Skip to main content
Top
Published in: Journal of the International Society of Sports Nutrition 1/2015

Open Access 01-12-2015 | Research article

The effects of supplementation with P-Synephrine alone and in combination with caffeine on resistance exercise performance

Published in: Journal of the International Society of Sports Nutrition | Issue 1/2015

Login to get access

Abstract

Background

Little is known concerning the potential ergogenic effects of p-synephrine supplementation. Therefore, the purpose of the present study was to examine the effects of supplementation with p-synephrine alone and in combination with caffeine on free-weight resistance exercise performance.

Methods

Twelve healthy, college-aged men performed a control (CT) resistance exercise protocol consisting of 6 sets of squats for up to 10 repetitions per set using 80 % of their one repetition-maximum (1RM) with 2 min of rest in between sets. Each subject was randomly assigned (in double-blind, balanced manner) to a treatment sequence consisting of use of 3 supplements: p-synephrine (S; 100 mg), p-synephrine + caffeine (SCF; 100 mg of p-synephrine plus 100 mg of caffeine), or a placebo (P). For each supplement treatment (separated by 1 week), subjects consumed the supplement for 3 days prior to each protocol and the morning of each protocol, and subsequently did not consume any supplements for 3 days following (i.e. wash-out period). On each protocol day, subjects reported to the lab at a standard time, consumed a supplement, sat quietly for 45 min, performed the resistance exercise protocol, and sat quietly for 30 min post exercise. Performance (repetition number, force, velocity and power), blood lactate, and ratings of perceived exertion (RPE) data were collected during each protocol.

Results

Supplements SCF and S produced a significantly (P < 0.05) greater number of repetitions performed than CT (by 11.0 ± 8.0 %) and P (by 6.0 ± 7.0 %) and a 10.6 ± 12.0 % greater increase in volume load per protocol than CT and P. Most of the differences were seen during the last 3 sets. Mean power and velocity for all 6 sets were significantly higher in SCF compared to CT and P by ~6.2 ± 8.0 %. No supplement effects were observed in RPE or blood lactate, and no adverse side effects were observed or reported.

Conclusions

S and SCF augmented resistance exercise performance (total repetitions, volume load) without increasing blood lactate or RPE. The addition of caffeine in SCF increased mean power and velocity of squat performance. These results indicate supplementation with S and SCF can enhance local muscle endurance during resistance exercise.
Literature
1.
go back to reference Stohs SJ, Preuss HG, Keith SC, Keith PL, Miller H, Kaats GR. Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. Int J Med Sci. 2011;8:295–301.PubMedCentralCrossRefPubMed Stohs SJ, Preuss HG, Keith SC, Keith PL, Miller H, Kaats GR. Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. Int J Med Sci. 2011;8:295–301.PubMedCentralCrossRefPubMed
2.
go back to reference Wilborn C, Taylor L, Poole C, Bushey B, Williams L, Foster C, et al. Effects of ingesting a commercial thermogenic product on hemodynamic function and energy expenditure at rest in males and females. Appl Physiol Nutr Metab. 2009;34:1073–8.CrossRefPubMed Wilborn C, Taylor L, Poole C, Bushey B, Williams L, Foster C, et al. Effects of ingesting a commercial thermogenic product on hemodynamic function and energy expenditure at rest in males and females. Appl Physiol Nutr Metab. 2009;34:1073–8.CrossRefPubMed
3.
go back to reference Hoffman JR, Kang J, Ratamess NA, Jennings PF, Mangine G, Faigenbaum AD. Thermogenic effect from nutritionally enriched coffee consumption. J Int Soc Sports Nutr. 2006;3:35–41.PubMedCentralCrossRefPubMed Hoffman JR, Kang J, Ratamess NA, Jennings PF, Mangine G, Faigenbaum AD. Thermogenic effect from nutritionally enriched coffee consumption. J Int Soc Sports Nutr. 2006;3:35–41.PubMedCentralCrossRefPubMed
4.
go back to reference Hoffman JR, Kang J, Ratamess NA, Rashti SL, Tranchina CP, Faigenbaum AD. Thermogenic effect of an acute ingestion of a weight loss supplement. J Int Soc Sports Nutr. 2009;6:1–9.PubMedCentralCrossRefPubMed Hoffman JR, Kang J, Ratamess NA, Rashti SL, Tranchina CP, Faigenbaum AD. Thermogenic effect of an acute ingestion of a weight loss supplement. J Int Soc Sports Nutr. 2009;6:1–9.PubMedCentralCrossRefPubMed
5.
go back to reference Rashti SL, Ratamess NA, Kang J, Faigenbaum AD, Chilakos A, Hoffman JR. Thermogenic effect of Meltdown RTD™ energy supplement in young healthy women: a double blind, cross-over design. Lipids Health Dis. 2009;8:57.PubMedCentralCrossRefPubMed Rashti SL, Ratamess NA, Kang J, Faigenbaum AD, Chilakos A, Hoffman JR. Thermogenic effect of Meltdown RTD™ energy supplement in young healthy women: a double blind, cross-over design. Lipids Health Dis. 2009;8:57.PubMedCentralCrossRefPubMed
6.
go back to reference Lopez HL, Ziegenfuss TN, Hofheins JE, Habowski SM, Arent SM, Weir JP, et al. Eight weeks of supplementation with a multi-ingredient weight loss product enhances body composition, reduces hip and waist girth, and increases energy levels in overweight men and women. J Int Soc Sports Nutr. 2013;10:22.PubMedCentralCrossRefPubMed Lopez HL, Ziegenfuss TN, Hofheins JE, Habowski SM, Arent SM, Weir JP, et al. Eight weeks of supplementation with a multi-ingredient weight loss product enhances body composition, reduces hip and waist girth, and increases energy levels in overweight men and women. J Int Soc Sports Nutr. 2013;10:22.PubMedCentralCrossRefPubMed
7.
go back to reference Hoffman JR, Kang J, Ratamess NA, Jennings PF, Mangine GT, Faigenbaum AD. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J Strength Cond Res. 2007;21:456–9.PubMed Hoffman JR, Kang J, Ratamess NA, Jennings PF, Mangine GT, Faigenbaum AD. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J Strength Cond Res. 2007;21:456–9.PubMed
8.
go back to reference Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JR. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J Sports Sci Med. 2011;10:261–6.PubMedCentralPubMed Gonzalez AM, Walsh AL, Ratamess NA, Kang J, Hoffman JR. Effect of a pre-workout energy supplement on acute multi-joint resistance exercise. J Sports Sci Med. 2011;10:261–6.PubMedCentralPubMed
9.
go back to reference Kraemer WJ, Hatfield DL, Spiering BA, Vingren JL, Fragala MS, Ho JY, et al. Effects of a multi- nutrient supplement on exercise performance and hormonal responses to resistance exercise. Eur J Appl Physiol. 2007;101:637–46.CrossRefPubMed Kraemer WJ, Hatfield DL, Spiering BA, Vingren JL, Fragala MS, Ho JY, et al. Effects of a multi- nutrient supplement on exercise performance and hormonal responses to resistance exercise. Eur J Appl Physiol. 2007;101:637–46.CrossRefPubMed
10.
go back to reference Hoffman JR, Kang J, Ratamess NA, Hoffman MW, Tranchina CP, Faigenbaum AD. Examination of a pre-exercise, high energy supplement on exercise performance. J Int Soc Sports Nutr. 2009;6:1–8.PubMedCentralCrossRefPubMed Hoffman JR, Kang J, Ratamess NA, Hoffman MW, Tranchina CP, Faigenbaum AD. Examination of a pre-exercise, high energy supplement on exercise performance. J Int Soc Sports Nutr. 2009;6:1–8.PubMedCentralCrossRefPubMed
11.
go back to reference Haller CA, Duan M, Jacob P, Benowitz N. Human pharmacology of a performance-enhancing dietary supplement under resting and exercise conditions. Br J Clin Pharmacol. 2008;65:833–40.PubMedCentralCrossRefPubMed Haller CA, Duan M, Jacob P, Benowitz N. Human pharmacology of a performance-enhancing dietary supplement under resting and exercise conditions. Br J Clin Pharmacol. 2008;65:833–40.PubMedCentralCrossRefPubMed
12.
go back to reference Stohs SJ, Preuss HG, Shara M. A review of the human clinical studies involving citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine. Int J Med Sci. 2012;9:527–38.PubMedCentralCrossRefPubMed Stohs SJ, Preuss HG, Shara M. A review of the human clinical studies involving citrus aurantium (bitter orange) extract and its primary protoalkaloid p-synephrine. Int J Med Sci. 2012;9:527–38.PubMedCentralCrossRefPubMed
13.
go back to reference Kaats GR, Miller H, Preuss HG, Stohs SJ. A 60 day double-blind, placebo-controlled safety study involving Citrus aurantium (bitter orange) extract. Food Chem Toxicol. 2013;55:358–62.CrossRefPubMed Kaats GR, Miller H, Preuss HG, Stohs SJ. A 60 day double-blind, placebo-controlled safety study involving Citrus aurantium (bitter orange) extract. Food Chem Toxicol. 2013;55:358–62.CrossRefPubMed
14.
go back to reference Stohs SJ, Preuss HG, Shara M. A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxid Med Cell Longev. 2011;2011:1–9.CrossRef Stohs SJ, Preuss HG, Shara M. A review of the receptor-binding properties of p-synephrine as related to its pharmacological effects. Oxid Med Cell Longev. 2011;2011:1–9.CrossRef
15.
go back to reference Carpene C, Galitzky J, Fontana E, Atgie C, Lafontan M, Berlan M. Selective activation of beta-3-adrenoceptors by octopamine; comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:310–21.CrossRefPubMed Carpene C, Galitzky J, Fontana E, Atgie C, Lafontan M, Berlan M. Selective activation of beta-3-adrenoceptors by octopamine; comparative studies in mammalian fat cells. Naunyn Schmiedebergs Arch Pharmacol. 1999;359:310–21.CrossRefPubMed
16.
go back to reference Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International Society of Sports Nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7:5.PubMedCentralCrossRefPubMed Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, et al. International Society of Sports Nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7:5.PubMedCentralCrossRefPubMed
17.
go back to reference Laurent D, Schneider KE, Prusaczyk WK, Franklin C, Vogel SM, Krssak M, et al. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J Clin Endocrinol Metab. 2000;85:2170–5.PubMed Laurent D, Schneider KE, Prusaczyk WK, Franklin C, Vogel SM, Krssak M, et al. Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J Clin Endocrinol Metab. 2000;85:2170–5.PubMed
18.
go back to reference Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39:813–32.CrossRefPubMed Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med. 2009;39:813–32.CrossRefPubMed
19.
go back to reference Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve. 2011;43:839–44.CrossRefPubMed Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve. 2011;43:839–44.CrossRefPubMed
20.
go back to reference Pesta DH, Angadi SS, Burtscher M, Roberts CK. The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance. Nutr Metabol. 2013;10:71.CrossRef Pesta DH, Angadi SS, Burtscher M, Roberts CK. The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance. Nutr Metabol. 2013;10:71.CrossRef
21.
go back to reference Jacobson BH, Weber MD, Claypool L, Hunt LE. Effect of caffeine on maximal strength and power in elite male athletes. Br J Sports Med. 1992;26:276–80.PubMedCentralCrossRefPubMed Jacobson BH, Weber MD, Claypool L, Hunt LE. Effect of caffeine on maximal strength and power in elite male athletes. Br J Sports Med. 1992;26:276–80.PubMedCentralCrossRefPubMed
22.
go back to reference Graham TE, Battram DS, Dela F, El-Sohemy A, Thong FS. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab. 2008;33:1311–8.CrossRefPubMed Graham TE, Battram DS, Dela F, El-Sohemy A, Thong FS. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab. 2008;33:1311–8.CrossRefPubMed
23.
go back to reference Timmins TD, Saunders DH. Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. J Strength Cond Res. 2014;28:3239–44.CrossRefPubMed Timmins TD, Saunders DH. Effect of caffeine ingestion on maximal voluntary contraction strength in upper- and lower-body muscle groups. J Strength Cond Res. 2014;28:3239–44.CrossRefPubMed
24.
go back to reference Duncan MJ, Oxford SW. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J Sports Med Phys Fit. 2012;52:280–5. Duncan MJ, Oxford SW. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J Sports Med Phys Fit. 2012;52:280–5.
25.
go back to reference Hendrix CR, Housh TJ, Mielke M, Zuniga JM, Camic CL, Johnson GO, et al. Acute effects of a caffeine-containing supplement on bench press and leg extension strength and time to exhaustion during cycle ergometry. J Strength Cond Res. 2010;24:859–65.CrossRefPubMed Hendrix CR, Housh TJ, Mielke M, Zuniga JM, Camic CL, Johnson GO, et al. Acute effects of a caffeine-containing supplement on bench press and leg extension strength and time to exhaustion during cycle ergometry. J Strength Cond Res. 2010;24:859–65.CrossRefPubMed
26.
go back to reference Beck TW, Housh TJ, Malek MH, Mielke M, Hendrix R. The acute effects of a caffeine-containing supplement on bench press strength and time to running exhaustion. J Strength Cond Res. 2008;22:1654–8.CrossRefPubMed Beck TW, Housh TJ, Malek MH, Mielke M, Hendrix R. The acute effects of a caffeine-containing supplement on bench press strength and time to running exhaustion. J Strength Cond Res. 2008;22:1654–8.CrossRefPubMed
27.
go back to reference Warren GL, Park ND, Maresca RD, McKibans KI, Mallard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42:1375–87.CrossRefPubMed Warren GL, Park ND, Maresca RD, McKibans KI, Mallard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42:1375–87.CrossRefPubMed
28.
go back to reference Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 2004;176:1–29.CrossRef Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 2004;176:1–29.CrossRef
29.
go back to reference Jackson A, Pollock M. Generalized equations for predicting body density of men. Br J Nutr. 1978;40:497–504.CrossRefPubMed Jackson A, Pollock M. Generalized equations for predicting body density of men. Br J Nutr. 1978;40:497–504.CrossRefPubMed
30.
go back to reference Siri WE. Gross composition of the body. In: Lawrence JH, Tobias CA, editors. Advances in biological and medical physics, IV. New York: Academic; 1956. Siri WE. Gross composition of the body. In: Lawrence JH, Tobias CA, editors. Advances in biological and medical physics, IV. New York: Academic; 1956.
31.
go back to reference Kraemer WJ, Fry AC, Ratamess NA, French DN. Strength testing: development and evaluation of methodology. In: Maud P, Foster C, editors. Physiological assessment of human fitness. 2nd ed. Champaign: Human Kinetics; 2006. p. 119–50. Kraemer WJ, Fry AC, Ratamess NA, French DN. Strength testing: development and evaluation of methodology. In: Maud P, Foster C, editors. Physiological assessment of human fitness. 2nd ed. Champaign: Human Kinetics; 2006. p. 119–50.
32.
go back to reference Faigenbaum AD, Ratamess NA, McFarland J, Kaczmarek J, Corragio MJ, Kang J, et al. Effect of rest interval length on bench press performance in boys, teens, and men. Ped Exerc Sci. 2008;20:457–69. Faigenbaum AD, Ratamess NA, McFarland J, Kaczmarek J, Corragio MJ, Kang J, et al. Effect of rest interval length on bench press performance in boys, teens, and men. Ped Exerc Sci. 2008;20:457–69.
33.
go back to reference Peixoto JS, Comar JF, Moreira CT, Soares AA, de Oliveira AL, Bracht A, et al. Effects of Citrus aurantium (bitter orange) fruit extracts and p-synephrine on metabolic fluxes in the rat liver. Molecules. 2012;17:5854–69.CrossRefPubMed Peixoto JS, Comar JF, Moreira CT, Soares AA, de Oliveira AL, Bracht A, et al. Effects of Citrus aurantium (bitter orange) fruit extracts and p-synephrine on metabolic fluxes in the rat liver. Molecules. 2012;17:5854–69.CrossRefPubMed
34.
go back to reference Hong NY, Cui ZG, Kang HK, Lee DH, Lee YK, Park DB. p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochem Biophys Res Commun. 2012;418:720–4.CrossRefPubMed Hong NY, Cui ZG, Kang HK, Lee DH, Lee YK, Park DB. p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochem Biophys Res Commun. 2012;418:720–4.CrossRefPubMed
35.
go back to reference Murphy KT, Bundgaard H, Clausen T. β3-adrenoceptor agonist stimulation of the Na+, K+−pump in rat skeletal muscle is mediated by β2-rather than β3-adrenoceptors. Br J Pharmacol. 2006;149:635–46.PubMedCentralCrossRefPubMed Murphy KT, Bundgaard H, Clausen T. β3-adrenoceptor agonist stimulation of the Na+, K+−pump in rat skeletal muscle is mediated by β2-rather than β3-adrenoceptors. Br J Pharmacol. 2006;149:635–46.PubMedCentralCrossRefPubMed
36.
go back to reference Miniaci MC, Bucci M, Santamaria R, Irace C, Cantalupo A, Cirino G, et al. CL 316,243, a selective β3-adrenoceptor agonist, activates protein translation through mTOR/p70S6K signaling pathway in rat skeletal muscle cells. Pflugers Arch. 2013;465:509–16.CrossRefPubMed Miniaci MC, Bucci M, Santamaria R, Irace C, Cantalupo A, Cirino G, et al. CL 316,243, a selective β3-adrenoceptor agonist, activates protein translation through mTOR/p70S6K signaling pathway in rat skeletal muscle cells. Pflugers Arch. 2013;465:509–16.CrossRefPubMed
37.
go back to reference Williams AD, Cribb PJ, Cooke MB, Hayes A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res. 2008;22:464–70.CrossRefPubMed Williams AD, Cribb PJ, Cooke MB, Hayes A. The effect of ephedra and caffeine on maximal strength and power in resistance-trained athletes. J Strength Cond Res. 2008;22:464–70.CrossRefPubMed
38.
go back to reference Jacobs I, Pasternak H, Bell DG. Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc. 2003;35:987–94.CrossRefPubMed Jacobs I, Pasternak H, Bell DG. Effects of ephedrine, caffeine, and their combination on muscular endurance. Med Sci Sports Exerc. 2003;35:987–94.CrossRefPubMed
39.
go back to reference Duncan MJ, Thake CD, Downs PJ. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle Nerve. 2014;50:523–7.CrossRefPubMed Duncan MJ, Thake CD, Downs PJ. Effect of caffeine ingestion on torque and muscle activity during resistance exercise in men. Muscle Nerve. 2014;50:523–7.CrossRefPubMed
40.
go back to reference Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13:392–9.CrossRefPubMed Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13:392–9.CrossRefPubMed
41.
go back to reference Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res. 2008;22:1950–7.CrossRefPubMed Hudson GM, Green JM, Bishop PA, Richardson MT. Effects of caffeine and aspirin on light resistance training performance, perceived exertion, and pain perception. J Strength Cond Res. 2008;22:1950–7.CrossRefPubMed
42.
go back to reference Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, et al. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform. 2007;2:250–9.PubMed Green JM, Wickwire PJ, McLester JR, Gendle S, Hudson G, Pritchett RC, et al. Effects of caffeine on repetitions to failure and ratings of perceived exertion during resistance training. Int J Sports Physiol Perform. 2007;2:250–9.PubMed
43.
go back to reference Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20:506–10.PubMed Beck TW, Housh TJ, Schmidt RJ, Johnson GO, Housh DJ, Coburn JW, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20:506–10.PubMed
44.
go back to reference Mora-Rodriguez R, Garcia Pallares J, Lopez-Samanes A, Ortega JF, Fernandez-Elias VE. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One. 2012;7:333807.CrossRef Mora-Rodriguez R, Garcia Pallares J, Lopez-Samanes A, Ortega JF, Fernandez-Elias VE. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS One. 2012;7:333807.CrossRef
45.
go back to reference Trevino MA, Coburn JW, Brown LE, Judelson DA, Malek MH. Acute effects of caffeine on strength and muscle activation of the elbow flexors. J Strength Cond Res. 2015;29:513–20.CrossRefPubMed Trevino MA, Coburn JW, Brown LE, Judelson DA, Malek MH. Acute effects of caffeine on strength and muscle activation of the elbow flexors. J Strength Cond Res. 2015;29:513–20.CrossRefPubMed
46.
go back to reference Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102:127–32.CrossRefPubMed Astorino TA, Rohmann RL, Firth K. Effect of caffeine ingestion on one-repetition maximum muscular strength. Eur J Appl Physiol. 2008;102:127–32.CrossRefPubMed
47.
go back to reference Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257–65.CrossRefPubMed Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257–65.CrossRefPubMed
48.
go back to reference Astorino TA, Martin BJ, Schachtsiek L, Wong K, Ng K. Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res. 2011;25:1752–8.CrossRefPubMed Astorino TA, Martin BJ, Schachtsiek L, Wong K, Ng K. Minimal effect of acute caffeine ingestion on intense resistance training performance. J Strength Cond Res. 2011;25:1752–8.CrossRefPubMed
49.
go back to reference Astorino TA, Terzi MN, Roberson DW, Burnett TR. Effect of two doses of caffeine on muscular function during isokinetic exercise. Med Sci Sports Exerc. 2010;42:2205–10.CrossRefPubMed Astorino TA, Terzi MN, Roberson DW, Burnett TR. Effect of two doses of caffeine on muscular function during isokinetic exercise. Med Sci Sports Exerc. 2010;42:2205–10.CrossRefPubMed
50.
go back to reference Behrens M, Mau-Moeller A, Heise S, Skripitz R, Bader R, Bruhn S. Alteration in neuromuscular function of the plantar flexors following caffeine ingestion. Scand J Med Sci Sports. 2015;25:e50–8.CrossRefPubMed Behrens M, Mau-Moeller A, Heise S, Skripitz R, Bader R, Bruhn S. Alteration in neuromuscular function of the plantar flexors following caffeine ingestion. Scand J Med Sci Sports. 2015;25:e50–8.CrossRefPubMed
51.
go back to reference McLaughlin TM, Dillman CJ, Lardner TJ. A kinematic model of performance in the parallel squat by champion powerlifters. Med Sci Sports. 1977;9:128–33.PubMed McLaughlin TM, Dillman CJ, Lardner TJ. A kinematic model of performance in the parallel squat by champion powerlifters. Med Sci Sports. 1977;9:128–33.PubMed
52.
go back to reference Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise – a meta-analysis. Scand J Med Sci Sports. 2005;15:69–78.CrossRefPubMed Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise – a meta-analysis. Scand J Med Sci Sports. 2005;15:69–78.CrossRefPubMed
Metadata
Title
The effects of supplementation with P-Synephrine alone and in combination with caffeine on resistance exercise performance
Publication date
01-12-2015
DOI
https://doi.org/10.1186/s12970-015-0096-5

Other articles of this Issue 1/2015

Journal of the International Society of Sports Nutrition 1/2015 Go to the issue