Skip to main content

Advertisement

Log in

CL316,243, a selective β3-adrenoceptor agonist, activates protein translation through mTOR/p70S6K signaling pathway in rat skeletal muscle cells

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Functional β3-adrenoceptors have been found in skeletal muscle where they mediate metabolic oxidation and glucose utilization. Whether β3-adrenoceptors (ARs) also play any role in muscle protein metabolism still remains uncertain. By using rat L6 myocyte cultures, we found that CL316,243, a β3-AR selective agonist, at the concentration of 10−6 M for 24 h, induced a significant increase of skeletal muscle constitutive proteins such as H- and L-myosin and β-actin. Such effect was correlated to an increased expression of phosphorylated p70S6K that was significantly inhibited by β3-AR antagonist, SR 59230A, but not by β2-AR antagonist, ICI-118,551. The CL316,243-induced activation of p70S6K was markedly inhibited by wortmannin, a PI3K inhibitor, and rapamycin, a specific inhibitor of mTOR, suggesting a critical involvement of the PI3K–mTOR-p70S6K signaling cascade in the anabolic response of L6 cells to β3-AR agonist. Taken together, these results suggest that stimulation of β3-AR in skeletal muscle cells activates a specific signaling pathway leading to protein synthesis and, eventually, muscle growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

mTOR:

Mammalian target of rapamycin

p70S6K :

p70S6 kinase

4E-BP1:

4E-binding protein 1

eIF-4E:

Eukaryotic initiation factor 4E

AR:

Adrenoceptor

PI3K:

Phosphoinositol 3-kinase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GPCR:

G protein-coupled receptors

PTX:

Pertussis toxin

References

  1. Anderson PT, Helferich WG, Parkhill LC, Merkel RA, Bergen WG (1990) Ractopamine increases total and myofibrillar protein synthesis in cultured rat myotubes. J Nutr 120:1677–1683

    PubMed  CAS  Google Scholar 

  2. Audigane L, Kerfant BG, El Harchi A, Lorenzen-Schmidt I, Toumaniantz G, Cantereau A, Potreau D, Charpentier F, Noireaud J, Gauthier Rabbit C (2009) A relevant model for the study of cardiac β3-adrenoceptors. Exp Physiol 94:400–411

    Article  PubMed  CAS  Google Scholar 

  3. Bacqueville D, Déléris P, Mendre C, Pieraggi MT, Chap H, Guillon G, Perret B, Breton-Douillon M (2001) Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J Biol Chem 276:22170–22176

    Article  PubMed  CAS  Google Scholar 

  4. Board M, Doyle P, Cawthorne MA (2000) BRL37344, but not CGP12177, stimulates fuel oxidation by soleus muscle in vitro. Eur J Pharmacol 406:33–40

    Article  PubMed  CAS  Google Scholar 

  5. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  PubMed  CAS  Google Scholar 

  6. Bohorov O, Buttery PJ, Correia JH, Soar JB (1987) The effect of the β2-adrenergic agonist clenbuterol or implantation with oestradiol plus trenbolone acetate on protein metabolism in wether lambs. Br J Nutr 57:99–107

    Article  PubMed  CAS  Google Scholar 

  7. Braun T, Bober E, Buschhausen-Denker G, Kothz S, Grzeschik KH, Arnold HH (1989) Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J 8:3617–3625

    PubMed  CAS  Google Scholar 

  8. Caron MG, Lefkowitz RJ (1993) Catecholamine receptors: structure, function, and regulation. Recent Prog Horm Res 48:277–290

    PubMed  CAS  Google Scholar 

  9. Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW, Murphy GJ (1999) The tissue distribution of the human beta3-adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3-adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23:1057–1065

    Article  PubMed  CAS  Google Scholar 

  10. Emery PW, Rothwell NJ, Stock MJ, Winter PD (1984) Chronic effects of β2-adrenergic agonists on body composition and protein synthesis in the rat. Biosci Rep 4:83–91

    Article  PubMed  CAS  Google Scholar 

  11. Evans BA, Papaioannou M, Bonazzi VR, Summers RJ (1996) Expression of beta 3-adrenoceptor mRNA in rat tissues. Br J Pharmacol 117:210–216

    Article  PubMed  CAS  Google Scholar 

  12. Frost RA, Lang CH (2007) Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol 103:378–387

    Article  PubMed  CAS  Google Scholar 

  13. Gauthier C, Leblais V, Kobzik L, Trochu JN, Khandoudi N, Bril A, Balligand JL, Marec HL (1998) The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest 102:1377–1384

    Article  PubMed  CAS  Google Scholar 

  14. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37:1974–1984

    Article  PubMed  CAS  Google Scholar 

  15. Hannan KM, Brandenburger Y, Jenkins A, Sharkey K, Cavanaugh A, Rothblum L, Moss T, Poortinga G, McArthur GA, Pearson RB, Hannan RD (2003) mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23:8862–8877

    Article  PubMed  CAS  Google Scholar 

  16. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, Kasuga M, Nishimoto I, Avruch J (1997) Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem 272:26457–26463

    Article  PubMed  CAS  Google Scholar 

  17. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494

    Google Scholar 

  18. Hinkle RT, Hodge KM, Cody DB, Sheldon RJ, Kobilka BK, Isfort RJ (2002) Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the β2-adrenergic receptor. Muscle Nerve 25:729–734

    Article  PubMed  CAS  Google Scholar 

  19. Irace C, Scorziello A, Maffettone C, Pignataro G, Matrone C, Adornetto A, Santamaria R, Annunziato L, Colonna A (2005) Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurones and glial cells. J Neurochem 95:1321–1331

    Article  PubMed  CAS  Google Scholar 

  20. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287:834–843

    Article  Google Scholar 

  21. Ji SQ, Orcutt MW (1991) Effects of the beta-adrenergic agonist isoproterenol on protein accretion, synthesis, and degradation in primary chicken muscle cell cultures. J Anim Sci 69:2855–2864

    PubMed  CAS  Google Scholar 

  22. Kim YS, Sainz RD (1992) β-adrenergic agonists and hypertrophy of skeletal muscles. Life Sci 50:397–407

    Article  PubMed  CAS  Google Scholar 

  23. Kim YS, Sainz RD, Molenaar P, Summers RJ (1991) Characterization of β1- and β2-adrenoceptors in rat skeletal muscles. Biochem Pharmacol 429:1783–1789

    Article  Google Scholar 

  24. Kimball SR, Farrell PA, Nguyen HV, Jefferson LS, Davis TA (2002) Developmental decline in components of signal transduction pathways regulating protein synthesis in pig muscle. Am J Physiol Endocrinol Metab 282:585–592

    Google Scholar 

  25. Kline WO, Panaro FJ, Yang H, Bodine SC (2007) Rapamycin inhibits the growth and muscle-sparing effects of clenbuterol. J Appl Physiol 102:740–747

    Article  PubMed  CAS  Google Scholar 

  26. Lynch GS, Ryall JG (2008) Role of β-Adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88:729–767

    Article  PubMed  CAS  Google Scholar 

  27. Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595–1604

    PubMed  CAS  Google Scholar 

  28. Maltin CA, Hay SM, Delday MI, Lobley GE, Reeds PJ (1989) The action of the β-agonist clenbuterol on protein metabolism in innervated and denervated phasic muscles. Biochem J 261:965–971

    PubMed  CAS  Google Scholar 

  29. McMillan DN, Noble BS, Maltin CA (1992) The effect of the β-adrenergic agonist clenbuterol on growth and protein metabolism in rat muscle cell cultures. J Anim Sci 70:3014–3023

    Google Scholar 

  30. Mersmann HJ (1998) Overview of the effects of β-adrenergic receptor agonists on animal growth including mechanisms of action. J Anim Sci 76:160–172

    PubMed  CAS  Google Scholar 

  31. Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA (2011) Early activation of mTORC1 signalling in respons to mechanical overload is independent of phosphoinositide 3-kinase/Akt signaling. J Physiol 7:1831–1846

    Article  Google Scholar 

  32. Miyazaki M, Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 106:1367–1373

    Article  PubMed  CAS  Google Scholar 

  33. Nader GA, McLoughlin TJ, Esser KA (2005) mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 289:1457–1465

    Article  Google Scholar 

  34. Navegantes LC, Migliorini RH, do Carmo Kettelhut IC (2002) Adrenergic control of protein metabolism in skeletal muscle. Curr Opin Clin Nutr Metab Care 5:281–286

    Article  PubMed  CAS  Google Scholar 

  35. Navegantes LC, Resano NM, Baviera AM, Migliorini RH, Kettelhut IC (2006) CL316,243, a selective β3-adrenergic agonist, inhibits protein breakdown in rat skeletal muscle. Pflugers Arch 451:617–624

    Google Scholar 

  36. Park YC, Tomiyama Y, Hayakawa K, Akahane M, Ajisawa Y, Miyatake R, Kiwamoto H, Sugiyama T, Kurita T (2000) Existence of a beta3-adrenoceptro and its functional role in the human ureter. J Urol 164:1364–1370

    Article  PubMed  CAS  Google Scholar 

  37. Pascual M, Del Barrio AS, Portillo MP, Martinez JA, Larralde J (1993) Tissue protein turnover in animals treated with the mixed beta-agonist metaproterenol: influence of dose, route and pattern of administration. Biochimie 75:879–883

    Article  PubMed  CAS  Google Scholar 

  38. Pavoine C, Defer N (2005) The cardiac β2-adrenergic signalling a new role for the cPLA2. Cell Signal 17:141–152

    Article  PubMed  CAS  Google Scholar 

  39. Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90:1119–1124

    PubMed  CAS  Google Scholar 

  40. Pette D (1980) Plasticity of muscle. de Gruyter, Berlin, New York

  41. Reeds PI, Hay SM, Dorwood PM, Palmer RM (1986) Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. J Nutr 56:249–258

    Article  CAS  Google Scholar 

  42. Reeds PJ, Hay SM, Dorward PM, Palmer RM (1988) The effect of beta-agonists and antagonists on muscle growth and body composition of young rats (Rattus sp.). Comp Biochem Physiol C 89:337–341

    Article  PubMed  CAS  Google Scholar 

  43. Reiter AK, Anthony TG, Anthony JC, Jefferson LS, Kimball SR (2004) The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. Int J Biochem Cell Biol 36:2169–2179

    Article  PubMed  CAS  Google Scholar 

  44. Ryall JG, Sillence MN, Lynch GS (2006) Systemic administration of β2-adrenoceptor agonists, formoterol and salmeterol, elicit skeletal muscle hypertrophy in rats at micromolar doses. Br J Pharmacol 147:587–595

    Article  PubMed  CAS  Google Scholar 

  45. Roberts SJ, Papaioannou M, Evans BA, Summers RJ (1999) Characterization of beta-adrenoceptor mediated smooth muscle relaxation and the detection of mRNA for beta1-, beta2- and beta3-adrenoceptors in rat ileum. Br J Pharmacol 127:949–961

    Article  PubMed  CAS  Google Scholar 

  46. Rouget C, Bardou M, Breuiller-Fouché M, Loustalot C, Qi H, Naline E, Croci T, Cabrol D, Advenier C, Leroy MJ (2005) Beta3-adrenoceptor is the predominant beta-adrenoceptor subtype in human myometrium and its expression is up-regulated in pregnancy. J Clin Endocrinol Metab 90:1644–1650

    Google Scholar 

  47. Rozec B, Gauthier C (2006) Beta3-adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther 111:52–73

    Article  Google Scholar 

  48. Santamaria R, Bevilacqua MA, Maffettone C, Irace C, Iovine B, Colonna A (2006) Induction of H-ferritin synthesis by oxalomalate is regulated at both the transcriptional and post-transcriptional levels. Biochim Biophys Acta 1763:815–822

    Article  PubMed  CAS  Google Scholar 

  49. Soeder KJ, Snedden SK, Cao W, la Rocca GJ, Daniel KW, Luttrell LM (1999) The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J Biol Chem 274:12017–12022

    Article  PubMed  CAS  Google Scholar 

  50. Tavernier G, Toumaniantz G, Erfanian M, Heymann MF, Laurent K, Langin D, Gauthier C (2000) β3-Adrenergic stimulation produces a decrease of cardiac contractility ex vivo in mice overexpressing the human β3-adrenergic receptor. Cardiovasc Res 59:288–296

    Article  Google Scholar 

  51. von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G (1997) The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol 17:5426–5436

    Google Scholar 

  52. Yaffe D (1968) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA 61:477–483

    Article  PubMed  CAS  Google Scholar 

  53. Yamaguchi O, Chapple CR (2007) Beta3-adrenoceptors in urinary bladder. Neurourol Urodyn 26:752–756

    Article  PubMed  CAS  Google Scholar 

  54. Yamazaki T, Komuro I, Zou Y, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, Aikawa R, Takano H, Yazaki Y (1997) Norepinephrine induces the raf-1 kinase/mitogen-activated protein kinase cascade through both α1- and β-adrenoceptors. Circulation 95:1260–1268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Drs. M.L. Marciano, F. Tramontin, and A. Di Pascale for valuable assistance at different times in some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Scotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miniaci, M.C., Bucci, M., Santamaria, R. et al. CL316,243, a selective β3-adrenoceptor agonist, activates protein translation through mTOR/p70S6K signaling pathway in rat skeletal muscle cells. Pflugers Arch - Eur J Physiol 465, 509–516 (2013). https://doi.org/10.1007/s00424-012-1213-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1213-9

Keywords

Navigation