhou Y, Zhang H, Siliciano JD, et al. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol. 2005;79:2199–210.CrossRefPubMedPubMedCentral Zhou Y, Zhang H, Siliciano JD, et al. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol. 2005;79:2199–210.CrossRefPubMedPubMedCentral
56.
go back to reference Bell P, Montaner LJ, Maul GG. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J Virol. 2001;75:7683–91.CrossRefPubMedPubMedCentral Bell P, Montaner LJ, Maul GG. Accumulation and intranuclear distribution of unintegrated human immunodeficiency virus type 1 DNA. J Virol. 2001;75:7683–91.CrossRefPubMedPubMedCentral
57.
go back to reference Zennou V, Petit C, Guetard D, et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000;101:173–85.CrossRefPubMed Zennou V, Petit C, Guetard D, et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000;101:173–85.CrossRefPubMed
58.
go back to reference Brin E, Yi J, Skalka AM, et al. Modeling the late steps in HIV-1 integrase-catalyzed DNA integration. J Biol Chem. 2000;275:39287–95.CrossRefPubMed Brin E, Yi J, Skalka AM, et al. Modeling the late steps in HIV-1 integrase-catalyzed DNA integration. J Biol Chem. 2000;275:39287–95.CrossRefPubMed
59.
go back to reference Mulder LC, Chakrabarti LA, Muesing MA. Interaction of HIV-1 integrase with DNA repair protein hRad18. J Biol Chem. 2002;277:27489–93.CrossRefPubMed Mulder LC, Chakrabarti LA, Muesing MA. Interaction of HIV-1 integrase with DNA repair protein hRad18. J Biol Chem. 2002;277:27489–93.CrossRefPubMed
60.
go back to reference McDermott JL, Martini I, Ferrari D, et al. Decay of human immunodeficiency virus type 1 unintegrated DNA containing two long terminal repeats in infected individuals after 3 to 8 years of sustained control of viremia. J Clin Microbiol. 2005;43:5272–4.CrossRefPubMedPubMedCentral McDermott JL, Martini I, Ferrari D, et al. Decay of human immunodeficiency virus type 1 unintegrated DNA containing two long terminal repeats in infected individuals after 3 to 8 years of sustained control of viremia. J Clin Microbiol. 2005;43:5272–4.CrossRefPubMedPubMedCentral
61.
go back to reference Nakajima N, Lu R, Engelman A. Human immunodeficiency virus type 1 replication in the absence of integrase-mediated DNA recombination: definition of permissive and nonpermissive T-cell lines. J Virol. 2001;75:7944–55.CrossRefPubMedPubMedCentral Nakajima N, Lu R, Engelman A. Human immunodeficiency virus type 1 replication in the absence of integrase-mediated DNA recombination: definition of permissive and nonpermissive T-cell lines. J Virol. 2001;75:7944–55.CrossRefPubMedPubMedCentral
62.
63.
go back to reference Graf EH, Mexas AM, Yu JJ, et al. Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog. 2011;7:e1001300.CrossRefPubMedPubMedCentral Graf EH, Mexas AM, Yu JJ, et al. Elite suppressors harbor low levels of integrated HIV DNA and high levels of 2-LTR circular HIV DNA compared to HIV+ patients on and off HAART. PLoS Pathog. 2011;7:e1001300.CrossRefPubMedPubMedCentral
64.
65.
go back to reference Sloan RD, Donahue DA, Kuhl BD, et al. Expression of Nef from unintegrated HIV-1 DNA downregulates cell surface CXCR4 and CCR5 on T-lymphocytes. Retrovirology. 2010;7:44.CrossRefPubMedPubMedCentral Sloan RD, Donahue DA, Kuhl BD, et al. Expression of Nef from unintegrated HIV-1 DNA downregulates cell surface CXCR4 and CCR5 on T-lymphocytes. Retrovirology. 2010;7:44.CrossRefPubMedPubMedCentral
66.
go back to reference Thierry S, Thierry E, Subra F, et al. Opposite transcriptional regulation of integrated vs unintegrated HIV genomes by the NF-κB pathway. Sci Rep. 2016;6:25678.CrossRefPubMedPubMedCentral Thierry S, Thierry E, Subra F, et al. Opposite transcriptional regulation of integrated vs unintegrated HIV genomes by the NF-κB pathway. Sci Rep. 2016;6:25678.CrossRefPubMedPubMedCentral
67.
go back to reference Saenz DT, Loewen N, Peretz M, et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol. 2004;78:2906–20.CrossRefPubMedPubMedCentral Saenz DT, Loewen N, Peretz M, et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol. 2004;78:2906–20.CrossRefPubMedPubMedCentral
68.
go back to reference Vargas J Jr, Gusella GL, Najfeld V, et al. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther. 2004;15:361–72.CrossRefPubMed Vargas J Jr, Gusella GL, Najfeld V, et al. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther. 2004;15:361–72.CrossRefPubMed
69.
go back to reference Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12:348–53.CrossRefPubMed Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12:348–53.CrossRefPubMed
70.
go back to reference Lu R, Nakajima N, Hofmann W, et al. Simian virus 40-based replication of catalytically inactive human immunodeficiency virus type 1 integrase mutants in nonpermissive T cells and monocyte-derived macrophages. J Virol. 2004;78:658–68.CrossRefPubMedPubMedCentral Lu R, Nakajima N, Hofmann W, et al. Simian virus 40-based replication of catalytically inactive human immunodeficiency virus type 1 integrase mutants in nonpermissive T cells and monocyte-derived macrophages. J Virol. 2004;78:658–68.CrossRefPubMedPubMedCentral
71.
72.
go back to reference Shimura K, Miyazato P, Oishi S, et al. Impact of HIV-1 infection pathways on susceptibility to antiviral drugs and on virus spread. Virology. 2015;484:364–76.CrossRefPubMed Shimura K, Miyazato P, Oishi S, et al. Impact of HIV-1 infection pathways on susceptibility to antiviral drugs and on virus spread. Virology. 2015;484:364–76.CrossRefPubMed
73.
go back to reference Engelman A, Englund G, Orenstein JM, et al. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol. 1995;69:2729–36.PubMedPubMedCentral Engelman A, Englund G, Orenstein JM, et al. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol. 1995;69:2729–36.PubMedPubMedCentral
74.
go back to reference Poon B, Chang M, Chen I. Vpr is required for efficient Nef expression from unintegrated human immunodeficiency virus type 1 DNA. J Virol. 2007;81:10515–23.CrossRefPubMedPubMedCentral Poon B, Chang M, Chen I. Vpr is required for efficient Nef expression from unintegrated human immunodeficiency virus type 1 DNA. J Virol. 2007;81:10515–23.CrossRefPubMedPubMedCentral
75.
go back to reference Emeagwali N, Hildreth JE. Human immunodeficiency virus type 1 Vpu and cellular TASK proteins suppress transcription of unintegrated HIV-1 DNA. Virol J. 2012;9:277.CrossRefPubMedPubMedCentral Emeagwali N, Hildreth JE. Human immunodeficiency virus type 1 Vpu and cellular TASK proteins suppress transcription of unintegrated HIV-1 DNA. Virol J. 2012;9:277.CrossRefPubMedPubMedCentral
76.
go back to reference Iyer SR, Yu D, Biancotto A, et al. Measurement of human immunodeficiency virus type 1 preintegration transcription by using Rev-dependent Rev-CEM cells reveals a sizable transcribing DNA population comparable to that from proviral templates. J Virol. 2009;83:8662–73.CrossRefPubMedPubMedCentral Iyer SR, Yu D, Biancotto A, et al. Measurement of human immunodeficiency virus type 1 preintegration transcription by using Rev-dependent Rev-CEM cells reveals a sizable transcribing DNA population comparable to that from proviral templates. J Virol. 2009;83:8662–73.CrossRefPubMedPubMedCentral
77.
go back to reference Delelis O, Petit C, Leh H, et al. A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles. Retrovirology. 2005;2:31.CrossRefPubMedPubMedCentral Delelis O, Petit C, Leh H, et al. A novel function for spumaretrovirus integrase: an early requirement for integrase-mediated cleavage of 2 LTR circles. Retrovirology. 2005;2:31.CrossRefPubMedPubMedCentral
78.
go back to reference Thierry S, Munir S, Thierry E, et al. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration. Retrovirology. 2015;12:24.CrossRefPubMedPubMedCentral Thierry S, Munir S, Thierry E, et al. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration. Retrovirology. 2015;12:24.CrossRefPubMedPubMedCentral
79.
81.
go back to reference Bushman F. Measuring covert HIV replication during HAART: the abundance of 2-LTR circles is not a reliable marker. AIDS. 2003;17:749–50.CrossRefPubMed Bushman F. Measuring covert HIV replication during HAART: the abundance of 2-LTR circles is not a reliable marker. AIDS. 2003;17:749–50.CrossRefPubMed
82.
go back to reference Rivière L, Darlix J-L, Cimarelli A. Analysis of the Viral Elements Required in the Nuclear Import of HIV-1 DNA. J Virol. 2010;84:729–39.CrossRefPubMed Rivière L, Darlix J-L, Cimarelli A. Analysis of the Viral Elements Required in the Nuclear Import of HIV-1 DNA. J Virol. 2010;84:729–39.CrossRefPubMed
Metadata
Title
Distribution and fate of HIV-1 unintegrated DNA species: a comprehensive update
Authors
Faysal Bin Hamid
Jinsun Kim
Cha-Gyun Shin
Publication date
01-12-2017
Publisher
BioMed Central
Published in
AIDS Research and Therapy / Issue 1/2017
Electronic ISSN: 1742-6405
DOI
https://doi.org/10.1186/s12981-016-0127-6

Other articles of this Issue 1/2017

AIDS Research and Therapy 1/2017 Go to the issue