Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2019

Open Access 01-12-2019 | Research

Sorted Golden-step phase encoding: an improved Golden-step imaging technique for cardiac and respiratory self-gated cine cardiovascular magnetic resonance imaging

Authors: Liheng Guo, Daniel A. Herzka

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2019

Login to get access

Abstract

Background

Numerous self-gated cardiac imaging techniques have been reported in the literature. Most can track either cardiac or respiratory motion, and many incur some overhead to imaging data acquisition. We previously described a Cartesian cine imaging technique, pseudo-projection motion tracking with golden-step phase encoding, capable of tracking both cardiac and respiratory motion at no cost to imaging data acquisition. In this work, we describe improvements to the technique by dramatically reducing its vulnerability to eddy current and flow artifacts and demonstrating its effectiveness in expanded cardiovascular applications.

Methods

As with our previous golden-step technique, the Cartesian phase encodes over time were arranged based on the integer golden step, and readouts near ky = 0 (pseudo-projections) were used to derive motion. In this work, however, the readouts were divided into equal and consecutive temporal segments, within which the readouts were sorted according to ky. The sorting reduces the phase encode jump between consecutive readouts while maintaining the pseudo-randomness of ky to sample both cardiac and respiratory motion without comprising the ability to retrospectively set the temporal resolution of the original technique. On human volunteers, free-breathing, electrocardiographic (ECG)-free cine scans were acquired for all slices of the short axis stack and the 4-chamber view of the long axis. Retrospectively, cardiac motion and respiratory motion were automatically extracted from the pseudo-projections to guide cine reconstruction. The resultant image quality in terms of sharpness and cardiac functional metrics was compared against breath-hold ECG-gated reference cines.

Results

With sorting, motion tracking of both cardiac and respiratory motion was effective for all slices orientations imaged, and artifact occurrence due to eddy current and flow was efficiently eliminated. The image sharpness derived from the self-gated cines was found to be comparable to the reference cines (mean difference less than 0.05 mm− 1 for short-axis images and 0.075 mm− 1 for long-axis images), and the functional metrics (mean difference < 4 ml) were found not to be statistically different from those from the reference.

Conclusions

This technique dramatically reduced the eddy current and flow artifacts while preserving the ability of cost-free motion tracking and the flexibility of choosing arbitrary navigator zone width, number of cardiac phases, and duration of scanning. With the restriction of the artifacts removed, the Cartesian golden-step cine imaging can now be applied to cardiac imaging slices of more diverse orientation and anatomy at greater reliability.
Appendix
Available only for authorised users
Footnotes
1
It should be noted that the temporal width of each cardiac phase can still be set to arbitrarily after the scan, because it is unrelated to the number of readouts in the sorting segment here.
 
Literature
1.
go back to reference Polson MJ, Barker AT, Gardiner S. The effect of rapid rise-time magnetic fields on the ECG of the rat. Clin Phys Physiol Meas. 1982;3:231–4.CrossRefPubMed Polson MJ, Barker AT, Gardiner S. The effect of rapid rise-time magnetic fields on the ECG of the rat. Clin Phys Physiol Meas. 1982;3:231–4.CrossRefPubMed
2.
go back to reference Shetty AN. Suppression of radiofrequency interference in cardiac gated MRI: a simple design. Magn Reson Med. 1988;8:84–8.CrossRefPubMed Shetty AN. Suppression of radiofrequency interference in cardiac gated MRI: a simple design. Magn Reson Med. 1988;8:84–8.CrossRefPubMed
3.
go back to reference Rokey R, Wendt RE, Johnston DL. Monitoring of acutely ill patients during nuclear magnetic resonance imaging: use of a time-varying filter electrocardiographic gating device to reduce gradient artifacts. Magn Reson Med. 1988;6:240–5.CrossRefPubMed Rokey R, Wendt RE, Johnston DL. Monitoring of acutely ill patients during nuclear magnetic resonance imaging: use of a time-varying filter electrocardiographic gating device to reduce gradient artifacts. Magn Reson Med. 1988;6:240–5.CrossRefPubMed
4.
go back to reference Damji AA, Snyder RE, Ellinger DC, Witkowski FX, Allen PS. RF interference suppression in a cardiac synchronization system operating in a high magnetic field NMR imaging system. Magn Reson Imaging. 1988;6:637–40.CrossRefPubMed Damji AA, Snyder RE, Ellinger DC, Witkowski FX, Allen PS. RF interference suppression in a cardiac synchronization system operating in a high magnetic field NMR imaging system. Magn Reson Imaging. 1988;6:637–40.CrossRefPubMed
5.
go back to reference Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med. 1999;42:361–70.CrossRefPubMed Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med. 1999;42:361–70.CrossRefPubMed
6.
go back to reference Birkholz T, Schmid M, Nimsky C, Schüttler J, Schmitz B. ECG artifacts during intraoperative high-field MRI scanning. J Neurosurg Anesthesiol. 2004;16:271–6.CrossRefPubMed Birkholz T, Schmid M, Nimsky C, Schüttler J, Schmitz B. ECG artifacts during intraoperative high-field MRI scanning. J Neurosurg Anesthesiol. 2004;16:271–6.CrossRefPubMed
7.
go back to reference Krug JW, Rose G, Stucht D, Clifford G, Oster J. Limitations of VCG based gating methods in ultra high field cardiac MRI. J Cardiovasc Magn Reson. 2013;15:1–2.CrossRef Krug JW, Rose G, Stucht D, Clifford G, Oster J. Limitations of VCG based gating methods in ultra high field cardiac MRI. J Cardiovasc Magn Reson. 2013;15:1–2.CrossRef
8.
go back to reference McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, et al. Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol. 1997;168:1369–75.CrossRefPubMed McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, et al. Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol. 1997;168:1369–75.CrossRefPubMed
9.
go back to reference Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, et al. Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med. 2011;65:1097–102.CrossRefPubMed Santelli C, Nezafat R, Goddu B, Manning WJ, Smink J, Kozerke S, et al. Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med. 2011;65:1097–102.CrossRefPubMed
10.
go back to reference Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ. Prospective navigator correction of image position for coronary MR angiography. Radiology. 1997;203:733–6.CrossRefPubMed Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ. Prospective navigator correction of image position for coronary MR angiography. Radiology. 1997;203:733–6.CrossRefPubMed
11.
go back to reference Nehrke K, Börnert P, Manke D, Böck JC. Free-breathing cardiac MR imaging: study of implications of respiratory motion—initial Results1. Radiology. 2001;220:810–5.CrossRefPubMed Nehrke K, Börnert P, Manke D, Böck JC. Free-breathing cardiac MR imaging: study of implications of respiratory motion—initial Results1. Radiology. 2001;220:810–5.CrossRefPubMed
12.
go back to reference Keegan J, Gatehouse P, Yang G-Z, Firmin D. Coronary artery motion with the respiratory cycle during breath-holding and free-breathing: implications for slice-followed coronary artery imaging. Magn Reson Med. 2002;47:476–81.CrossRefPubMed Keegan J, Gatehouse P, Yang G-Z, Firmin D. Coronary artery motion with the respiratory cycle during breath-holding and free-breathing: implications for slice-followed coronary artery imaging. Magn Reson Med. 2002;47:476–81.CrossRefPubMed
13.
go back to reference Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, et al. Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med. 2004;52:782–8.CrossRefPubMed Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, et al. Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med. 2004;52:782–8.CrossRefPubMed
14.
go back to reference Buehrer M, Curcic J, Boesiger P, Kozerke S. Prospective self-gating for simultaneous compensation of cardiac and respiratory motion. Magn Reson Med. 2008;60:683–90.CrossRefPubMed Buehrer M, Curcic J, Boesiger P, Kozerke S. Prospective self-gating for simultaneous compensation of cardiac and respiratory motion. Magn Reson Med. 2008;60:683–90.CrossRefPubMed
16.
go back to reference Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med. 2006;55:506–13.CrossRefPubMed Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med. 2006;55:506–13.CrossRefPubMed
17.
go back to reference Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med. 2010;63:1230–7.CrossRefPubMedPubMedCentral Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med. 2010;63:1230–7.CrossRefPubMedPubMedCentral
18.
go back to reference Larson AC, Kellman P, Arai A, Hirsch GA, McVeigh E, Li D, et al. Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med. 2005;53:159–68.CrossRefPubMedPubMedCentral Larson AC, Kellman P, Arai A, Hirsch GA, McVeigh E, Li D, et al. Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med. 2005;53:159–68.CrossRefPubMedPubMedCentral
19.
go back to reference Lin W, Guo J, Rosen MA, Song HK. Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med. 2008;60:1135–46.CrossRefPubMedPubMedCentral Lin W, Guo J, Rosen MA, Song HK. Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med. 2008;60:1135–46.CrossRefPubMedPubMedCentral
20.
go back to reference Kellman P, Chefd’hotel C, Lorenz CH, Mancini C, Arai AE, McVeigh ER. High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med. 2009;62:1557–64.CrossRefPubMedPubMedCentral Kellman P, Chefd’hotel C, Lorenz CH, Mancini C, Arai AE, McVeigh ER. High spatial and temporal resolution cardiac cine MRI from retrospective reconstruction of data acquired in real time using motion correction and resorting. Magn Reson Med. 2009;62:1557–64.CrossRefPubMedPubMedCentral
21.
go back to reference Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42:963–9.CrossRefPubMed Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42:963–9.CrossRefPubMed
22.
go back to reference Wang CC, Huang TY. Self-gated PROPELLER-encoded cine cardiac imaging. Int J Cardiovasc Imaging. 2012;28(6):1477–85.CrossRefPubMed Wang CC, Huang TY. Self-gated PROPELLER-encoded cine cardiac imaging. Int J Cardiovasc Imaging. 2012;28(6):1477–85.CrossRefPubMed
23.
go back to reference Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173:255–63.CrossRefPubMed Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173:255–63.CrossRefPubMed
24.
go back to reference Liu YL, Riederer SJ, Rossman PJ, Grim RC, Debbins JP, Ehman RL. A monitoring, feedback, and triggering system for reproducible breath-hold MR imaging. Magn Reson Med. 1993;30:507–11.CrossRefPubMed Liu YL, Riederer SJ, Rossman PJ, Grim RC, Debbins JP, Ehman RL. A monitoring, feedback, and triggering system for reproducible breath-hold MR imaging. Magn Reson Med. 1993;30:507–11.CrossRefPubMed
25.
go back to reference Lustig M, Cunningham CH, Daniyalzade E, Pauly JM. Butterfly: a self navigating Cartesian trajectory. In: Proceedings of the 15th annual meeting of the International Society for Magnetic Resonance in medicine; 2007. p. 865. Lustig M, Cunningham CH, Daniyalzade E, Pauly JM. Butterfly: a self navigating Cartesian trajectory. In: Proceedings of the 15th annual meeting of the International Society for Magnetic Resonance in medicine; 2007. p. 865.
26.
go back to reference Guo L, McVeigh ER, Lederman RJ, Derbyshire JA, Herzka DA. Dual-projection cardiac and respiratory self-navigated cine imaging using SSFP. In: Proceedings of the 18th annual meeting of the International Society for Magnetic Resonance in medicine. Stockholm: Wiley; 2010. p. 78. Guo L, McVeigh ER, Lederman RJ, Derbyshire JA, Herzka DA. Dual-projection cardiac and respiratory self-navigated cine imaging using SSFP. In: Proceedings of the 18th annual meeting of the International Society for Magnetic Resonance in medicine. Stockholm: Wiley; 2010. p. 78.
27.
go back to reference Guo L, Segundo AJM, Derbyshire JA, Carrino JA, Herzka DA. Self-navigated kinematic imaging of the knee. In: Proceedings of the 19th annual meeting of the International Society for Magnetic Resonance in medicine. Montreal: Wiley; 2011. p. 384. Guo L, Segundo AJM, Derbyshire JA, Carrino JA, Herzka DA. Self-navigated kinematic imaging of the knee. In: Proceedings of the 19th annual meeting of the International Society for Magnetic Resonance in medicine. Montreal: Wiley; 2011. p. 384.
28.
go back to reference Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med. 2008;59:1378–85.CrossRefPubMedPubMedCentral Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med. 2008;59:1378–85.CrossRefPubMedPubMedCentral
29.
go back to reference Lai P, Larson AC, Bi X, Jerecic R, Li D. A dual-projection respiratory self-gating technique for whole-heart coronary MRA. J Magn Reson Imaging. 2008;28:612–20.CrossRefPubMedPubMedCentral Lai P, Larson AC, Bi X, Jerecic R, Li D. A dual-projection respiratory self-gating technique for whole-heart coronary MRA. J Magn Reson Imaging. 2008;28:612–20.CrossRefPubMedPubMedCentral
30.
go back to reference Jin N, Lewandowski RJ, Omary RA, Larson AC. Respiratory self-gating for free-breathing abdominal phase-contrast blood flow measurements. J Magn Reson Imaging. 2009;29:860–8.CrossRefPubMedPubMedCentral Jin N, Lewandowski RJ, Omary RA, Larson AC. Respiratory self-gating for free-breathing abdominal phase-contrast blood flow measurements. J Magn Reson Imaging. 2009;29:860–8.CrossRefPubMedPubMedCentral
31.
go back to reference Hu P, Hong S, Moghari MH, Goddu B, Goepfert L, Kissinger KV, et al. Motion correction using coil arrays (MOCCA) for free-breathing cardiac cine MRI. Magn Reson Med. 2011;66:467–75.CrossRefPubMedPubMedCentral Hu P, Hong S, Moghari MH, Goddu B, Goepfert L, Kissinger KV, et al. Motion correction using coil arrays (MOCCA) for free-breathing cardiac cine MRI. Magn Reson Med. 2011;66:467–75.CrossRefPubMedPubMedCentral
32.
go back to reference Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, et al. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med. 2016;75:1574–85.CrossRefPubMed Deng Z, Pang J, Yang W, Yue Y, Sharif B, Tuli R, et al. Four-dimensional MRI using three-dimensional radial sampling with respiratory self-gating to characterize temporal phase-resolved respiratory motion in the abdomen. Magn Reson Med. 2016;75:1574–85.CrossRefPubMed
33.
go back to reference Guo L, Derbyshire JA, Herzka DA. Pseudo-projection-driven, self-gated cardiac cine imaging using cartesian golden step phase encoding. Magn Reson Med. 2016;76:417–29.CrossRefPubMed Guo L, Derbyshire JA, Herzka DA. Pseudo-projection-driven, self-gated cardiac cine imaging using cartesian golden step phase encoding. Magn Reson Med. 2016;76:417–29.CrossRefPubMed
34.
go back to reference Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden ratio for time-resolved MRI. IEEE Trans Med Imaging. 2007;26:68–76.CrossRefPubMed Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden ratio for time-resolved MRI. IEEE Trans Med Imaging. 2007;26:68–76.CrossRefPubMed
35.
go back to reference Wundrak S, Paul J, Ulrici J, Hell E, Rasche V. A small surrogate for the golden angle in time-resolved radial MRI based on generalized Fibonacci sequences. IEEE Trans Med Imaging. 2015;34:1262–9.CrossRefPubMed Wundrak S, Paul J, Ulrici J, Hell E, Rasche V. A small surrogate for the golden angle in time-resolved radial MRI based on generalized Fibonacci sequences. IEEE Trans Med Imaging. 2015;34:1262–9.CrossRefPubMed
36.
go back to reference Wundrak S, Paul J, Ulrici J, Hell E, Geibel M-A, Bernhardt P, et al. Golden ratio sparse MRI using tiny golden angles. Magn Reson Med. 2016;75:2372–8.CrossRefPubMed Wundrak S, Paul J, Ulrici J, Hell E, Geibel M-A, Bernhardt P, et al. Golden ratio sparse MRI using tiny golden angles. Magn Reson Med. 2016;75:2372–8.CrossRefPubMed
37.
go back to reference Svedin BT, Payne A, Bolster BD, Parker DL. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast. Magn Reson Med. 2018;79:1407–19.CrossRefPubMed Svedin BT, Payne A, Bolster BD, Parker DL. Multiecho pseudo-golden angle stack of stars thermometry with high spatial and temporal resolution using k-space weighted image contrast. Magn Reson Med. 2018;79:1407–19.CrossRefPubMed
38.
go back to reference Hedderich D, Weiss K, Spiro J, Giese D, Beck G, Maintz D, et al. Clinical evaluation of free-breathing contrast-enhanced T1w MRI of the liver using pseudo golden angle radial k-space sampling. Rofo. 2018;190(7):601–9.CrossRefPubMed Hedderich D, Weiss K, Spiro J, Giese D, Beck G, Maintz D, et al. Clinical evaluation of free-breathing contrast-enhanced T1w MRI of the liver using pseudo golden angle radial k-space sampling. Rofo. 2018;190(7):601–9.CrossRefPubMed
39.
go back to reference Velikina JV, Alexander AL, Samsonov A. Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension. Magn Reson Med. 2013;70:1263–73.CrossRefPubMed Velikina JV, Alexander AL, Samsonov A. Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension. Magn Reson Med. 2013;70:1263–73.CrossRefPubMed
40.
go back to reference Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70:1241–50.CrossRefPubMed Johnson KM, Fain SB, Schiebler ML, Nagle S. Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med. 2013;70:1241–50.CrossRefPubMed
41.
go back to reference Kawaji K, Patel MB, Cantrell CG, Tanaka A, Marino M, Tamura S, et al. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS). Med Phys. 2017;44:3450–63.CrossRefPubMed Kawaji K, Patel MB, Cantrell CG, Tanaka A, Marino M, Tamura S, et al. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS). Med Phys. 2017;44:3450–63.CrossRefPubMed
42.
go back to reference Bieri O, Markl M, Scheffler K. Analysis and compensation of eddy currents in balanced SSFP. Magn Reson Med. 2005;54:129–37.CrossRefPubMed Bieri O, Markl M, Scheffler K. Analysis and compensation of eddy currents in balanced SSFP. Magn Reson Med. 2005;54:129–37.CrossRefPubMed
43.
go back to reference Markl M, Leupold J, Bieri O, Scheffler K, Hennig J. Double average parallel steady-state free precession imaging: optimized eddy current and transient oscillation compensation. Magn Reson Med. 2005;54:965–74.CrossRefPubMed Markl M, Leupold J, Bieri O, Scheffler K, Hennig J. Double average parallel steady-state free precession imaging: optimized eddy current and transient oscillation compensation. Magn Reson Med. 2005;54:965–74.CrossRefPubMed
44.
45.
go back to reference Deshpande VS, Cavagna F, Maggioni F, Schirf BE, Omary RA, Li D. Comparison of gradient-echo and steady-state free precession for coronary artery magnetic resonance angiography using a gadolinium-based intravascular contrast agent. Investig Radiol. 2006;41:292–8.CrossRef Deshpande VS, Cavagna F, Maggioni F, Schirf BE, Omary RA, Li D. Comparison of gradient-echo and steady-state free precession for coronary artery magnetic resonance angiography using a gadolinium-based intravascular contrast agent. Investig Radiol. 2006;41:292–8.CrossRef
46.
go back to reference Li W, Storey P, Chen Q, Li BSY, Prasad PV, Edelman RR. Dark flow artifacts with steady-state free precession cine MR technique: causes and implications for cardiac MR imaging. Radiology. 2004;230:569–75.CrossRefPubMed Li W, Storey P, Chen Q, Li BSY, Prasad PV, Edelman RR. Dark flow artifacts with steady-state free precession cine MR technique: causes and implications for cardiac MR imaging. Radiology. 2004;230:569–75.CrossRefPubMed
47.
go back to reference Bi X, Park J, Deshpande V, Simonetti O, Laub G, Li D. Reduction of flow- and eddy-currents-induced image artifacts in coronary magnetic resonance angiography using a linear centric-encoding SSFP sequence. Magn Reson Imaging. 2007;25:1138–47.CrossRefPubMedPubMedCentral Bi X, Park J, Deshpande V, Simonetti O, Laub G, Li D. Reduction of flow- and eddy-currents-induced image artifacts in coronary magnetic resonance angiography using a linear centric-encoding SSFP sequence. Magn Reson Imaging. 2007;25:1138–47.CrossRefPubMedPubMedCentral
48.
go back to reference Saremi F, Grizzard JD, Kim RJ. Optimizing cardiac MR imaging: practical remedies for artifacts. Radiographics. 2008;28:1161–87.CrossRefPubMed Saremi F, Grizzard JD, Kim RJ. Optimizing cardiac MR imaging: practical remedies for artifacts. Radiographics. 2008;28:1161–87.CrossRefPubMed
49.
go back to reference Derbyshire JA, Herzka DA, McVeigh ER, Lederman RJ. Efficient implementation of hardware-optimized gradient sequences for real-time imaging. Magn Reson Med. 2010;64:1814–20.CrossRefPubMedPubMedCentral Derbyshire JA, Herzka DA, McVeigh ER, Lederman RJ. Efficient implementation of hardware-optimized gradient sequences for real-time imaging. Magn Reson Med. 2010;64:1814–20.CrossRefPubMedPubMedCentral
50.
go back to reference Scheffler K, Heid O, Hennig J. Magnetization preparation during the steady state: fat saturated 3D TrueFISP. In: Proceedings of the 9th annual meeting of the International Society for Magnetic Resonance in medicine; 2001. p. 440. Scheffler K, Heid O, Hennig J. Magnetization preparation during the steady state: fat saturated 3D TrueFISP. In: Proceedings of the 9th annual meeting of the International Society for Magnetic Resonance in medicine; 2001. p. 440.
51.
go back to reference Lu W, Nystrom MM, Parikh PJ, Fooshee DR, Hubenschmidt JP, Bradley JD, et al. A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms. Med Phys. 2006;33:3634–6.CrossRefPubMed Lu W, Nystrom MM, Parikh PJ, Fooshee DR, Hubenschmidt JP, Bradley JD, et al. A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms. Med Phys. 2006;33:3634–6.CrossRefPubMed
52.
go back to reference Center for Integrative Biomedical Computing. Seg3D. 2016. Center for Integrative Biomedical Computing. Seg3D. 2016.
53.
go back to reference Milles J, van der Geest RJ, Jerosch-Herold M, Reiber JHC, Lelieveldt BPF. Fully Automated Registration of First-Pass Myocardial Perfusion MRI Using Independent Component Analysis. Berlin, Heidelberg: Springer; 2007. p. 544–55. Milles J, van der Geest RJ, Jerosch-Herold M, Reiber JHC, Lelieveldt BPF. Fully Automated Registration of First-Pass Myocardial Perfusion MRI Using Independent Component Analysis. Berlin, Heidelberg: Springer; 2007. p. 544–55.
54.
go back to reference Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. Automatic independent component labeling for artifact removal in fMRI. Neuroimage. 2008;39:1227–45.CrossRefPubMed Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. Automatic independent component labeling for artifact removal in fMRI. Neuroimage. 2008;39:1227–45.CrossRefPubMed
55.
go back to reference Wollny G, Kellman P, Santos A, Ledesma-Carbayo MJ. Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis. Med Image Anal. 2012;16:1015–28.CrossRefPubMedPubMedCentral Wollny G, Kellman P, Santos A, Ledesma-Carbayo MJ. Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis. Med Image Anal. 2012;16:1015–28.CrossRefPubMedPubMedCentral
56.
go back to reference Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.CrossRefPubMed Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47:1202–10.CrossRefPubMed
57.
58.
go back to reference Moghari MH, Hu P, Kissinger KV, Goddu B, Goepfert L, Ngo L, et al. Subject-specific estimation of respiratory navigator tracking factor for free-breathing cardiovascular MR. Magn Reson Med. 2012;67:1665–72.CrossRefPubMed Moghari MH, Hu P, Kissinger KV, Goddu B, Goepfert L, Ngo L, et al. Subject-specific estimation of respiratory navigator tracking factor for free-breathing cardiovascular MR. Magn Reson Med. 2012;67:1665–72.CrossRefPubMed
59.
go back to reference Hansen MS, Sørensen TS, Arai AE, Kellman P. Retrospective reconstruction of high temporal resolution cine images from real-time MRI using iterative motion correction. Magn Reson Med. 2012 Sep;68(3):741–50.CrossRefPubMed Hansen MS, Sørensen TS, Arai AE, Kellman P. Retrospective reconstruction of high temporal resolution cine images from real-time MRI using iterative motion correction. Magn Reson Med. 2012 Sep;68(3):741–50.CrossRefPubMed
60.
go back to reference Burger I, Meintjes EM. Elliptical subject-specific model of respiratory motion for cardiac MRI. Magn Reson Med. 2013 Sep;70(3):722–31.CrossRefPubMed Burger I, Meintjes EM. Elliptical subject-specific model of respiratory motion for cardiac MRI. Magn Reson Med. 2013 Sep;70(3):722–31.CrossRefPubMed
61.
go back to reference Peters DC, Rohatgi P, Botnar RM, Yeon SB, Kissinger KV, Manning WJ. Characterizing radial undersampling artifacts for cardiac applications. Magn Reson Med. 2006;55:396–403.CrossRefPubMed Peters DC, Rohatgi P, Botnar RM, Yeon SB, Kissinger KV, Manning WJ. Characterizing radial undersampling artifacts for cardiac applications. Magn Reson Med. 2006;55:396–403.CrossRefPubMed
62.
go back to reference Adluru G, McGann C, Speier P, Kholmovski EG, Shaaban A, Dibella EVR. Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J Magn Reson Imaging. 2009;29:466–73.CrossRefPubMedPubMedCentral Adluru G, McGann C, Speier P, Kholmovski EG, Shaaban A, Dibella EVR. Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J Magn Reson Imaging. 2009;29:466–73.CrossRefPubMedPubMedCentral
63.
go back to reference Ge L, Kino A, Griswold M, Carr JC, Li D. Free-breathing myocardial perfusion MRI using SW-CG-HYPR and motion correction. Magn Reson Med. 2010;64:1148–54.CrossRefPubMed Ge L, Kino A, Griswold M, Carr JC, Li D. Free-breathing myocardial perfusion MRI using SW-CG-HYPR and motion correction. Magn Reson Med. 2010;64:1148–54.CrossRefPubMed
64.
go back to reference Winkelmann R, Börnert P, Dössel O. Ghost artifact removal using a parallel imaging approach. Magn Reson Med. 2005;54:1002–9.CrossRefPubMed Winkelmann R, Börnert P, Dössel O. Ghost artifact removal using a parallel imaging approach. Magn Reson Med. 2005;54:1002–9.CrossRefPubMed
65.
go back to reference Zhou X, Tsaftaris SA, Liu Y, Tang R, Klein R, Zuehlsdorff S, et al. Artifact-reduced two-dimensional cine steady state free precession for myocardial blood- oxygen-level-dependent imaging. J Magn Reson Imaging. 2010;31:863–71.CrossRefPubMedPubMedCentral Zhou X, Tsaftaris SA, Liu Y, Tang R, Klein R, Zuehlsdorff S, et al. Artifact-reduced two-dimensional cine steady state free precession for myocardial blood- oxygen-level-dependent imaging. J Magn Reson Imaging. 2010;31:863–71.CrossRefPubMedPubMedCentral
66.
go back to reference Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46(4):638–51.CrossRefPubMed Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001;46(4):638–51.CrossRefPubMed
Metadata
Title
Sorted Golden-step phase encoding: an improved Golden-step imaging technique for cardiac and respiratory self-gated cine cardiovascular magnetic resonance imaging
Authors
Liheng Guo
Daniel A. Herzka
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2019
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-019-0533-8

Other articles of this Issue 1/2019

Journal of Cardiovascular Magnetic Resonance 1/2019 Go to the issue