Skip to main content
Top
Published in: AIDS Research and Therapy 1/2017

Open Access 01-12-2017 | Review

Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines

Authors: C. Yong Kang, Yong Gao

Published in: AIDS Research and Therapy | Issue 1/2017

Login to get access

Abstract

The development of an efficient prophylactic HIV vaccine has been one of the major challenges in infectious disease research during the last three decades. Here, we present a mini review on strategies employed for the development of HIV vaccines with an emphasis on a well-established vaccine technology, the killed whole-virus vaccine approach. Recently, we reported an evaluation of the safety and the immunogenicity of a genetically modified and killed whole-HIV-1 vaccine designated as SAV001 [1]. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence of the Env signal peptide with that of honeybee melittin to produce an avirulent and replication efficient HIV-1. This genetically modified virus (gmHIV-1 NL4-3 ) was propagated in a human T cell line followed by virus purification and inactivation by aldrithiol-2 and γ-irradiation. We found that SAV001 was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific polymerase chain reaction showed no evidence of vaccine virus replication in participants receiving SAV001 and in human T cells infected in vitro. Furthermore, SAV001 with an adjuvant significantly increased the antibody response to HIV-1 structural proteins. Moreover, antibodies in the plasma from these vaccinations neutralized tier I and tier II of HIV-1 B, A, and D subtypes. These results indicated that the killed whole-HIV vaccine is safe and may trigger appropriate immune responses to prevent HIV infection. Utilization of this killed whole-HIV vaccine strategy may pave the way to develop an effective HIV vaccine.
Literature
2.
go back to reference Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220:868–71.CrossRefPubMed Barre-Sinoussi F, Chermann JC, Rey F, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220:868–71.CrossRefPubMed
4.
8.
go back to reference Khowsroy K, Dhitavat J, Sabmee Y, et al. Expectation of volunteers towards the vaccine efficacy of the prime-boost HIV vaccine phase III trial during unblinding. AIDS Res Hum Retrovir. 2014;30:1041–5.CrossRefPubMedPubMedCentral Khowsroy K, Dhitavat J, Sabmee Y, et al. Expectation of volunteers towards the vaccine efficacy of the prime-boost HIV vaccine phase III trial during unblinding. AIDS Res Hum Retrovir. 2014;30:1041–5.CrossRefPubMedPubMedCentral
9.
go back to reference Plotkin SA. The RV144 Thai HIV vaccine trial. Hum Vaccine. 2010;6:159. Plotkin SA. The RV144 Thai HIV vaccine trial. Hum Vaccine. 2010;6:159.
10.
go back to reference Vaccari M, Poonam P, Franchini G. Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev Vaccines. 2010;9:997–1005.CrossRefPubMed Vaccari M, Poonam P, Franchini G. Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev Vaccines. 2010;9:997–1005.CrossRefPubMed
11.
go back to reference Veillette M, Coutu M, Richard J, et al. The HIV-1 gp120 CD4-bound conformation is preferentially targeted by antibody-dependent cellular cytotoxicity-mediating antibodies in sera from HIV-1-infected individuals. J Virol. 2015;89:545–51.CrossRefPubMed Veillette M, Coutu M, Richard J, et al. The HIV-1 gp120 CD4-bound conformation is preferentially targeted by antibody-dependent cellular cytotoxicity-mediating antibodies in sera from HIV-1-infected individuals. J Virol. 2015;89:545–51.CrossRefPubMed
12.
go back to reference Ding S, Veillette M, Coutu M, et al. A highly conserved residue of the HIV-1 gp120 inner domain is important for antibody-dependent cellular cytotoxicity responses mediated by anti-cluster A antibodies. J Virol. 2016;90:2127–34.CrossRefPubMedCentral Ding S, Veillette M, Coutu M, et al. A highly conserved residue of the HIV-1 gp120 inner domain is important for antibody-dependent cellular cytotoxicity responses mediated by anti-cluster A antibodies. J Virol. 2016;90:2127–34.CrossRefPubMedCentral
14.
go back to reference Wyatt R, Kwong PD, Desjardins E, et al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature. 1998;393:705–11.CrossRefPubMed Wyatt R, Kwong PD, Desjardins E, et al. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature. 1998;393:705–11.CrossRefPubMed
15.
go back to reference Alsalmi W, Mahalingam M, Hamlin NAC, et al. A new approach to produce HIV-1 envelope trimers: both cleavage and proper glycosylation are essential to generate authentic trimers. J Biol Chem. 2015;290:19780–95.CrossRefPubMedPubMedCentral Alsalmi W, Mahalingam M, Hamlin NAC, et al. A new approach to produce HIV-1 envelope trimers: both cleavage and proper glycosylation are essential to generate authentic trimers. J Biol Chem. 2015;290:19780–95.CrossRefPubMedPubMedCentral
16.
go back to reference Miller NZ. The polio vaccine; a critical assessment of its arcane history, efficacy, and long-term health-related consequences. Med Veritas. 2004;1(2):239–51.CrossRef Miller NZ. The polio vaccine; a critical assessment of its arcane history, efficacy, and long-term health-related consequences. Med Veritas. 2004;1(2):239–51.CrossRef
17.
go back to reference Bright RA, Carter DM, Daniluk S, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine. 2007;25:3871–8.CrossRefPubMed Bright RA, Carter DM, Daniluk S, et al. Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine. 2007;25:3871–8.CrossRefPubMed
18.
go back to reference Culbertson CG, Peck FB Jr, Powell HM. Duck-embryo rabies vaccine; study of fixed virus vaccine grown in embryonated duck eggs and killed with beta-propiolactone (BPL). J Am Med Assoc. 1956;162:1373–6.CrossRefPubMed Culbertson CG, Peck FB Jr, Powell HM. Duck-embryo rabies vaccine; study of fixed virus vaccine grown in embryonated duck eggs and killed with beta-propiolactone (BPL). J Am Med Assoc. 1956;162:1373–6.CrossRefPubMed
19.
go back to reference Hilleman MR. Hepatitis and hepatitis A vaccine: a glimpse of history. J Hepatol. 1993;18(Suppl 2):S5–10.CrossRefPubMed Hilleman MR. Hepatitis and hepatitis A vaccine: a glimpse of history. J Hepatol. 1993;18(Suppl 2):S5–10.CrossRefPubMed
21.
go back to reference Sheppard HW, Dorman BP. Time for a systematic look at inactivated HIV vaccines. AIDS. 2015;29:125–7.CrossRefPubMed Sheppard HW, Dorman BP. Time for a systematic look at inactivated HIV vaccines. AIDS. 2015;29:125–7.CrossRefPubMed
22.
go back to reference Rios A, Poteet EC, Siwak EB, et al. HIV inactivation: time for a second look. AIDS. 2015;29:129–31.CrossRefPubMed Rios A, Poteet EC, Siwak EB, et al. HIV inactivation: time for a second look. AIDS. 2015;29:129–31.CrossRefPubMed
23.
go back to reference Kirchhoff F, Greenough TC, Brettler DB, et al. A brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med. 1995;332:228–32.CrossRefPubMed Kirchhoff F, Greenough TC, Brettler DB, et al. A brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med. 1995;332:228–32.CrossRefPubMed
24.
go back to reference Rhodes DI, Ashton L, Solomon A, et al. Characterization of three nef-defective human immunodeficiency virus type 1 strains associated with long-term nonprogression. J Virol. 2000;74:10581–8.CrossRefPubMedPubMedCentral Rhodes DI, Ashton L, Solomon A, et al. Characterization of three nef-defective human immunodeficiency virus type 1 strains associated with long-term nonprogression. J Virol. 2000;74:10581–8.CrossRefPubMedPubMedCentral
25.
go back to reference Kestler HW III, Ringleer DJ, Mori K, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell. 1991;65:651–62.CrossRefPubMed Kestler HW III, Ringleer DJ, Mori K, et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell. 1991;65:651–62.CrossRefPubMed
26.
go back to reference Jamieson BD, Pamg S, Aldrovandi GM, et al. Requirement of human immunodeficiency virus type 1 nef for in vitro replication and pathogenecity. J Virol. 1994;68:3478–85.PubMedPubMedCentral Jamieson BD, Pamg S, Aldrovandi GM, et al. Requirement of human immunodeficiency virus type 1 nef for in vitro replication and pathogenecity. J Virol. 1994;68:3478–85.PubMedPubMedCentral
27.
go back to reference Li Y, Luo L, Thomas DY, Kang CY. Control of expression, glycosylation, and secretion of HIV-1 gp120 by homologous and heterologous signal sequences. Virology. 1994;204:266–78.CrossRefPubMed Li Y, Luo L, Thomas DY, Kang CY. Control of expression, glycosylation, and secretion of HIV-1 gp120 by homologous and heterologous signal sequences. Virology. 1994;204:266–78.CrossRefPubMed
28.
go back to reference Li Y, Luo L, Thomas DY, Kang CY. The HIV-1 Env protein signal sequence retards its cleavage and down-regulates the glycoprotein folding. Virology. 2000;272:417–28.CrossRefPubMed Li Y, Luo L, Thomas DY, Kang CY. The HIV-1 Env protein signal sequence retards its cleavage and down-regulates the glycoprotein folding. Virology. 2000;272:417–28.CrossRefPubMed
29.
go back to reference Rossio JL, Esser MT, Suryanarayana K, et al. Inactivation of human immunodeficiency virus type-1 Infectivity with oreservation of conformational and functional integrity of virion surface proteins. J Virol. 1998;72:7992–8001.PubMedPubMedCentral Rossio JL, Esser MT, Suryanarayana K, et al. Inactivation of human immunodeficiency virus type-1 Infectivity with oreservation of conformational and functional integrity of virion surface proteins. J Virol. 1998;72:7992–8001.PubMedPubMedCentral
30.
go back to reference Rutebemberwa A, Bess JW Jr, Brown B, et al. Evaluation of aldrithiol-2-inactivated preparation of HIV type 1subtypes A, B, and D as reagents to monitor T cell responses. AIDS Res Hum Retrovir. 2007;23:532–42.CrossRefPubMed Rutebemberwa A, Bess JW Jr, Brown B, et al. Evaluation of aldrithiol-2-inactivated preparation of HIV type 1subtypes A, B, and D as reagents to monitor T cell responses. AIDS Res Hum Retrovir. 2007;23:532–42.CrossRefPubMed
31.
go back to reference Henderson EE, Tudor G, Yang JY. Inactivation of human immunodeficiency virus type 1 (HIV-1) by ultraviolet and X irradiation. Radiat Res. 1992;131:169–76.CrossRefPubMed Henderson EE, Tudor G, Yang JY. Inactivation of human immunodeficiency virus type 1 (HIV-1) by ultraviolet and X irradiation. Radiat Res. 1992;131:169–76.CrossRefPubMed
32.
go back to reference Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;17:1871–9.CrossRefPubMed Fiebig EW, Wright DJ, Rawal BD, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;17:1871–9.CrossRefPubMed
33.
go back to reference Sanders RW, Van Gils MJ, Derking R, et al. HIV-1 neutralizing antibodies induced by native-like envelope trimmers. Science. 2015;349:154.CrossRef Sanders RW, Van Gils MJ, Derking R, et al. HIV-1 neutralizing antibodies induced by native-like envelope trimmers. Science. 2015;349:154.CrossRef
34.
go back to reference Jardine JG, Ota T, Sok D, et al. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. 2015;349:156–61.CrossRefPubMedPubMedCentral Jardine JG, Ota T, Sok D, et al. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. 2015;349:156–61.CrossRefPubMedPubMedCentral
35.
go back to reference Grobler J, Gray CM, Rademeyer C, et al. Incidence of HIV-1 dual infection and its association with increased viral load set point in a cohort of HIV-1 subtype C-infected female sex workers. J Infect Dis. 2004;190:1355–9.CrossRefPubMed Grobler J, Gray CM, Rademeyer C, et al. Incidence of HIV-1 dual infection and its association with increased viral load set point in a cohort of HIV-1 subtype C-infected female sex workers. J Infect Dis. 2004;190:1355–9.CrossRefPubMed
36.
go back to reference Altfeld M, Allen TM, Yu XG, et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature. 2002;420:434–9.CrossRefPubMed Altfeld M, Allen TM, Yu XG, et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature. 2002;420:434–9.CrossRefPubMed
37.
go back to reference Jost S, Bernard M-C, Kaiser L, et al. A patient with HIV-1 superinfection. N Engl J Med. 2002;347:731–6.CrossRefPubMed Jost S, Bernard M-C, Kaiser L, et al. A patient with HIV-1 superinfection. N Engl J Med. 2002;347:731–6.CrossRefPubMed
Metadata
Title
Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines
Authors
C. Yong Kang
Yong Gao
Publication date
01-12-2017
Publisher
BioMed Central
Published in
AIDS Research and Therapy / Issue 1/2017
Electronic ISSN: 1742-6405
DOI
https://doi.org/10.1186/s12981-017-0176-5

Other articles of this Issue 1/2017

AIDS Research and Therapy 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.