Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2019

Open Access 01-12-2019 | Research

Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks

Authors: Ahmed S. Fahmy, Hossam El-Rewaidy, Maryam Nezafat, Shiro Nakamori, Reza Nezafat

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2019

Login to get access

Abstract

Background

Cardiovascular magnetic resonance (CMR) myocardial native T1 mapping allows assessment of interstitial diffuse fibrosis. In this technique, the global and regional T1 are measured manually by drawing region of interest in motion-corrected T1 maps. The manual analysis contributes to an already lengthy CMR analysis workflow and impacts measurements reproducibility. In this study, we propose an automated method for combined myocardium segmentation, alignment, and T1 calculation for myocardial T1 mapping.

Methods

A deep fully convolutional neural network (FCN) was used for myocardium segmentation in T1 weighted images. The segmented myocardium was then resampled on a polar grid, whose origin is located at the center-of-mass of the segmented myocardium. Myocardium T1 maps were reconstructed from the resampled T1 weighted images using curve fitting. The FCN was trained and tested using manually segmented images for 210 patients (5 slices, 11 inversion times per patient). An additional image dataset for 455 patients (5 slices and 11 inversion times per patient), analyzed by an expert reader using a semi-automatic tool, was used to validate the automatically calculated global and regional T1 values. Bland-Altman analysis, Pearson correlation coefficient, r, and the Dice similarity coefficient (DSC) were used to evaluate the performance of the FCN-based analysis on per-patient and per-slice basis. Inter-observer variability was assessed using intraclass correlation coefficient (ICC) of the T1 values calculated by the FCN-based automatic method and two readers.

Results

The FCN achieved fast segmentation (< 0.3 s/image) with high DSC (0.85 ± 0.07). The automatically and manually calculated T1 values (1091 ± 59 ms and 1089 ± 59 ms, respectively) were highly correlated in per-patient (r = 0.82; slope = 1.01; p < 0.0001) and per-slice (r = 0.72; slope = 1.01; p < 0.0001) analyses. Bland-Altman analysis showed good agreement between the automated and manual measurements with 95% of measurements within the limits-of-agreement in both per-patient and per-slice analyses. The intraclass correllation of the T1 calculations by the automatic method vs reader 1 and reader 2 was respectively 0.86/0.56 and 0.74/0.49 in the per-patient/per-slice analyses, which were comparable to that between two expert readers (=0.72/0.58 in per-patient/per-slice analyses).

Conclusion

The proposed FCN-based image processing platform allows fast and automatic analysis of myocardial native T1 mapping images mitigating the burden and observer-related variability of manual analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6.CrossRef Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med. 2004;52(1):141–6.CrossRef
2.
go back to reference Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12(1):69.CrossRef Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12(1):69.CrossRef
3.
go back to reference Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2014;71(6):2082–95.CrossRef Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2014;71(6):2082–95.CrossRef
4.
go back to reference Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272(3):683–9.CrossRef Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272(3):683–9.CrossRef
5.
go back to reference Weingärtner S, Roujol S, Akçakaya M, Basha TA, Nezafat R. Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence. Magn Reson Med. 2015;74(1):115–24.CrossRef Weingärtner S, Roujol S, Akçakaya M, Basha TA, Nezafat R. Free-breathing multislice native myocardial T1 mapping using the slice-interleaved T1 (STONE) sequence. Magn Reson Med. 2015;74(1):115–24.CrossRef
6.
go back to reference Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imagi. J Cardiovasc Magn Reson. 2017;19(1):75.CrossRef Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imagi. J Cardiovasc Magn Reson. 2017;19(1):75.CrossRef
7.
go back to reference Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, et al. T1 mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology. 2012;265(3):724–32.CrossRef Sibley CT, Noureldin RA, Gai N, Nacif MS, Liu S, Turkbey EB, et al. T1 mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology. 2012;265(3):724–32.CrossRef
8.
go back to reference Puntmann VO, Carr-White G, Jabbour A, Yu C-Y, Gebker R, Kelle S, et al. T1-mapping and outcome in nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2016;9(1):40–50.CrossRef Puntmann VO, Carr-White G, Jabbour A, Yu C-Y, Gebker R, Kelle S, et al. T1-mapping and outcome in nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2016;9(1):40–50.CrossRef
9.
go back to reference Akçakaya M, Weingärtner S, Roujol S, Nezafat R. On the selection of sampling points for myocardial T1 mapping. Magn Reson Med. 2015;73(5):1741–53.CrossRef Akçakaya M, Weingärtner S, Roujol S, Nezafat R. On the selection of sampling points for myocardial T1 mapping. Magn Reson Med. 2015;73(5):1741–53.CrossRef
10.
go back to reference Ferreira VM, Wijesurendra RS, Liu A, Greiser A, Casadei B, Robson MD, et al. Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias. J Cardiovasc Magn Reson. 2015;17(1):77.CrossRef Ferreira VM, Wijesurendra RS, Liu A, Greiser A, Casadei B, Robson MD, et al. Systolic ShMOLLI myocardial T1-mapping for improved robustness to partial-volume effects and applications in tachyarrhythmias. J Cardiovasc Magn Reson. 2015;17(1):77.CrossRef
11.
go back to reference Jyun-Ming T, Teng-Yi H, Yu-Shen T, Yi-Ru L. Free-breathing MOLLI: application to myocardial T1 mapping. Med Phys. 2012;39(12):7291–302.CrossRef Jyun-Ming T, Teng-Yi H, Yu-Shen T, Yi-Ru L. Free-breathing MOLLI: application to myocardial T1 mapping. Med Phys. 2012;39(12):7291–302.CrossRef
12.
go back to reference Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly M-P, et al. Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med. 2012;67(6):1644–55.CrossRef Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly M-P, et al. Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med. 2012;67(6):1644–55.CrossRef
13.
go back to reference Roujol S, Foppa M, Weingärtner S, Manning WJ, Nezafat R. Adaptive registration of varying contrast-weighted images for improved tissue characterization (ARCTIC): application to T1 mapping. Magn Reson Med. 2015;73(4):1469–82.CrossRef Roujol S, Foppa M, Weingärtner S, Manning WJ, Nezafat R. Adaptive registration of varying contrast-weighted images for improved tissue characterization (ARCTIC): application to T1 mapping. Magn Reson Med. 2015;73(4):1469–82.CrossRef
14.
go back to reference El-Rewaidy H, Nezafat M, Jang J, Nakamori S, Fahmy AS, Nezafat R. Nonrigid active shape model-based registration framework for motion correction of cardiac T1 mapping. Magn Reson Med. 2018;80(2):780–91.CrossRef El-Rewaidy H, Nezafat M, Jang J, Nakamori S, Fahmy AS, Nezafat R. Nonrigid active shape model-based registration framework for motion correction of cardiac T1 mapping. Magn Reson Med. 2018;80(2):780–91.CrossRef
15.
go back to reference Bellm S, Basha TA, Shah RV, Murthy VL, Liew C, Tang M, et al. Reproducibility of myocardial T1 and T2 relaxation time measurement using slice-interleaved T1 and T2 mapping sequences. J Magn Reson Imaging. 2016;44(5):1159–67.CrossRef Bellm S, Basha TA, Shah RV, Murthy VL, Liew C, Tang M, et al. Reproducibility of myocardial T1 and T2 relaxation time measurement using slice-interleaved T1 and T2 mapping sequences. J Magn Reson Imaging. 2016;44(5):1159–67.CrossRef
16.
go back to reference Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of the European Society of cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15(1):92.CrossRef Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, et al. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of the European Society of cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15(1):92.CrossRef
17.
go back to reference Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2017;79(4):2379–91.CrossRef Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med. 2017;79(4):2379–91.CrossRef
18.
go back to reference Tan LK, Liew YM, Lim E, McLaughlin RA. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Med Image Anal. 2017;39:78–86.CrossRef Tan LK, Liew YM, Lim E, McLaughlin RA. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Med Image Anal. 2017;39:78–86.CrossRef
19.
go back to reference Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.CrossRef Avendi MR, Kheradvar A, Jafarkhani H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal. 2016;30:108–19.CrossRef
20.
go back to reference Schnell S, Entezari P, Mahadewia RJ, Malaisrie SC, McCarthy PM, Collins JD, et al. Improved semi-automated 4D-flow MRI analysis in the aorta in patients with congenital aortic anomalies vs tricuspid aortic valves. J Comput Assist Tomogr. 2016;40(1):102–8.CrossRef Schnell S, Entezari P, Mahadewia RJ, Malaisrie SC, McCarthy PM, Collins JD, et al. Improved semi-automated 4D-flow MRI analysis in the aorta in patients with congenital aortic anomalies vs tricuspid aortic valves. J Comput Assist Tomogr. 2016;40(1):102–8.CrossRef
21.
go back to reference Goel A, McColl R, King KS, Whittemore A, Peshock RMA. Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: validation and application in a large population based study. J Magn Reson Imaging. 2014;40(1):221–8.CrossRef Goel A, McColl R, King KS, Whittemore A, Peshock RMA. Fully automated tool to identify the aorta and compute flow using phase-contrast MRI: validation and application in a large population based study. J Magn Reson Imaging. 2014;40(1):221–8.CrossRef
22.
go back to reference Yang X, Zeng Z, Yi S. Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images. IET Comput Vis. 2017;11(8):643–9.CrossRef Yang X, Zeng Z, Yi S. Deep convolutional neural networks for automatic segmentation of left ventricle cavity from cardiac magnetic resonance images. IET Comput Vis. 2017;11(8):643–9.CrossRef
23.
go back to reference Ngo TA, Lu Z, Carneiro G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 2017;35:159–71.CrossRef Ngo TA, Lu Z, Carneiro G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal. 2017;35:159–71.CrossRef
24.
go back to reference Tran PV. A fully convolutional neural network for cardiac segmentation in short-Axis MRI. ArXiv: 1604.00494. 2016; Tran PV. A fully convolutional neural network for cardiac segmentation in short-Axis MRI. ArXiv: 1604.00494. 2016;
25.
go back to reference Avendi MR, Kheradvar A, Jafarkhani H. Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn Reson Med. 2017;78(6):2439–48.CrossRef Avendi MR, Kheradvar A, Jafarkhani H. Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn Reson Med. 2017;78(6):2439–48.CrossRef
27.
go back to reference Kayalibay B, Jensen G, van der Smagt P. CNN-based segmentation of medical imaging data. ArXiv: 1701.03056. 2017 Kayalibay B, Jensen G, van der Smagt P. CNN-based segmentation of medical imaging data. ArXiv: 1701.03056. 2017
28.
go back to reference Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.CrossRef Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221–48.CrossRef
29.
go back to reference Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention -- MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, vol. 3. Cham: Springer International Publishing; 2015. p. 234–41.CrossRef Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention -- MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, vol. 3. Cham: Springer International Publishing; 2015. p. 234–41.CrossRef
30.
go back to reference Ioffe S, Szegedy C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift. ArXiv:1502.03167. 2015; Ioffe S, Szegedy C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift. ArXiv:1502.03167. 2015;
31.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
32.
go back to reference Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations. 2015. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings of international conference on learning representations. 2015.
33.
go back to reference Krogh A, Hertz JA. Simple weight decay can improve generalization. In: Advances in neural information processing systems (NIPS)-Volume 4. USA: Morgan-Kaufmann; 1992. p. 950–7. Krogh A, Hertz JA. Simple weight decay can improve generalization. In: Advances in neural information processing systems (NIPS)-Volume 4. USA: Morgan-Kaufmann; 1992. p. 950–7.
34.
go back to reference Maragos P, Schafer R. Morphological skeleton representation and coding of binary images. IEEE Trans Acoust. 1986;34(5):1228–44.CrossRef Maragos P, Schafer R. Morphological skeleton representation and coding of binary images. IEEE Trans Acoust. 1986;34(5):1228–44.CrossRef
35.
go back to reference Bengio Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, vol. 27; 2011. p. 17–37. Bengio Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop, vol. 27; 2011. p. 17–37.
36.
go back to reference Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–98.CrossRef Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285–98.CrossRef
37.
go back to reference Hussain Z, Gimenez F, Yi D, Rubin D. Differential data augmentation techniques for medical imaging classification tasks. AMIA Annu Symp Proc. 2017;2017:979–84.PubMed Hussain Z, Gimenez F, Yi D, Rubin D. Differential data augmentation techniques for medical imaging classification tasks. AMIA Annu Symp Proc. 2017;2017:979–84.PubMed
38.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: proceedings of the 25th international conference on neural information processing systems, vol. 1. USA: Curran Associates Inc; 2012. p. 1097–105. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: proceedings of the 25th international conference on neural information processing systems, vol. 1. USA: Curran Associates Inc; 2012. p. 1097–105.
39.
go back to reference Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index1. Acad Radiol. 2004;11(2):178–89.CrossRef Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, et al. Statistical validation of image segmentation quality based on a spatial overlap index1. Acad Radiol. 2004;11(2):178–89.CrossRef
40.
go back to reference Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51.CrossRef Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016;35(5):1240–51.CrossRef
41.
go back to reference Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016;35(5):1170–81.CrossRef Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016;35(5):1170–81.CrossRef
42.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.CrossRef Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, et al. Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging. 2016;35:1299–312.CrossRef
43.
go back to reference Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, et al. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging. 2018;37(2):384–95.CrossRef Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, et al. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging. 2018;37(2):384–95.CrossRef
44.
go back to reference Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20:65.CrossRef Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20:65.CrossRef
45.
go back to reference Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Ω-net (omega-net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal. 2018;48:95–106.CrossRef Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Ω-net (omega-net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal. 2018;48:95–106.CrossRef
46.
go back to reference Gupta SN, Solaiyappan M, Beache GM, Arai AE, Foo TKF. Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn Reson Med. 2003;49(3):506–14.CrossRef Gupta SN, Solaiyappan M, Beache GM, Arai AE, Foo TKF. Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn Reson Med. 2003;49(3):506–14.CrossRef
47.
go back to reference Ma C, Varghese T. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging. Med Phys. 2012;39(4):1779–92.CrossRef Ma C, Varghese T. Lagrangian displacement tracking using a polar grid between endocardial and epicardial contours for cardiac strain imaging. Med Phys. 2012;39(4):1779–92.CrossRef
48.
go back to reference Ma C, Wang X, Varghese T. Segmental analysis of cardiac short-Axis views using Lagrangian radial and circumferential strain. Ultrason Imaging. 2016;38(6):363–83.CrossRef Ma C, Wang X, Varghese T. Segmental analysis of cardiac short-Axis views using Lagrangian radial and circumferential strain. Ultrason Imaging. 2016;38(6):363–83.CrossRef
49.
go back to reference Lee H-Y, Codella N, Cham M, Prince M, Weinsaft J, Wang Y. Left ventricle segmentation using Graph searching on Intensity and Gradient and A priori knowledge (lvGIGA) for short axis cardiac MRI. J Magn Reson Imaging. 2008;28(6):1393–401.CrossRef Lee H-Y, Codella N, Cham M, Prince M, Weinsaft J, Wang Y. Left ventricle segmentation using Graph searching on Intensity and Gradient and A priori knowledge (lvGIGA) for short axis cardiac MRI. J Magn Reson Imaging. 2008;28(6):1393–401.CrossRef
50.
go back to reference Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J, et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson. 2011;13(1):40.CrossRef Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J, et al. Comparison of long and short axis quantification of left ventricular volume parameters by cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc Magn Reson. 2011;13(1):40.CrossRef
Metadata
Title
Automated analysis of cardiovascular magnetic resonance myocardial native T1 mapping images using fully convolutional neural networks
Authors
Ahmed S. Fahmy
Hossam El-Rewaidy
Maryam Nezafat
Shiro Nakamori
Reza Nezafat
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2019
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-018-0516-1

Other articles of this Issue 1/2019

Journal of Cardiovascular Magnetic Resonance 1/2019 Go to the issue