Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2019

Open Access 01-12-2019 | Pulmonary Edema | Research

Quantification of lung water in heart failure using cardiovascular magnetic resonance imaging

Authors: Richard B. Thompson, Kelvin Chow, Joseph J. Pagano, Viktor Sekowski, Evangelos D. Michelakis, Wayne Tymchak, Mark J. Haykowsky, Justin A. Ezekowitz, Gavin Y. Oudit, Jason R. B. Dyck, Padma Kaul, Anamaria Savu, D. Ian Paterson

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2019

Login to get access

Abstract

Background

Pulmonary edema is a cardinal feature of heart failure but no quantitative tests are available in clinical practice. The goals of this study were to develop a simple cardiovascular magnetic resonance (CMR) approach for lung water quantification, to correlate CMR derived lung water with intra-cardiac pressures and to determine its prognostic significance.

Methods

Lung water density (LWD, %) was measured using a widely available single-shot fast spin-echo acquisition in two study cohorts. Validation Cohort: LWD was compared to left ventricular end-diastolic pressure or pulmonary capillary wedge pressure in 19 patients with heart failure undergoing cardiac catheterization. Prospective Cohort: LWD was measured in 256 subjects, including 121 with heart failure, 82 at-risk for heart failure and 53 healthy controls. Clinical outcomes were evaluated up to 1 year.

Results

Within the validation cohort, CMR LWD correlated to invasively measured left-sided filling pressures (R = 0.8, p < 0.05). In the prospective cohort, mean LWD was 16.6 ± 2.1% in controls, 17.9 ± 3.0% in patients at-risk and 19.3 ± 5.4% in patients with heart failure, p < 0.001. In patients with or at-risk for heart failure, LWD >  20.8% (mean + 2 standard deviations of healthy controls) was an independent predictor of death, hospitalization or emergency department visit within 1 year, hazard ratio 2.4 (1.1–5.1, p = 0.03).

Conclusions

In patients with heart failure, increased CMR-derived lung water is associated with increased intra-cardiac filling pressures, and predicts 1 year outcomes. LWD could be incorporated in standard CMR scans.
Appendix
Available only for authorised users
Literature
1.
go back to reference Platz E, Jhund PS, Campbell RT, McMurray JJ. Assessment and prevalence of pulmonary oedema in contemporary acute heart failure trials: a systematic review. Eur J Heart Fail. 2015;17:906–16.CrossRef Platz E, Jhund PS, Campbell RT, McMurray JJ. Assessment and prevalence of pulmonary oedema in contemporary acute heart failure trials: a systematic review. Eur J Heart Fail. 2015;17:906–16.CrossRef
2.
go back to reference Miglioranza MH, Gargani L, Sant'Anna RT, Rover MM, Martins VM, Mantovani A, et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging. 2013;6:1141–51.CrossRef Miglioranza MH, Gargani L, Sant'Anna RT, Rover MM, Martins VM, Mantovani A, et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging. 2013;6:1141–51.CrossRef
3.
go back to reference Staub NC. Pulmonary edema: physiologic approaches to management. Chest. 1978;74:559–64.CrossRef Staub NC. Pulmonary edema: physiologic approaches to management. Chest. 1978;74:559–64.CrossRef
4.
go back to reference Staub NC. Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res. 1978;43:143–51.CrossRef Staub NC. Pulmonary edema due to increased microvascular permeability to fluid and protein. Circ Res. 1978;43:143–51.CrossRef
5.
go back to reference Guyton AC, Lindsey AW. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res. 1959;7:649–57.CrossRef Guyton AC, Lindsey AW. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res. 1959;7:649–57.CrossRef
6.
go back to reference Johnson RL Jr. Gas exchange efficiency in congestive heart failure. Circulation. 2000;101:2774–6.CrossRef Johnson RL Jr. Gas exchange efficiency in congestive heart failure. Circulation. 2000;101:2774–6.CrossRef
7.
go back to reference Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, Givertz MM, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16:e1–194.CrossRef Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, Givertz MM, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16:e1–194.CrossRef
8.
go back to reference Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG, et al. European Society of C and European Society of intensive care medicine. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12:423–33.CrossRef Gheorghiade M, Follath F, Ponikowski P, Barsuk JH, Blair JE, Cleland JG, et al. European Society of C and European Society of intensive care medicine. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12:423–33.CrossRef
9.
go back to reference Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37:2097–104.CrossRef Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37:2097–104.CrossRef
10.
go back to reference Melenozsky V, Andersen MJ, Andress K, Reddy YN, Borlaug BA. Lung congestion in chronic heart failure: Haemodynamic, clinical and prognostic implications. Eur J Heart Fail. 2015;17:1161–71.CrossRef Melenozsky V, Andersen MJ, Andress K, Reddy YN, Borlaug BA. Lung congestion in chronic heart failure: Haemodynamic, clinical and prognostic implications. Eur J Heart Fail. 2015;17:1161–71.CrossRef
11.
go back to reference Hayes CE, Case TA, Ailion DC, Morris AH, Cutillo A, Blackburn CW, et al. Lung water quantitation by nuclear magnetic resonance imaging. Science. 1982;216:1313–5.CrossRef Hayes CE, Case TA, Ailion DC, Morris AH, Cutillo A, Blackburn CW, et al. Lung water quantitation by nuclear magnetic resonance imaging. Science. 1982;216:1313–5.CrossRef
12.
go back to reference Mayo JR, MacKay AL, Whittall KP, Baile EM, Pare PD. Measurement of lung water content and pleural pressure gradient with magnetic resonance imaging. J Thorac Imaging. 1995;10:73–81.CrossRef Mayo JR, MacKay AL, Whittall KP, Baile EM, Pare PD. Measurement of lung water content and pleural pressure gradient with magnetic resonance imaging. J Thorac Imaging. 1995;10:73–81.CrossRef
13.
go back to reference Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, et al. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol (1985). 2007;103:240–8.CrossRef Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, et al. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol (1985). 2007;103:240–8.CrossRef
14.
go back to reference Paterson I, Mielniczuk LM, O'Meara E, So A, White JA. Imaging heart failure: current and future applications. Can J Cardiol. 2013;29:317–28.CrossRef Paterson I, Mielniczuk LM, O'Meara E, So A, White JA. Imaging heart failure: current and future applications. Can J Cardiol. 2013;29:317–28.CrossRef
15.
go back to reference Ezekowitz JA, Becher H, Belenkie I, Clark AM, Duff HJ, Friedrich MG, et al. The Alberta heart failure etiology and analysis research team (HEART) study. BMC Cardiovasc Disord. 2014;14:91.CrossRef Ezekowitz JA, Becher H, Belenkie I, Clark AM, Duff HJ, Friedrich MG, et al. The Alberta heart failure etiology and analysis research team (HEART) study. BMC Cardiovasc Disord. 2014;14:91.CrossRef
16.
go back to reference Mai VM, Chen Q, Li W, Hatabu H, Edelman RR. Effect of respiratory phases on MR lung signal intensity and lung conspicuity using segmented multiple inversion recovery turbo spin echo (MIR-TSE). Magn Reson Med. 2000;43:760–3.CrossRef Mai VM, Chen Q, Li W, Hatabu H, Edelman RR. Effect of respiratory phases on MR lung signal intensity and lung conspicuity using segmented multiple inversion recovery turbo spin echo (MIR-TSE). Magn Reson Med. 2000;43:760–3.CrossRef
17.
go back to reference Allen TH, Krzywicki HJ, Roberts JE. Density, fat, water and solids in freshly isolated tissues. J Appl Physiol. 1959;14:1005–8.CrossRef Allen TH, Krzywicki HJ, Roberts JE. Density, fat, water and solids in freshly isolated tissues. J Appl Physiol. 1959;14:1005–8.CrossRef
18.
go back to reference Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB, et al. Meta-Analysis Global Group in Chronic Heart Failure. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J. 2013;34:1404–13.CrossRef Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB, et al. Meta-Analysis Global Group in Chronic Heart Failure. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J. 2013;34:1404–13.CrossRef
19.
go back to reference Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.CrossRef Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.CrossRef
20.
go back to reference Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82:569–600.CrossRef Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002;82:569–600.CrossRef
21.
go back to reference Miserocchi G. Mechanisms controlling the volume of pleural fluid and extravascular lung water. Eur Respir Rev. 2009;18:244–52.CrossRef Miserocchi G. Mechanisms controlling the volume of pleural fluid and extravascular lung water. Eur Respir Rev. 2009;18:244–52.CrossRef
22.
go back to reference Michard F, Schachtrupp A, Toens C. Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med. 2005;33:1243–7.CrossRef Michard F, Schachtrupp A, Toens C. Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med. 2005;33:1243–7.CrossRef
23.
go back to reference Antony R, Daghem M, McCann GP, Daghem S, Moon J, Pennell DJ, et al. Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the British Society of Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson. 2011;13:57.CrossRef Antony R, Daghem M, McCann GP, Daghem S, Moon J, Pennell DJ, et al. Cardiovascular magnetic resonance activity in the United Kingdom: a survey on behalf of the British Society of Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson. 2011;13:57.CrossRef
24.
go back to reference Haykowsky MJ, Tomczak CR, Scott JM, Paterson DI, Kitzman DW. Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction. J Appl Physiol (1985). 2015;119:739–44.CrossRef Haykowsky MJ, Tomczak CR, Scott JM, Paterson DI, Kitzman DW. Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction. J Appl Physiol (1985). 2015;119:739–44.CrossRef
25.
go back to reference Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73–90.CrossRef Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73–90.CrossRef
26.
go back to reference Thompson RB, Pagano JJ, Chow K, Sekowski V, Paterson I, Ezekowitz J, et al. Sub-clinical pulmonary Edmea is associated with reduced exercise capacity in heart failure with reduced or preserved ejection fraction. J Am Coll Cardiol. 2017;70:1827–8.CrossRef Thompson RB, Pagano JJ, Chow K, Sekowski V, Paterson I, Ezekowitz J, et al. Sub-clinical pulmonary Edmea is associated with reduced exercise capacity in heart failure with reduced or preserved ejection fraction. J Am Coll Cardiol. 2017;70:1827–8.CrossRef
27.
go back to reference Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.CrossRef Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.CrossRef
28.
go back to reference Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315:36–46.CrossRef Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315:36–46.CrossRef
29.
go back to reference Alexopoulou E, Stripeli F, Baras P, Seimenis I, Kattamis A, Ladis V, et al. R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. J Magn Reson Imaging. 2006;23:163–70.CrossRef Alexopoulou E, Stripeli F, Baras P, Seimenis I, Kattamis A, Ladis V, et al. R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. J Magn Reson Imaging. 2006;23:163–70.CrossRef
30.
go back to reference Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J. 1998;135:825–32.CrossRef Maeda K, Tsutamoto T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction. Am Heart J. 1998;135:825–32.CrossRef
31.
go back to reference Mordi I, Bezerra H, Carrick D, Tzemos N. The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by CMR. JACC Cardiovasc Imaging. 2015;8:540–9.CrossRef Mordi I, Bezerra H, Carrick D, Tzemos N. The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by CMR. JACC Cardiovasc Imaging. 2015;8:540–9.CrossRef
Metadata
Title
Quantification of lung water in heart failure using cardiovascular magnetic resonance imaging
Authors
Richard B. Thompson
Kelvin Chow
Joseph J. Pagano
Viktor Sekowski
Evangelos D. Michelakis
Wayne Tymchak
Mark J. Haykowsky
Justin A. Ezekowitz
Gavin Y. Oudit
Jason R. B. Dyck
Padma Kaul
Anamaria Savu
D. Ian Paterson
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2019
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-019-0567-y

Other articles of this Issue 1/2019

Journal of Cardiovascular Magnetic Resonance 1/2019 Go to the issue