Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Review

Current strategies employed in the manipulation of gene expression for clinical purposes

Authors: Hsing-Chuan Tsai, Violena Pietrobon, Maoyu Peng, Suning Wang, Lihong Zhao, Francesco M. Marincola, Qi Cai

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host’s gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host’s gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host’s gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Literature
2.
go back to reference Keinath MC, Prior DE, Prior TW. Spinal muscular atrophy: mutations, testing, and clinical relevance. Appl Clin Genetics. 2021;14:11–25.CrossRef Keinath MC, Prior DE, Prior TW. Spinal muscular atrophy: mutations, testing, and clinical relevance. Appl Clin Genetics. 2021;14:11–25.CrossRef
3.
go back to reference Leontiadou H, Galdadas I, Athanasiou C, Cournia Z. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Sci Rep-uk. 2018;8(1):15544.CrossRef Leontiadou H, Galdadas I, Athanasiou C, Cournia Z. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Sci Rep-uk. 2018;8(1):15544.CrossRef
4.
go back to reference Rubinsztein DC. How does the Huntington’s Disease mutation damage cells? Sci Aging Knowl Environ. 2003;2003(37):PE26.CrossRef Rubinsztein DC. How does the Huntington’s Disease mutation damage cells? Sci Aging Knowl Environ. 2003;2003(37):PE26.CrossRef
5.
go back to reference Zhang HX, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther J Am Soc Gene Ther. 2019;27(4):735–46.CrossRef Zhang HX, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol Ther J Am Soc Gene Ther. 2019;27(4):735–46.CrossRef
7.
go back to reference Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11(1):11–27.PubMedPubMedCentralCrossRef Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11(1):11–27.PubMedPubMedCentralCrossRef
8.
go back to reference Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1.PubMedPubMedCentralCrossRef Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1.PubMedPubMedCentralCrossRef
9.
go back to reference Belfort M, Bonocora RP. Homing endonucleases: from genetic anomalies to programmable genomic clippers. Methods Mol Biology Clifton N J. 2014;1123:1–26.CrossRef Belfort M, Bonocora RP. Homing endonucleases: from genetic anomalies to programmable genomic clippers. Methods Mol Biology Clifton N J. 2014;1123:1–26.CrossRef
10.
go back to reference Mittal RD. Gene editing in clinical practice. Ind J Clin Biochem. 2018;33(1):1–4.CrossRef Mittal RD. Gene editing in clinical practice. Ind J Clin Biochem. 2018;33(1):1–4.CrossRef
11.
go back to reference Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–7.PubMedPubMedCentralCrossRef Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–7.PubMedPubMedCentralCrossRef
12.
go back to reference Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 2009;5(1):97–110.PubMedPubMedCentralCrossRef Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 2009;5(1):97–110.PubMedPubMedCentralCrossRef
13.
go back to reference Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.PubMedCrossRef Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.PubMedCrossRef
14.
go back to reference Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010;7(2):91–91.PubMedCrossRef Kim JS, Lee HJ, Carroll D. Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010;7(2):91–91.PubMedCrossRef
15.
go back to reference Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300(5620):764–764.PubMedCrossRef Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300(5620):764–764.PubMedCrossRef
16.
go back to reference Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-Type III effectors. Science. 2009;326(5959):1509–12.PubMedCrossRef Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-Type III effectors. Science. 2009;326(5959):1509–12.PubMedCrossRef
17.
go back to reference Feng Y, Zhang S, Huang X. A robust TALENs system for highly efficient mammalian genome editing. Sci Rep-uk. 2014;4(1):3632.CrossRef Feng Y, Zhang S, Huang X. A robust TALENs system for highly efficient mammalian genome editing. Sci Rep-uk. 2014;4(1):3632.CrossRef
18.
go back to reference Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids. 2019;16:326–34.PubMedPubMedCentralCrossRef Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucleic Acids. 2019;16:326–34.PubMedPubMedCentralCrossRef
19.
go back to reference Bulyk ML, Huang X, Choo Y, Church GM. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc National Acad Sci. 2001;98(13):7158–63.CrossRef Bulyk ML, Huang X, Choo Y, Church GM. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc National Acad Sci. 2001;98(13):7158–63.CrossRef
20.
go back to reference Grover A, Pande A, Choudhary K, Gupta K, Sundar D. Re-programming DNA-binding specificity in zinc finger proteins for targeting unique address in a genome. Syst Synth Biol. 2010;4(4):323–9.PubMedCrossRef Grover A, Pande A, Choudhary K, Gupta K, Sundar D. Re-programming DNA-binding specificity in zinc finger proteins for targeting unique address in a genome. Syst Synth Biol. 2010;4(4):323–9.PubMedCrossRef
22.
go back to reference Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, et al. CRISPR/Cas: from tumor gene editing to T cell-based immunotherapy of cancer. Front Immunol. 2020;11:2062.PubMedPubMedCentralCrossRef Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, et al. CRISPR/Cas: from tumor gene editing to T cell-based immunotherapy of cancer. Front Immunol. 2020;11:2062.PubMedPubMedCentralCrossRef
23.
go back to reference Wang T, Lander ES, Sabatini DM. Large-scale single guide RNA library construction and use for CRISPR–Cas9-based genetic screens. Cold Spring Harb Protoc. 2016;2016(3): pdb.top086892.PubMedPubMedCentralCrossRef Wang T, Lander ES, Sabatini DM. Large-scale single guide RNA library construction and use for CRISPR–Cas9-based genetic screens. Cold Spring Harb Protoc. 2016;2016(3): pdb.top086892.PubMedPubMedCentralCrossRef
24.
go back to reference Covarrubias S, Vollmers AC, Capili A, Boettcher M, Shulkin A, Correa MR, et al. High-throughput CRISPR screening identifies genes involved in macrophage viability and inflammatory pathways. Cell Rep. 2020;33(13): 108541.PubMedPubMedCentralCrossRef Covarrubias S, Vollmers AC, Capili A, Boettcher M, Shulkin A, Correa MR, et al. High-throughput CRISPR screening identifies genes involved in macrophage viability and inflammatory pathways. Cell Rep. 2020;33(13): 108541.PubMedPubMedCentralCrossRef
25.
go back to reference Spangler JR, Leski TA, Schultzhaus Z, Wang Z, Stenger DA. Large scale screening of CRISPR guide RNAs using an optimized high throughput robotics system. Sci Rep-uk. 2022;12(1):13953.CrossRef Spangler JR, Leski TA, Schultzhaus Z, Wang Z, Stenger DA. Large scale screening of CRISPR guide RNAs using an optimized high throughput robotics system. Sci Rep-uk. 2022;12(1):13953.CrossRef
26.
go back to reference DeWitt MA, Corn JE, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods. 2017;121:9–15.PubMedCrossRef DeWitt MA, Corn JE, Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods. 2017;121:9–15.PubMedCrossRef
27.
go back to reference Schwarz H, Schmittner M, Duschl A, Horejs-Hoeck J. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ Dendritic cells. PLoS ONE. 2014;9(12): e113840.PubMedPubMedCentralCrossRef Schwarz H, Schmittner M, Duschl A, Horejs-Hoeck J. Residual endotoxin contaminations in recombinant proteins are sufficient to activate human CD1c+ Dendritic cells. PLoS ONE. 2014;9(12): e113840.PubMedPubMedCentralCrossRef
28.
go back to reference Hecker JG. Non-Viral, lipid-mediated DNA and mRNA gene therapy of the central nervous system (CNS): chemical-based transfection. Methods Mol Biology Clifton N J. 2016;1382:307–24.CrossRef Hecker JG. Non-Viral, lipid-mediated DNA and mRNA gene therapy of the central nervous system (CNS): chemical-based transfection. Methods Mol Biology Clifton N J. 2016;1382:307–24.CrossRef
29.
go back to reference Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-Viral CRISPR/Cas Gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie Int Ed. 2017;56(4):1059–63.CrossRef Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-Viral CRISPR/Cas Gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie Int Ed. 2017;56(4):1059–63.CrossRef
30.
go back to reference Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.PubMedPubMedCentralCrossRef Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15(4):313–20.PubMedPubMedCentralCrossRef
31.
go back to reference Merkle FT, Neuhausser WM, Santos D, Valen E, Gagnon JA, Maas K, et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 2015;11(6):875–83.PubMedPubMedCentralCrossRef Merkle FT, Neuhausser WM, Santos D, Valen E, Gagnon JA, Maas K, et al. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep. 2015;11(6):875–83.PubMedPubMedCentralCrossRef
32.
go back to reference Han HA, Pang JKS, Soh BS. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med. 2020;98(5):615–32.PubMedCrossRef Han HA, Pang JKS, Soh BS. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med. 2020;98(5):615–32.PubMedCrossRef
33.
go back to reference Znidar K, Bosnjak M, Semenova N, Pakhomova O, Heller L, Cemazar M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget. 2018;9(27):18665–81.PubMedPubMedCentralCrossRef Znidar K, Bosnjak M, Semenova N, Pakhomova O, Heller L, Cemazar M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget. 2018;9(27):18665–81.PubMedPubMedCentralCrossRef
34.
go back to reference Navarro-Guerrero E, Tay C, Whalley JP, Cowley SA, Davies B, Knight JC, et al. Genome-wide CRISPR/Cas9-knockout in human induced Pluripotent Stem Cell (iPSC)-derived macrophages. Sci Rep-uk. 2021;11(1):4245.CrossRef Navarro-Guerrero E, Tay C, Whalley JP, Cowley SA, Davies B, Knight JC, et al. Genome-wide CRISPR/Cas9-knockout in human induced Pluripotent Stem Cell (iPSC)-derived macrophages. Sci Rep-uk. 2021;11(1):4245.CrossRef
35.
go back to reference Hana S, Peterson M, McLaughlin H, Marshall E, Fabian AJ, McKissick O, et al. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Ther. 2021;28(10–11):646–58.PubMedPubMedCentralCrossRef Hana S, Peterson M, McLaughlin H, Marshall E, Fabian AJ, McKissick O, et al. Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Ther. 2021;28(10–11):646–58.PubMedPubMedCentralCrossRef
36.
go back to reference Li XL, Li GH, Fu J, Fu YW, Zhang L, Chen W, et al. Highly efficient genome editing via CRISPR–Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res. 2018;46(19):gky04.CrossRef Li XL, Li GH, Fu J, Fu YW, Zhang L, Chen W, et al. Highly efficient genome editing via CRISPR–Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression. Nucleic Acids Res. 2018;46(19):gky04.CrossRef
37.
go back to reference Wen W, Cheng X, Fu Y, Meng F, Zhang JP, Zhang L, et al. High-Level Precise Knockin of iPSCs by simultaneous reprogramming and genome editing of human peripheral blood mononuclear cells. Stem Cell Rep. 2018;10(6):1821–34.CrossRef Wen W, Cheng X, Fu Y, Meng F, Zhang JP, Zhang L, et al. High-Level Precise Knockin of iPSCs by simultaneous reprogramming and genome editing of human peripheral blood mononuclear cells. Stem Cell Rep. 2018;10(6):1821–34.CrossRef
38.
go back to reference Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017;18(1):35.PubMedPubMedCentralCrossRef Zhang JP, Li XL, Li GH, Chen W, Arakaki C, Botimer GD, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017;18(1):35.PubMedPubMedCentralCrossRef
39.
go back to reference Liu H, Liu C, Zhao Y, Han X, Zhou Z, Wang C, et al. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J Integr Agr. 2018;17(2):406–14.CrossRef Liu H, Liu C, Zhao Y, Han X, Zhou Z, Wang C, et al. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. J Integr Agr. 2018;17(2):406–14.CrossRef
40.
go back to reference Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. P Natl Acad Sci Usa. 2015;112(33):10437–42.CrossRef Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M, Gate RE, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. P Natl Acad Sci Usa. 2015;112(33):10437–42.CrossRef
42.
go back to reference Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215(3):985–97.PubMedPubMedCentralCrossRef Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215(3):985–97.PubMedPubMedCentralCrossRef
43.
go back to reference Nüssing S, House IG, Kearney CJ, Chen AXY, Vervoort SJ, Beavis PA, et al. Efficient CRISPR/Cas9 gene editing in uncultured naive mouse T cells for in vivo studies. J Immunol. 2020;204(8):2308–15.PubMedCrossRef Nüssing S, House IG, Kearney CJ, Chen AXY, Vervoort SJ, Beavis PA, et al. Efficient CRISPR/Cas9 gene editing in uncultured naive mouse T cells for in vivo studies. J Immunol. 2020;204(8):2308–15.PubMedCrossRef
44.
go back to reference Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985–9.PubMedPubMedCentralCrossRef Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985–9.PubMedPubMedCentralCrossRef
45.
go back to reference Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.PubMedPubMedCentralCrossRef Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.PubMedPubMedCentralCrossRef
46.
go back to reference Schmidt R, Steinhart Z, Layeghi M, Freimer JW, Bueno R, Nguyen VQ, et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Sci New York N Y. 2022;375(6580):4008.CrossRef Schmidt R, Steinhart Z, Layeghi M, Freimer JW, Bueno R, Nguyen VQ, et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Sci New York N Y. 2022;375(6580):4008.CrossRef
47.
go back to reference Yang Z, Li L, Turkoz A, Chen P, Harari-Steinfeld R, Bobbin M, et al. Contextual reprogramming of CAR-T cells for treatment of HER2+ cancers. J Transl Med. 2021;19(1):459.PubMedPubMedCentralCrossRef Yang Z, Li L, Turkoz A, Chen P, Harari-Steinfeld R, Bobbin M, et al. Contextual reprogramming of CAR-T cells for treatment of HER2+ cancers. J Transl Med. 2021;19(1):459.PubMedPubMedCentralCrossRef
48.
go back to reference Li A, Tanner MR, Lee CM, Hurley AE, Giorgi MD, Jarrett KE, et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther. 2020;28(6):1432–41.PubMedPubMedCentralCrossRef Li A, Tanner MR, Lee CM, Hurley AE, Giorgi MD, Jarrett KE, et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol Ther. 2020;28(6):1432–41.PubMedPubMedCentralCrossRef
49.
go back to reference Wang D, Mou H, Li S, Li Y, Hough S, Tran K, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther. 2015;26(7):432–42.PubMedPubMedCentralCrossRef Wang D, Mou H, Li S, Li Y, Hough S, Tran K, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther. 2015;26(7):432–42.PubMedPubMedCentralCrossRef
50.
go back to reference Ajina R, Zamalin D, Zuo A, Moussa M, Catalfamo M, Jablonski SA, et al. SpCas9-expression by tumor cells can cause T cell-dependent tumor rejection in immunocompetent mice. Oncoimmunology. 2019;8(5):1–11.CrossRef Ajina R, Zamalin D, Zuo A, Moussa M, Catalfamo M, Jablonski SA, et al. SpCas9-expression by tumor cells can cause T cell-dependent tumor rejection in immunocompetent mice. Oncoimmunology. 2019;8(5):1–11.CrossRef
51.
go back to reference Chew WL, Tabebordbar M, Cheng JKW, Mali P, Wu EY, Ng AHM, et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods. 2016;13(10):868–74.PubMedPubMedCentralCrossRef Chew WL, Tabebordbar M, Cheng JKW, Mali P, Wu EY, Ng AHM, et al. A multifunctional AAV–CRISPR–Cas9 and its host response. Nat Methods. 2016;13(10):868–74.PubMedPubMedCentralCrossRef
52.
go back to reference Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, et al. CRISPR-Cas9-Edited tacrolimus-resistant antiviral T Cells for advanced adoptive immunotherapy in transplant recipients. Mol Ther. 2021;29(1):32–46.PubMedCrossRef Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, et al. CRISPR-Cas9-Edited tacrolimus-resistant antiviral T Cells for advanced adoptive immunotherapy in transplant recipients. Mol Ther. 2021;29(1):32–46.PubMedCrossRef
53.
go back to reference Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.PubMedCrossRef Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020;367(6481):eaba7365.PubMedCrossRef
54.
go back to reference Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New Engl J Med. 2019;381(13):1240–7.PubMedCrossRef Xu L, Wang J, Liu Y, Xie L, Su B, Mou D, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New Engl J Med. 2019;381(13):1240–7.PubMedCrossRef
55.
go back to reference Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26(5):732–40.PubMedCrossRef Lu Y, Xue J, Deng T, Zhou X, Yu K, Deng L, et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat Med. 2020;26(5):732–40.PubMedCrossRef
56.
go back to reference Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy? Gene Ther. 2021;28(9):549–59.PubMedPubMedCentralCrossRef Wagner DL, Peter L, Schmueck-Henneresse M. Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy? Gene Ther. 2021;28(9):549–59.PubMedPubMedCentralCrossRef
57.
go back to reference Blattner G, Cavazza A, Thrasher AJ, Turchiano G. Gene editing and genotoxicity: targeting the off-targets. Frontiers Genome Ed. 2020;2: 613252.CrossRef Blattner G, Cavazza A, Thrasher AJ, Turchiano G. Gene editing and genotoxicity: targeting the off-targets. Frontiers Genome Ed. 2020;2: 613252.CrossRef
58.
go back to reference Bothmer A, Gareau KW, Abdulkerim HS, Buquicchio F, Cohen L, Viswanathan R, et al. Detection and modulation of DNA translocations during multi-gene genome editing in T cells. Crispr J. 2020;3(3):177–87.PubMedCrossRef Bothmer A, Gareau KW, Abdulkerim HS, Buquicchio F, Cohen L, Viswanathan R, et al. Detection and modulation of DNA translocations during multi-gene genome editing in T cells. Crispr J. 2020;3(3):177–87.PubMedCrossRef
59.
go back to reference Brunet E, Jasin M. Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol. 2018;1044:15–25.PubMedPubMedCentralCrossRef Brunet E, Jasin M. Induction of chromosomal translocations with CRISPR-Cas9 and other nucleases: understanding the repair mechanisms that give rise to translocations. Adv Exp Med Biol. 2018;1044:15–25.PubMedPubMedCentralCrossRef
60.
go back to reference Qasim W, Ciocarlie O, Adams S, Inglott S, Murphy C, Rivat C, et al. Preliminary results of UCART19, an allogeneic Anti-CD19 CAR T-Cell Product in a First-in-Human Trial (PALL) in pediatric patients with CD19+ relapsed/refractory B-cell acute lymphoblastic leukemia. Blood. 2017;130:887.CrossRef Qasim W, Ciocarlie O, Adams S, Inglott S, Murphy C, Rivat C, et al. Preliminary results of UCART19, an allogeneic Anti-CD19 CAR T-Cell Product in a First-in-Human Trial (PALL) in pediatric patients with CD19+ relapsed/refractory B-cell acute lymphoblastic leukemia. Blood. 2017;130:887.CrossRef
61.
go back to reference SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274(5288):765–8.PubMedCrossRef SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274(5288):765–8.PubMedCrossRef
62.
go back to reference Mobile DNA III . Editor-in-Chief: Nancy L. Craig; Editors:Michael Chandler, Martin Gellert, Alan M. Lambowitz, Phoebe A. Rice, and Suzanne B. Sandmeyer. Washington (DC): ASM Press. $160.00. xxiv + 1321 p.; ill.; index. ISBN: 978–1–55581–920–0. 2015. Q Rev Biology. 2017;92(2):203–203. Mobile DNA III . Editor-in-Chief: Nancy L. Craig; Editors:Michael Chandler, Martin Gellert, Alan M. Lambowitz, Phoebe A. Rice, and Suzanne B. Sandmeyer. Washington (DC): ASM Press. $160.00. xxiv + 1321 p.; ill.; index. ISBN: 978–1–55581–920–0. 2015. Q Rev Biology. 2017;92(2):203–203.
63.
go back to reference Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell. 1985;40(3):491–500.PubMedCrossRef Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell. 1985;40(3):491–500.PubMedCrossRef
64.
go back to reference Greenblatt IM, Brink RA. Transpositions of modulator in maize into divided and undivided chromosome segments. Nature. 1963;197(4865):412–3.CrossRef Greenblatt IM, Brink RA. Transpositions of modulator in maize into divided and undivided chromosome segments. Nature. 1963;197(4865):412–3.CrossRef
65.
go back to reference Rubin GM, Kidwell MG, Bingham PM. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell. 1982;29(3):987–94.PubMedCrossRef Rubin GM, Kidwell MG, Bingham PM. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell. 1982;29(3):987–94.PubMedCrossRef
66.
go back to reference Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I, Miskey C, et al. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun. 2016;7(1):10716.PubMedPubMedCentralCrossRef Grabundzija I, Messing SA, Thomas J, Cosby RL, Bilic I, Miskey C, et al. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat Commun. 2016;7(1):10716.PubMedPubMedCentralCrossRef
68.
go back to reference Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):199.PubMedPubMedCentralCrossRef Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):199.PubMedPubMedCentralCrossRef
70.
go back to reference Kawakami K, Koga A, Hori H, Shima A. Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish. Danio rerio Gene. 1998;225(1–2):17–22.PubMed Kawakami K, Koga A, Hori H, Shima A. Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish. Danio rerio Gene. 1998;225(1–2):17–22.PubMed
71.
go back to reference Woodard LE, Li X, Malani N, Kaja A, Hice RH, Atkinson PW, et al. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells. PLoS ONE. 2012;7(11): e42666.PubMedPubMedCentralCrossRef Woodard LE, Li X, Malani N, Kaja A, Hice RH, Atkinson PW, et al. Comparative analysis of the recently discovered hAT transposon TcBuster in human cells. PLoS ONE. 2012;7(11): e42666.PubMedPubMedCentralCrossRef
72.
go back to reference Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep-uk. 2017;7(1):43613.CrossRef Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep-uk. 2017;7(1):43613.CrossRef
73.
go back to reference Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. P Natl Acad Sci Usa. 2008;105(27):9290–5.CrossRef Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. P Natl Acad Sci Usa. 2008;105(27):9290–5.CrossRef
74.
go back to reference Wu SCY, Meir YJJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. P Natl Acad Sci Usa. 2006;103(41):15008–13.CrossRef Wu SCY, Meir YJJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. P Natl Acad Sci Usa. 2006;103(41):15008–13.CrossRef
75.
go back to reference Mátés L, Chuah MKL, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753–61.PubMedCrossRef Mátés L, Chuah MKL, Belay E, Jerchow B, Manoj N, Acosta-Sanchez A, et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet. 2009;41(6):753–61.PubMedCrossRef
76.
go back to reference Kowarz E, Löscher D, Marschalek R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J. 2015;10(4):647–53.PubMedCrossRef Kowarz E, Löscher D, Marschalek R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol J. 2015;10(4):647–53.PubMedCrossRef
77.
go back to reference Voigt K, Gogol-Döring A, Miskey C, Chen W, Cathomen T, Izsvák Z, et al. Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther. 2012;20(10):1852–62.PubMedPubMedCentralCrossRef Voigt K, Gogol-Döring A, Miskey C, Chen W, Cathomen T, Izsvák Z, et al. Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther. 2012;20(10):1852–62.PubMedPubMedCentralCrossRef
78.
go back to reference Ivics Z, Hiripi L, Hoffmann OI, Mátés L, Yau TY, Bashir S, et al. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc. 2014;9(4):794–809.PubMedCrossRef Ivics Z, Hiripi L, Hoffmann OI, Mátés L, Yau TY, Bashir S, et al. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc. 2014;9(4):794–809.PubMedCrossRef
79.
go back to reference Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, et al. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc. 2014;9(4):773–93.PubMedCrossRef Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, et al. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc. 2014;9(4):773–93.PubMedCrossRef
80.
go back to reference Garrels W, Mátés L, Holler S, Dalda A, Taylor U, Petersen B, et al. Germline transgenic pigs by sleeping beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE. 2011;6(8): e23573.PubMedPubMedCentralCrossRef Garrels W, Mátés L, Holler S, Dalda A, Taylor U, Petersen B, et al. Germline transgenic pigs by sleeping beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE. 2011;6(8): e23573.PubMedPubMedCentralCrossRef
81.
go back to reference Prommersberger S, Reiser M, Beckmann J, Danhof S, Amberger M, Quade-Lyssy P, et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther. 2021;28(9):560–71.PubMedPubMedCentralCrossRef Prommersberger S, Reiser M, Beckmann J, Danhof S, Amberger M, Quade-Lyssy P, et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther. 2021;28(9):560–71.PubMedPubMedCentralCrossRef
82.
go back to reference Singh H, Moyes JSE, Huls MH, Cooper LJN. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther. 2015;22(2):95–100.PubMedCrossRef Singh H, Moyes JSE, Huls MH, Cooper LJN. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther. 2015;22(2):95–100.PubMedCrossRef
83.
go back to reference Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, et al. Sleeping Beauty–engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020;130(11):6021–33.PubMedPubMedCentralCrossRef Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, et al. Sleeping Beauty–engineered CAR T cells achieve antileukemic activity without severe toxicities. J Clin Invest. 2020;130(11):6021–33.PubMedPubMedCentralCrossRef
84.
go back to reference Sebe A, Ivics Z. Reprogramming of human fibroblasts to induced pluripotent stem cells with sleeping beauty transposon-based stable gene delivery. Methods Mol Biology Clifton N J. 2016;1400:419–27.CrossRef Sebe A, Ivics Z. Reprogramming of human fibroblasts to induced pluripotent stem cells with sleeping beauty transposon-based stable gene delivery. Methods Mol Biology Clifton N J. 2016;1400:419–27.CrossRef
85.
go back to reference Grabundzija I, Wang J, Sebe A, Erdei Z, Kajdi R, Devaraj A, et al. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res. 2013;41(3):1829–47.PubMedCrossRef Grabundzija I, Wang J, Sebe A, Erdei Z, Kajdi R, Devaraj A, et al. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res. 2013;41(3):1829–47.PubMedCrossRef
87.
go back to reference Yusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc National Acad Sci. 2011;108(4):1531–6.CrossRef Yusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc National Acad Sci. 2011;108(4):1531–6.CrossRef
89.
go back to reference Ni J, Wangensteen KJ, Nelsen D, Balciunas D, Skuster KJ, Urban MD, et al. Active recombinant Tol2 transposase for gene transfer and gene discovery applications. Mobile Dna-uk. 2016;7(1):6.CrossRef Ni J, Wangensteen KJ, Nelsen D, Balciunas D, Skuster KJ, Urban MD, et al. Active recombinant Tol2 transposase for gene transfer and gene discovery applications. Mobile Dna-uk. 2016;7(1):6.CrossRef
91.
go back to reference Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary transposon tools: a review and guide through mechanisms and applications of sleeping beauty, piggybac and tol2 for genome engineering. Int J Mol Sci. 2021;22(10):5084.PubMedPubMedCentralCrossRef Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary transposon tools: a review and guide through mechanisms and applications of sleeping beauty, piggybac and tol2 for genome engineering. Int J Mol Sci. 2021;22(10):5084.PubMedPubMedCentralCrossRef
92.
go back to reference Matteo MD, Samara-Kuko E, Ward NJ, Waddington SN, Waddingon SN, McVey JH, et al. Hyperactive PiggyBac transposons for sustained and robust liver-targeted gene therapy. Mol Ther. 2014;22(9):1614–24.PubMedPubMedCentralCrossRef Matteo MD, Samara-Kuko E, Ward NJ, Waddington SN, Waddingon SN, McVey JH, et al. Hyperactive PiggyBac transposons for sustained and robust liver-targeted gene therapy. Mol Ther. 2014;22(9):1614–24.PubMedPubMedCentralCrossRef
93.
go back to reference Urasaki A, Morvan G, Kawakami K. Functional Dissection of the Tol2 transposable element identified the minimal cis -sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174(2):639–49.PubMedPubMedCentralCrossRef Urasaki A, Morvan G, Kawakami K. Functional Dissection of the Tol2 transposable element identified the minimal cis -sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174(2):639–49.PubMedPubMedCentralCrossRef
94.
go back to reference Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. Plos Genet. 2006;2(11): e169.PubMedPubMedCentralCrossRef Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. Plos Genet. 2006;2(11): e169.PubMedPubMedCentralCrossRef
95.
go back to reference Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol. 2002;318(5):1221–35.PubMedCrossRef Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol. 2002;318(5):1221–35.PubMedCrossRef
96.
go back to reference Zayed H, Izsvák Z, Walisko O, Ivics Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther. 2004;9(2):292–304.PubMedCrossRef Zayed H, Izsvák Z, Walisko O, Ivics Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther. 2004;9(2):292–304.PubMedCrossRef
97.
go back to reference Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA. Mutational Analysis of the N-Terminal DNA-Binding domain of sleeping beauty transposase: critical Residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol. 2004;24(20):9239–47.PubMedPubMedCentralCrossRef Yant SR, Park J, Huang Y, Mikkelsen JG, Kay MA. Mutational Analysis of the N-Terminal DNA-Binding domain of sleeping beauty transposase: critical Residues for DNA binding and hyperactivity in mammalian cells. Mol Cell Biol. 2004;24(20):9239–47.PubMedPubMedCentralCrossRef
98.
go back to reference Wang Y, Pryputniewicz-Dobrinska D, Nagy EÉ, Kaufman CD, Singh M, Yant S, et al. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. Nucleic Acids Res. 2017;45(1):311–26.PubMedCrossRef Wang Y, Pryputniewicz-Dobrinska D, Nagy EÉ, Kaufman CD, Singh M, Yant S, et al. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. Nucleic Acids Res. 2017;45(1):311–26.PubMedCrossRef
99.
go back to reference Bire S, Casteret S, Arnaoty A, Piégu B, Lecomte T, Bigot Y. Transposase concentration controls transposition activity: myth or reality? Gene. 2013;530(2):165–71.PubMedCrossRef Bire S, Casteret S, Arnaoty A, Piégu B, Lecomte T, Bigot Y. Transposase concentration controls transposition activity: myth or reality? Gene. 2013;530(2):165–71.PubMedCrossRef
100.
go back to reference Yant SR, Meuse L, Park J, Kay MA. 1014. The Sleeping Beauty transposase is regulated by overproduction inhibition in vitro and in vivo. Mol Ther. 2002;5(5):329–30.CrossRef Yant SR, Meuse L, Park J, Kay MA. 1014. The Sleeping Beauty transposase is regulated by overproduction inhibition in vitro and in vivo. Mol Ther. 2002;5(5):329–30.CrossRef
101.
go back to reference Wilson MH, Coates CJ, George AL. PiggyBac Transposon-mediated gene transfer in human cells. Mol Ther. 2007;15(1):139–45.PubMedCrossRef Wilson MH, Coates CJ, George AL. PiggyBac Transposon-mediated gene transfer in human cells. Mol Ther. 2007;15(1):139–45.PubMedCrossRef
102.
go back to reference Li X, Ewis H, Hice RH, Malani N, Parker N, Zhou L, et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. P Natl Acad Sci Usa. 2012;110(6):E478–87. Li X, Ewis H, Hice RH, Malani N, Parker N, Zhou L, et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. P Natl Acad Sci Usa. 2012;110(6):E478–87.
103.
go back to reference Kawakami K, Noda T. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics. 2004;166(2):895–9.PubMedPubMedCentralCrossRef Kawakami K, Noda T. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics. 2004;166(2):895–9.PubMedPubMedCentralCrossRef
104.
go back to reference He YZ, Yan JR, He B, Ren H, Kuang X, Long TF, et al. A Transposon-Associated CRISPR/Cas9 system specifically eliminates both chromosomal and plasmid-borne mcr-1 in Escherichia coli. Antimicrob Agents Ch. 2021;65(10):e01054-e1121.CrossRef He YZ, Yan JR, He B, Ren H, Kuang X, Long TF, et al. A Transposon-Associated CRISPR/Cas9 system specifically eliminates both chromosomal and plasmid-borne mcr-1 in Escherichia coli. Antimicrob Agents Ch. 2021;65(10):e01054-e1121.CrossRef
105.
go back to reference Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, Silanskas A, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 2021;599(7886):692–6.PubMedPubMedCentralCrossRef Karvelis T, Druteika G, Bigelyte G, Budre K, Zedaveinyte R, Silanskas A, et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 2021;599(7886):692–6.PubMedPubMedCentralCrossRef
106.
go back to reference Peters JE, Makarova KS, Shmakov S, Koonin EV. Recruitment of CRISPR-Cas systems by Tn7-like transposons. P Natl Acad Sci USA. 2017;114(35):E7358–66.CrossRef Peters JE, Makarova KS, Shmakov S, Koonin EV. Recruitment of CRISPR-Cas systems by Tn7-like transposons. P Natl Acad Sci USA. 2017;114(35):E7358–66.CrossRef
107.
go back to reference Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, et al. Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Gene Dev. 2009;23(6):755–65.PubMedPubMedCentralCrossRef Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, et al. Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Gene Dev. 2009;23(6):755–65.PubMedPubMedCentralCrossRef
108.
go back to reference Geurts AM, Collier LS, Geurts JL, Oseth LL, Bell ML, Mu D, et al. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. Plos Genet. 2006;2(9): e156.PubMedPubMedCentralCrossRef Geurts AM, Collier LS, Geurts JL, Oseth LL, Bell ML, Mu D, et al. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. Plos Genet. 2006;2(9): e156.PubMedPubMedCentralCrossRef
109.
go back to reference Keng VW, Yae K, Hayakawa T, Mizuno S, Uno Y, Yusa K, et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat Methods. 2005;2(10):763–9.PubMedCrossRef Keng VW, Yae K, Hayakawa T, Mizuno S, Uno Y, Yusa K, et al. Region-specific saturation germline mutagenesis in mice using the Sleeping Beauty transposon system. Nat Methods. 2005;2(10):763–9.PubMedCrossRef
110.
go back to reference Ivics Z, Izsvák Z. The expanding universe of transposon technologies for gene and cell engineering. Mobile Dna-uk. 2010;1(1):25.CrossRef Ivics Z, Izsvák Z. The expanding universe of transposon technologies for gene and cell engineering. Mobile Dna-uk. 2010;1(1):25.CrossRef
111.
go back to reference Keng VW, Ryan BJ, Wangensteen KJ, Balciunas D, Schmedt C, Ekker SC, et al. Efficient transposition of Tol2 in the mouse germline. Genetics. 2009;183(4):1565–73.PubMedPubMedCentralCrossRef Keng VW, Ryan BJ, Wangensteen KJ, Balciunas D, Schmedt C, Ekker SC, et al. Efficient transposition of Tol2 in the mouse germline. Genetics. 2009;183(4):1565–73.PubMedPubMedCentralCrossRef
112.
go back to reference Carlson CM, Dupuy AJ, Fritz S, Roberg-Perez KJ, Fletcher CF, Largaespada DA. Transposon mutagenesis of the mouse germline. Genetics. 2003;165(1):243–56.PubMedPubMedCentralCrossRef Carlson CM, Dupuy AJ, Fritz S, Roberg-Perez KJ, Fletcher CF, Largaespada DA. Transposon mutagenesis of the mouse germline. Genetics. 2003;165(1):243–56.PubMedPubMedCentralCrossRef
113.
go back to reference Liang Q, Kong J, Stalker J, Bradley A. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis. 2009;47(6):404–8.PubMedCrossRef Liang Q, Kong J, Stalker J, Bradley A. Chromosomal mobilization and reintegration of Sleeping Beauty and PiggyBac transposons. Genesis. 2009;47(6):404–8.PubMedCrossRef
114.
go back to reference Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient Transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473–83.PubMedCrossRef Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient Transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122(3):473–83.PubMedCrossRef
115.
go back to reference Amberger M, Ivics Z. Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever. BioEssays. 2020;42(11):2000136.CrossRef Amberger M, Ivics Z. Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever. BioEssays. 2020;42(11):2000136.CrossRef
116.
go back to reference Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the development and the applications of nonviral, episomal vectors for gene therapy. Hum Gene Ther. 2021;32(19–20):1076–95.PubMedPubMedCentralCrossRef Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the development and the applications of nonviral, episomal vectors for gene therapy. Hum Gene Ther. 2021;32(19–20):1076–95.PubMedPubMedCentralCrossRef
117.
go back to reference Conese M, Auriche C, Ascenzioni F. Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther. 2004;11(24):1735–41.PubMedCrossRef Conese M, Auriche C, Ascenzioni F. Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther. 2004;11(24):1735–41.PubMedCrossRef
118.
go back to reference Riu E, Chen ZY, Xu H, He CY, Kay MA. Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther. 2007;15(7):1348–55.PubMedCrossRef Riu E, Chen ZY, Xu H, He CY, Kay MA. Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol Ther. 2007;15(7):1348–55.PubMedCrossRef
119.
go back to reference Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res. 1999;27(2):426–8.PubMedPubMedCentralCrossRef Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res. 1999;27(2):426–8.PubMedPubMedCentralCrossRef
120.
go back to reference Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther. 2006;14(5):613–26.PubMedCrossRef Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression. Mol Ther. 2006;14(5):613–26.PubMedCrossRef
121.
go back to reference Ehrhardt A, Haase R, Schepers A, Deutsch M, Lipps H, Baiker A. Episomal vectors for gene therapy. Curr Gene Ther. 2008;8(3):147–61.PubMedCrossRef Ehrhardt A, Haase R, Schepers A, Deutsch M, Lipps H, Baiker A. Episomal vectors for gene therapy. Curr Gene Ther. 2008;8(3):147–61.PubMedCrossRef
122.
go back to reference Baiker A, Maercker C, Piechaczek C, Schmidt SBA, Bode J, Benham C, et al. Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol. 2000;2(3):182–4.PubMedCrossRef Baiker A, Maercker C, Piechaczek C, Schmidt SBA, Bode J, Benham C, et al. Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol. 2000;2(3):182–4.PubMedCrossRef
123.
go back to reference Verghese SC, Goloviznina NA, Skinner AM, Lipps HJ, Kurre P. S/MAR sequence confers long-term mitotic stability on non-integrating lentiviral vector episomes without selection. Nucleic Acids Res. 2014;42(7):e53–e53.PubMedPubMedCentralCrossRef Verghese SC, Goloviznina NA, Skinner AM, Lipps HJ, Kurre P. S/MAR sequence confers long-term mitotic stability on non-integrating lentiviral vector episomes without selection. Nucleic Acids Res. 2014;42(7):e53–e53.PubMedPubMedCentralCrossRef
124.
go back to reference Stavrou EF, Giannakopoulos A, Spyridonidis A, Athanassiadou A. A bona fide mammalian replicator enhances all aspects of episomal gene transfer into human hematopoietic progenitor cells. Mol Ther. 2015;23:S97.CrossRef Stavrou EF, Giannakopoulos A, Spyridonidis A, Athanassiadou A. A bona fide mammalian replicator enhances all aspects of episomal gene transfer into human hematopoietic progenitor cells. Mol Ther. 2015;23:S97.CrossRef
125.
go back to reference Rupprecht S, Hagedorn C, Seruggia D, Magnusson T, Wagner E, Ogris M, et al. Controlled removal of a nonviral episomal vector from transfected cells. Gene. 2010;466(1–2):36–42.PubMedCrossRef Rupprecht S, Hagedorn C, Seruggia D, Magnusson T, Wagner E, Ogris M, et al. Controlled removal of a nonviral episomal vector from transfected cells. Gene. 2010;466(1–2):36–42.PubMedCrossRef
126.
go back to reference Hagedorn C, Antoniou MN, Lipps HJ. Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol Ther - Nucleic Acids. 2013;2(8): e118.PubMedPubMedCentralCrossRef Hagedorn C, Antoniou MN, Lipps HJ. Genomic cis-acting sequences improve expression and establishment of a nonviral vector. Mol Ther - Nucleic Acids. 2013;2(8): e118.PubMedPubMedCentralCrossRef
127.
go back to reference Haase R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, et al. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. Bmc Biotechnol. 2010;10(1):20.PubMedPubMedCentralCrossRef Haase R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, et al. pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. Bmc Biotechnol. 2010;10(1):20.PubMedPubMedCentralCrossRef
128.
go back to reference Giannakopoulos A, Stavrou EF, Zarkadis I, Zoumbos N, Thrasher AJ, Athanassiadou A. The Functional Role of S/MARs in episomal vectors as defined by the stress-induced destabilization profile of the vector sequences. J Mol Biol. 2009;387(5):1239–49.PubMedCrossRef Giannakopoulos A, Stavrou EF, Zarkadis I, Zoumbos N, Thrasher AJ, Athanassiadou A. The Functional Role of S/MARs in episomal vectors as defined by the stress-induced destabilization profile of the vector sequences. J Mol Biol. 2009;387(5):1239–49.PubMedCrossRef
129.
go back to reference Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8(3):495–500.PubMedCrossRef Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8(3):495–500.PubMedCrossRef
130.
go back to reference Darquet AM, Rangara R, Kreiss P, Schwartz B, Naimi S, Delaère P, et al. Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 1999;6(2):209–18.PubMedCrossRef Darquet AM, Rangara R, Kreiss P, Schwartz B, Naimi S, Delaère P, et al. Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 1999;6(2):209–18.PubMedCrossRef
131.
go back to reference Han J, Gao F, Geng S, Ye X, Wang T, Du P, et al. Minicircle DNA-Engineered CAR T cells suppressed tumor growth in mice. Mol Cancer Ther. 2020;19(1):178–86.PubMedCrossRef Han J, Gao F, Geng S, Ye X, Wang T, Du P, et al. Minicircle DNA-Engineered CAR T cells suppressed tumor growth in mice. Mol Cancer Ther. 2020;19(1):178–86.PubMedCrossRef
132.
go back to reference Wang H, Ye X, Ju Y, Cai Z, Wang X, Du P, et al. Minicircle DNA-Mediated CAR T Cells Targeting CD44 suppressed hepatocellular carcinoma both in vitro and in vivo. Oncotargets Ther. 2020;13:3703–16.CrossRef Wang H, Ye X, Ju Y, Cai Z, Wang X, Du P, et al. Minicircle DNA-Mediated CAR T Cells Targeting CD44 suppressed hepatocellular carcinoma both in vitro and in vivo. Oncotargets Ther. 2020;13:3703–16.CrossRef
133.
go back to reference Hudecek M, Gogishvili T, Monjezi R, Wegner J, Shankar R, Kruesemann C, et al. Minicircle-based engineering of chimeric antigen receptor (CAR) T cells. Recent Results Cancer Res Fortschritte Der Krebsforschung Progres Dans Les Recherches Sur Le Cancer. 2016;209:37–50.PubMed Hudecek M, Gogishvili T, Monjezi R, Wegner J, Shankar R, Kruesemann C, et al. Minicircle-based engineering of chimeric antigen receptor (CAR) T cells. Recent Results Cancer Res Fortschritte Der Krebsforschung Progres Dans Les Recherches Sur Le Cancer. 2016;209:37–50.PubMed
134.
go back to reference Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M, Einsele H, et al. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia. 2017;31(1):186–94.PubMedCrossRef Monjezi R, Miskey C, Gogishvili T, Schleef M, Schmeer M, Einsele H, et al. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia. 2017;31(1):186–94.PubMedCrossRef
135.
go back to reference Bozza M, Green EW, Espinet E, Roia AD, Klein C, Vogel V, et al. Novel Non-integrating DNA Nano-S/MAR vectors restore gene function in isogenic patient-derived pancreatic tumor models. Mol Ther - Methods Clin Dev. 2020;17:957–68.PubMedPubMedCentralCrossRef Bozza M, Green EW, Espinet E, Roia AD, Klein C, Vogel V, et al. Novel Non-integrating DNA Nano-S/MAR vectors restore gene function in isogenic patient-derived pancreatic tumor models. Mol Ther - Methods Clin Dev. 2020;17:957–68.PubMedPubMedCentralCrossRef
136.
go back to reference Bozza M, Roia AD, Correia MP, Berger A, Tuch A, Schmidt A, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci Adv. 2021;7(16):eabf1333.PubMedPubMedCentralCrossRef Bozza M, Roia AD, Correia MP, Berger A, Tuch A, Schmidt A, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci Adv. 2021;7(16):eabf1333.PubMedPubMedCentralCrossRef
137.
go back to reference Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliver Rev. 2009;61(9):746–59.CrossRef Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliver Rev. 2009;61(9):746–59.CrossRef
138.
go back to reference Monga I, Qureshi A, Thakur N, Gupta AK, Kumar M. ASPsiRNA A Resource of ASP-siRNAs having therapeutic potential for human genetic disorders and algorithm for prediction of their inhibitory efficacy. G3 Genes Genomes Genetics. 2017;7(9):2931–43.PubMedPubMedCentral Monga I, Qureshi A, Thakur N, Gupta AK, Kumar M. ASPsiRNA A Resource of ASP-siRNAs having therapeutic potential for human genetic disorders and algorithm for prediction of their inhibitory efficacy. G3 Genes Genomes Genetics. 2017;7(9):2931–43.PubMedPubMedCentral
139.
go back to reference Rodriguez-Lebron E, Paulson HL. Allele-specific RNA interference for neurological disease. Gene Ther. 2006;13(6):576–81.PubMedCrossRef Rodriguez-Lebron E, Paulson HL. Allele-specific RNA interference for neurological disease. Gene Ther. 2006;13(6):576–81.PubMedCrossRef
141.
go back to reference Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, et al. Teprasiran, A Small Interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44.PubMedPubMedCentralCrossRef Thielmann M, Corteville D, Szabo G, Swaminathan M, Lamy A, Lehner LJ, et al. Teprasiran, A Small Interfering RNA, for the prevention of acute kidney injury in high-risk patients undergoing cardiac surgery: a randomized clinical study. Circulation. 2021;144(14):1133–44.PubMedPubMedCentralCrossRef
142.
go back to reference Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong X. The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol. 2021;189:114432.PubMedCrossRef Zhang MM, Bahal R, Rasmussen TP, Manautou JE, Zhong X. The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol. 2021;189:114432.PubMedCrossRef
144.
go back to reference Helinski DR. A Brief History of Plasmids. Ecosal Plus. 2022;eESP-0028–2021. Helinski DR. A Brief History of Plasmids. Ecosal Plus. 2022;eESP-0028–2021.
145.
go back to reference Volkert FC. Plasmids of eukaryotes. Fundamentals and applications. Q Rev Biology. 1988;63(1):76–76.CrossRef Volkert FC. Plasmids of eukaryotes. Fundamentals and applications. Q Rev Biology. 1988;63(1):76–76.CrossRef
146.
go back to reference Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK. Long-term transgene expression from plasmid DNA Gene therapy vectors is negatively affected by CPg dinucleotides. Mol Ther. 2004;10(2):269–78.PubMedCrossRef Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK. Long-term transgene expression from plasmid DNA Gene therapy vectors is negatively affected by CPg dinucleotides. Mol Ther. 2004;10(2):269–78.PubMedCrossRef
147.
go back to reference Luo Z, Shi H, Zhang H, Li M, Zhao Y, Zhang J, et al. Plasmid DNA containing multiple CpG motifs triggers a strong immune response to hepatitis B surface antigen when combined with incomplete Freund’s adjuvant but not aluminum hydroxide. Mol Med Rep. 2012;6(6):1309–14.PubMedCrossRef Luo Z, Shi H, Zhang H, Li M, Zhao Y, Zhang J, et al. Plasmid DNA containing multiple CpG motifs triggers a strong immune response to hepatitis B surface antigen when combined with incomplete Freund’s adjuvant but not aluminum hydroxide. Mol Med Rep. 2012;6(6):1309–14.PubMedCrossRef
148.
go back to reference Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes-basel. 2017;8(2):65.PubMedCentralCrossRef Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes-basel. 2017;8(2):65.PubMedCentralCrossRef
149.
go back to reference Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559(7714):405–9.PubMedPubMedCentralCrossRef Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018;559(7714):405–9.PubMedPubMedCentralCrossRef
150.
go back to reference Nafissi N, Alqawlaq S, Lee EA, Foldvari M, Spagnuolo PA, Slavcev RA. DNA Ministrings: highly safe and effective gene delivery vectors. Mol Ther Nucleic Acids. 2014;3(6): e165.PubMedPubMedCentralCrossRef Nafissi N, Alqawlaq S, Lee EA, Foldvari M, Spagnuolo PA, Slavcev RA. DNA Ministrings: highly safe and effective gene delivery vectors. Mol Ther Nucleic Acids. 2014;3(6): e165.PubMedPubMedCentralCrossRef
151.
go back to reference Mitdank H, Tröger M, Sonntag A, Shirazi NA, Woith E, Fuchs H, et al. Suicide nanoplasmids coding for ribosome-inactivating proteins. Eur J Pharm Sci. 2022;170: 106107.PubMedCrossRef Mitdank H, Tröger M, Sonntag A, Shirazi NA, Woith E, Fuchs H, et al. Suicide nanoplasmids coding for ribosome-inactivating proteins. Eur J Pharm Sci. 2022;170: 106107.PubMedCrossRef
154.
go back to reference Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat Immunol. 2006;7(1):40–8.PubMedCrossRef Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat Immunol. 2006;7(1):40–8.PubMedCrossRef
155.
go back to reference Stetson DB, Medzhitov R. Recognition of Cytosolic DNA Activates an IRF3-dependent innate immune response. Immunity. 2006;24(1):93–103.PubMedCrossRef Stetson DB, Medzhitov R. Recognition of Cytosolic DNA Activates an IRF3-dependent innate immune response. Immunity. 2006;24(1):93–103.PubMedCrossRef
156.
go back to reference Amadio R, Piperno GM, Benvenuti F. Self-DNA Sensing by cGAS-STING and TLR9 in autoimmunity: is the cytoskeleton in control? Front Immunol. 2021;12: 657344.PubMedPubMedCentralCrossRef Amadio R, Piperno GM, Benvenuti F. Self-DNA Sensing by cGAS-STING and TLR9 in autoimmunity: is the cytoskeleton in control? Front Immunol. 2021;12: 657344.PubMedPubMedCentralCrossRef
157.
go back to reference Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S. Toll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Medicine. 2005;202(10):1333–9.CrossRef Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S. Toll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J Exp Medicine. 2005;202(10):1333–9.CrossRef
158.
go back to reference Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA Sensing in organismal tumor control. Cancer Cell. 2018;34(3):361–78.PubMedCrossRef Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA Sensing in organismal tumor control. Cancer Cell. 2018;34(3):361–78.PubMedCrossRef
159.
go back to reference Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC. Nature. 2009;458(7237):514–8.PubMedPubMedCentralCrossRef Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1 activating inflammasome with ASC. Nature. 2009;458(7237):514–8.PubMedPubMedCentralCrossRef
161.
go back to reference Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448(7152):501–5.PubMedCrossRef Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448(7152):501–5.PubMedCrossRef
162.
go back to reference Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.PubMedPubMedCentralCrossRef Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004.PubMedPubMedCentralCrossRef
163.
go back to reference Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.PubMedCrossRef Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17(10):1142–9.PubMedCrossRef
164.
go back to reference Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.PubMedCrossRef Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.PubMedCrossRef
165.
go back to reference Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of Pseudouridine Into mRNA Yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.PubMedCrossRef Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of Pseudouridine Into mRNA Yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.PubMedCrossRef
166.
go back to reference Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA Recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.PubMedCrossRef Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA Recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.PubMedCrossRef
167.
168.
go back to reference Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun. 2020;11(1):6080.PubMedPubMedCentralCrossRef Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun. 2020;11(1):6080.PubMedPubMedCentralCrossRef
169.
go back to reference Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, et al. Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Hum Gene Ther. 2019;30(2):168–78.PubMedPubMedCentralCrossRef Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, et al. Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Hum Gene Ther. 2019;30(2):168–78.PubMedPubMedCentralCrossRef
170.
go back to reference Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, et al. High-Efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 2006;13(1):151–9.PubMedCrossRef Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, et al. High-Efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 2006;13(1):151–9.PubMedCrossRef
171.
go back to reference Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor MRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res. 2014;2(2):112–20.PubMedCrossRef Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al. Mesothelin-specific chimeric antigen receptor MRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res. 2014;2(2):112–20.PubMedCrossRef
172.
go back to reference Rurik JG, Tombácz I, Yadegari A, Fernández POM, Shewale SV, Li L, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–6.PubMedCrossRef Rurik JG, Tombácz I, Yadegari A, Fernández POM, Shewale SV, Li L, et al. CAR T cells produced in vivo to treat cardiac injury. Science. 2022;375(6576):91–6.PubMedCrossRef
173.
go back to reference Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metast Rev. 2018;37(1):107–24.CrossRef Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metast Rev. 2018;37(1):107–24.CrossRef
174.
go back to reference Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25(11):2692.PubMedCentralCrossRef Mainini F, Eccles MR. Lipid and polymer-based nanoparticle siRNA delivery systems for cancer therapy. Molecules. 2020;25(11):2692.PubMedCentralCrossRef
175.
go back to reference Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules. 2020;25(12):2866.PubMedCentralCrossRef Wahane A, Waghmode A, Kapphahn A, Dhuri K, Gupta A, Bahal R. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules. 2020;25(12):2866.PubMedCentralCrossRef
176.
177.
178.
go back to reference Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted intracellular delivery of antibodies: the state of the art. Front Pharmacol. 2018;9:1208.PubMedPubMedCentralCrossRef Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted intracellular delivery of antibodies: the state of the art. Front Pharmacol. 2018;9:1208.PubMedPubMedCentralCrossRef
179.
go back to reference Moncalvo F, Espinoza MIM, Cellesi F. nanosized delivery systems for therapeutic proteins: clinically validated technologies and advanced development strategies. Front Bioeng Biotechnol. 2020;8:89.PubMedPubMedCentralCrossRef Moncalvo F, Espinoza MIM, Cellesi F. nanosized delivery systems for therapeutic proteins: clinically validated technologies and advanced development strategies. Front Bioeng Biotechnol. 2020;8:89.PubMedPubMedCentralCrossRef
180.
go back to reference Rogers S, Pfuderer P. Use of viruses as carriers of added genetic information. Nature. 1968;219(5155):749–51.PubMedCrossRef Rogers S, Pfuderer P. Use of viruses as carriers of added genetic information. Nature. 1968;219(5155):749–51.PubMedCrossRef
181.
go back to reference Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T Lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80.PubMedCrossRef Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T Lymphocyte-directed gene therapy for ADA− SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80.PubMedCrossRef
182.
go back to reference Sibbald B. Death but one unintended consequence of gene-therapy trial. Cmaj Can Medical Assoc J J De L’association Medicale Can. 2001;164(11):1612. Sibbald B. Death but one unintended consequence of gene-therapy trial. Cmaj Can Medical Assoc J J De L’association Medicale Can. 2001;164(11):1612.
183.
go back to reference Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.PubMedPubMedCentralCrossRef Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.PubMedPubMedCentralCrossRef
184.
go back to reference Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, et al. Retroviral and lentiviral safety analysis of gene-modified T Cell products and infused HIV and oncology patients. Mol Ther. 2018;26(1):269–79.PubMedCrossRef Marcucci KT, Jadlowsky JK, Hwang WT, Suhoski-Davis M, Gonzalez VE, Kulikovskaya I, et al. Retroviral and lentiviral safety analysis of gene-modified T Cell products and infused HIV and oncology patients. Mol Ther. 2018;26(1):269–79.PubMedCrossRef
185.
go back to reference (CBER) G for I US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Supplemental Guidance on Testing for Replication-Competent Retrovirus in Retroviral Vector-Based Gene Therapy Products and During Follow-up of Patients in Clinical Trials Using Retroviral Vectors. Hum Gene Ther. 2001;12(3):315–20. (CBER) G for I US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Supplemental Guidance on Testing for Replication-Competent Retrovirus in Retroviral Vector-Based Gene Therapy Products and During Follow-up of Patients in Clinical Trials Using Retroviral Vectors. Hum Gene Ther. 2001;12(3):315–20.
186.
go back to reference Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Medicine. 2022;7(1): e10258.CrossRef Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Medicine. 2022;7(1): e10258.CrossRef
187.
188.
go back to reference Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf. 2020;25(1):7–18.PubMedPubMedCentralCrossRef Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf. 2020;25(1):7–18.PubMedPubMedCentralCrossRef
189.
go back to reference Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene therapy leaves a vicious cycle. Frontiers Oncol. 2019;9:297.CrossRef Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al. Gene therapy leaves a vicious cycle. Frontiers Oncol. 2019;9:297.CrossRef
190.
go back to reference Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11(Suppl 1):S10–7.PubMedCrossRef Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11(Suppl 1):S10–7.PubMedCrossRef
192.
go back to reference Chirmule N, Propert KJ, Magosin SA, Qian Y, Qian R, Wilson JM. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83.PubMedCrossRef Chirmule N, Propert KJ, Magosin SA, Qian Y, Qian R, Wilson JM. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 1999;6(9):1574–83.PubMedCrossRef
193.
go back to reference Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular and innate response, what’s important? Hum Vacc Immunother. 2014;10(9):2875.CrossRef Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular and innate response, what’s important? Hum Vacc Immunother. 2014;10(9):2875.CrossRef
194.
go back to reference Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene. 2005;24(52):7656–72.PubMedCrossRef Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene. 2005;24(52):7656–72.PubMedCrossRef
195.
go back to reference David RM, Doherty AT. Viral Vectors: The road to reducing genotoxicity. Toxicol Sci. 2017;155(2):315–25.PubMedCrossRef David RM, Doherty AT. Viral Vectors: The road to reducing genotoxicity. Toxicol Sci. 2017;155(2):315–25.PubMedCrossRef
196.
go back to reference Ali M, Lemoine NR, Ring CJ. The use of DNA viruses as vectors for gene therapy. Gene Ther. 1994;1(6):367–84.PubMed Ali M, Lemoine NR, Ring CJ. The use of DNA viruses as vectors for gene therapy. Gene Ther. 1994;1(6):367–84.PubMed
197.
go back to reference Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.PubMedCrossRef Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.PubMedCrossRef
200.
go back to reference van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet. 2016;25(R1):R42-52.PubMedCrossRef van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet. 2016;25(R1):R42-52.PubMedCrossRef
201.
go back to reference Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagnostic Res. 2015;9(1):01–6. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagnostic Res. 2015;9(1):01–6.
202.
go back to reference Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-viral vectors for delivery of nucleic acid therapies for cancer. Biotech. 2022;11(1):6.PubMedPubMedCentralCrossRef Kanvinde S, Kulkarni T, Deodhar S, Bhattacharya D, Dasgupta A. Non-viral vectors for delivery of nucleic acid therapies for cancer. Biotech. 2022;11(1):6.PubMedPubMedCentralCrossRef
203.
go back to reference Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6.PubMedCrossRef Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6.PubMedCrossRef
204.
go back to reference Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J. 1982;1(7):841–5.PubMedPubMedCentralCrossRef Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J. 1982;1(7):841–5.PubMedPubMedCentralCrossRef
205.
go back to reference Chang DC. Encyclopedia of molecular cell biology and molecular medicine. 2006. 2nd Edition by Robert A. Meyers (Editor). Publisher Wiley-Blackwell. ISBN-13: 978-3527305476 ISBN-10: 3527305475 Chapter author: Chang DC. Chang DC. Encyclopedia of molecular cell biology and molecular medicine. 2006. 2nd Edition by Robert A. Meyers (Editor). Publisher Wiley-Blackwell. ISBN-13: 978-3527305476 ISBN-10: 3527305475 Chapter author: Chang DC.
206.
go back to reference Smits E, Ponsaerts P, Lenjou M, Nijs G, Bockstaele DRV, Berneman ZN, et al. RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004;18(11):1898–902.PubMedCrossRef Smits E, Ponsaerts P, Lenjou M, Nijs G, Bockstaele DRV, Berneman ZN, et al. RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004;18(11):1898–902.PubMedCrossRef
207.
go back to reference Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, et al. Treatment of advanced leukemia in mice with mRNA Engineered T Cells. Hum Gene Ther. 2011;22(12):1575–86.PubMedPubMedCentralCrossRef Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, et al. Treatment of advanced leukemia in mice with mRNA Engineered T Cells. Hum Gene Ther. 2011;22(12):1575–86.PubMedPubMedCentralCrossRef
208.
go back to reference Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kämpgen E, et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther. 2009;16(5):596–604.PubMedCrossRef Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kämpgen E, et al. Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther. 2009;16(5):596–604.PubMedCrossRef
209.
go back to reference Distler JHW, Jüngel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, et al. Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Exp Dermatol. 2005;14(4):315–20.PubMedCrossRef Distler JHW, Jüngel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, et al. Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Exp Dermatol. 2005;14(4):315–20.PubMedCrossRef
210.
go back to reference Freund EC, Lock JY, Oh J, Maculins T, Delamarre L, Bohlen CJ, et al. Efficient gene knockout in primary human and murine myeloid cells by non-viral delivery of CRISPR-Cas9. J Exp Med. 2020;217(7): e20191692.PubMedPubMedCentralCrossRef Freund EC, Lock JY, Oh J, Maculins T, Delamarre L, Bohlen CJ, et al. Efficient gene knockout in primary human and murine myeloid cells by non-viral delivery of CRISPR-Cas9. J Exp Med. 2020;217(7): e20191692.PubMedPubMedCentralCrossRef
211.
go back to reference Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS ONE. 2014;9(12): e115987.PubMedPubMedCentralCrossRef Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS ONE. 2014;9(12): e115987.PubMedPubMedCentralCrossRef
212.
go back to reference Li C, Guan X, Du T, Jin W, Wu B, Liu Y, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015;96(8):2381–93.PubMedCrossRef Li C, Guan X, Du T, Jin W, Wu B, Liu Y, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol. 2015;96(8):2381–93.PubMedCrossRef
213.
go back to reference Singh H, Huls H, Kebriaei P, Cooper LJN. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev. 2014;257(1):181–90.PubMedPubMedCentralCrossRef Singh H, Huls H, Kebriaei P, Cooper LJN. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev. 2014;257(1):181–90.PubMedPubMedCentralCrossRef
214.
go back to reference Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping Beauty System to Redirect T-cell specificity for human applications. J Immunother. 2013;36(2):112–23.PubMedPubMedCentralCrossRef Maiti SN, Huls H, Singh H, Dawson M, Figliola M, Olivares S, et al. Sleeping Beauty System to Redirect T-cell specificity for human applications. J Immunother. 2013;36(2):112–23.PubMedPubMedCentralCrossRef
215.
go back to reference Harris E, Elmer JJ. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol Progr. 2021;37(1): e3066.CrossRef Harris E, Elmer JJ. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol Progr. 2021;37(1): e3066.CrossRef
217.
go back to reference Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118(16):7409–531.PubMedPubMedCentralCrossRef Stewart MP, Langer R, Jensen KF. Intracellular delivery by membrane disruption: mechanisms, strategies, and concepts. Chem Rev. 2018;118(16):7409–531.PubMedPubMedCentralCrossRef
218.
go back to reference Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation—a review. Bioelectrochemistry. 2021;141:107871.CrossRef Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation—a review. Bioelectrochemistry. 2021;141:107871.CrossRef
219.
go back to reference Weaver JC, Chizmadzhev Yu. Theory of electroporation: a review. Bioelectroch Bioener. 1996;41(2):135–60.CrossRef Weaver JC, Chizmadzhev Yu. Theory of electroporation: a review. Bioelectroch Bioener. 1996;41(2):135–60.CrossRef
220.
go back to reference Cao Y, Ma E, Cestellos-Blanco S, Zhang B, Qiu R, Su Y, et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc National Acad Sci. 2019;116(16):201818553.CrossRef Cao Y, Ma E, Cestellos-Blanco S, Zhang B, Qiu R, Su Y, et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc National Acad Sci. 2019;116(16):201818553.CrossRef
221.
go back to reference DiTommaso T, Cole JM, Cassereau L, Buggé JA, Hanson JLS, Bridgen DT, et al. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. P Natl Acad Sci Usa. 2018;115(46):E10907–14.CrossRef DiTommaso T, Cole JM, Cassereau L, Buggé JA, Hanson JLS, Bridgen DT, et al. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. P Natl Acad Sci Usa. 2018;115(46):E10907–14.CrossRef
222.
go back to reference Zhang M, Ma Z, Selliah N, Weiss G, Genin A, Finkel TH, et al. The impact of Nucleofection® on the activation state of primary human CD4 T cells. J Immunol Methods. 2014;408:123–31.PubMedPubMedCentralCrossRef Zhang M, Ma Z, Selliah N, Weiss G, Genin A, Finkel TH, et al. The impact of Nucleofection® on the activation state of primary human CD4 T cells. J Immunol Methods. 2014;408:123–31.PubMedPubMedCentralCrossRef
223.
go back to reference Beane JD, Lee G, Zheng Z, Mendel M, Abate-Daga D, Bharathan M, et al. Clinical Scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol Ther. 2015;23(8):1380–90.PubMedPubMedCentralCrossRef Beane JD, Lee G, Zheng Z, Mendel M, Abate-Daga D, Bharathan M, et al. Clinical Scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol Ther. 2015;23(8):1380–90.PubMedPubMedCentralCrossRef
224.
go back to reference Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, et al. A vector-free microfluidic platform for intracellular delivery. Proc National Acad Sci. 2013;110(6):2082–7.CrossRef Sharei A, Zoldan J, Adamo A, Sim WY, Cho N, Jackson E, et al. A vector-free microfluidic platform for intracellular delivery. Proc National Acad Sci. 2013;110(6):2082–7.CrossRef
225.
go back to reference Sharei A, Cho N, Mao S, Jackson E, Poceviciute R, Adamo A, et al. Cell squeezing as a robust, microfluidic intracellular delivery platform. J Vis Exp. 2013;81: e50980. Sharei A, Cho N, Mao S, Jackson E, Poceviciute R, Adamo A, et al. Cell squeezing as a robust, microfluidic intracellular delivery platform. J Vis Exp. 2013;81: e50980.
227.
go back to reference Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano. 2013;7(5):4351–8.PubMedCrossRef Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano. 2013;7(5):4351–8.PubMedCrossRef
228.
go back to reference Ding X, Stewart MP, Sharei A, Weaver JC, Langer RS, Jensen KF. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat Biomed Eng. 2017;1(3):0039.PubMedPubMedCentralCrossRef Ding X, Stewart MP, Sharei A, Weaver JC, Langer RS, Jensen KF. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat Biomed Eng. 2017;1(3):0039.PubMedPubMedCentralCrossRef
229.
go back to reference Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics. 2020;10(12):5532–49.PubMedPubMedCentralCrossRef Fajrial AK, He QQ, Wirusanti NI, Slansky JE, Ding X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics. 2020;10(12):5532–49.PubMedPubMedCentralCrossRef
231.
go back to reference Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–91.CrossRef Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–91.CrossRef
232.
go back to reference Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc National Acad Sci. 1987;84(21):7413–7.CrossRef Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc National Acad Sci. 1987;84(21):7413–7.CrossRef
233.
go back to reference Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–7015.PubMedCrossRef Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid Nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–7015.PubMedCrossRef
234.
go back to reference Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–57.PubMedCrossRef Kulkarni JA, Cullis PR, van der Meel R. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther. 2018;28(3):146–57.PubMedCrossRef
237.
go back to reference Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, et al. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021;131:16–40.PubMedPubMedCentralCrossRef Pilkington EH, Suys EJA, Trevaskis NL, Wheatley AK, Zukancic D, Algarni A, et al. From influenza to COVID-19: Lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 2021;131:16–40.PubMedPubMedCentralCrossRef
238.
go back to reference Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharmaceut. 2021;601: 120586.CrossRef Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int J Pharmaceut. 2021;601: 120586.CrossRef
239.
go back to reference Heyes J, Palmer L, Bremner K, MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005;107(2):276–87.PubMedCrossRef Heyes J, Palmer L, Bremner K, MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005;107(2):276–87.PubMedCrossRef
240.
go back to reference Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomed. 2016;12:305–15.CrossRef Ball RL, Bajaj P, Whitehead KA. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomed. 2016;12:305–15.CrossRef
241.
go back to reference Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–6.PubMedCrossRef Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–6.PubMedCrossRef
242.
go back to reference Meins JFL, Sandre O, Lecommandoux S. Recent trends in the tuning of polymersomes’ membrane properties. European Phys J E. 2011;34(2):14.CrossRef Meins JFL, Sandre O, Lecommandoux S. Recent trends in the tuning of polymersomes’ membrane properties. European Phys J E. 2011;34(2):14.CrossRef
243.
244.
go back to reference Baghdan E, Pinnapireddy SR, Strehlow B, Engelhardt KH, Schäfer J, Bakowsky U. Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharmaceut. 2018;535(1–2):473–9.CrossRef Baghdan E, Pinnapireddy SR, Strehlow B, Engelhardt KH, Schäfer J, Bakowsky U. Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int J Pharmaceut. 2018;535(1–2):473–9.CrossRef
245.
go back to reference Lara-Velazquez M, Alkharboosh R, Norton ES, Ramirez-Loera C, Freeman WD, Guerrero-Cazares H, et al. Chitosan-based non-viral gene and drug delivery systems for brain cancer. Front Neurol. 2020;11:740.PubMedPubMedCentralCrossRef Lara-Velazquez M, Alkharboosh R, Norton ES, Ramirez-Loera C, Freeman WD, Guerrero-Cazares H, et al. Chitosan-based non-viral gene and drug delivery systems for brain cancer. Front Neurol. 2020;11:740.PubMedPubMedCentralCrossRef
246.
go back to reference Bueter CL, Lee CK, Wang JP, Ostroff GR, Specht CA, Levitz SM. Spectrum and mechanisms of inflammasome activation by Chitosan. J Immunol. 2014;192(12):5943–51.PubMedCrossRef Bueter CL, Lee CK, Wang JP, Ostroff GR, Specht CA, Levitz SM. Spectrum and mechanisms of inflammasome activation by Chitosan. J Immunol. 2014;192(12):5943–51.PubMedCrossRef
247.
go back to reference Gallops C, Ziebarth J, Wang Y. Polymers in Therapeutic Delivery. Acs Sym Ser. 2020;1–12. Gallops C, Ziebarth J, Wang Y. Polymers in Therapeutic Delivery. Acs Sym Ser. 2020;1–12.
248.
go back to reference Démoulins T, Milona P, Englezou PC, Ebensen T, Schulze K, Suter R, et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomed Nanotechnol Biol Med. 2016;12(3):711–22.CrossRef Démoulins T, Milona P, Englezou PC, Ebensen T, Schulze K, Suter R, et al. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines. Nanomed Nanotechnol Biol Med. 2016;12(3):711–22.CrossRef
250.
go back to reference Raup A, Stahlschmidt U, Jérôme V, Synatschke CV, Müller AHE, Freitag R. Influence of Polyplex formation on the performance of star-shaped polycationic transfection agents for mammalian cells. Polymers-basel. 2016;8(6):224.PubMedCentralCrossRef Raup A, Stahlschmidt U, Jérôme V, Synatschke CV, Müller AHE, Freitag R. Influence of Polyplex formation on the performance of star-shaped polycationic transfection agents for mammalian cells. Polymers-basel. 2016;8(6):224.PubMedCentralCrossRef
251.
go back to reference Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, et al. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5(12):eaay3255.PubMedPubMedCentralCrossRef Rui Y, Wilson DR, Choi J, Varanasi M, Sanders K, Karlsson J, et al. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019;5(12):eaay3255.PubMedPubMedCentralCrossRef
252.
go back to reference Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo J. 1985;4(6):1609–14.PubMedPubMedCentralCrossRef Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. Embo J. 1985;4(6):1609–14.PubMedPubMedCentralCrossRef
253.
go back to reference Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc National Acad Sci. 1996;93(3):1156–60.CrossRef Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc National Acad Sci. 1996;93(3):1156–60.CrossRef
255.
go back to reference Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42(10):6091–105.PubMedPubMedCentralCrossRef Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42(10):6091–105.PubMedPubMedCentralCrossRef
256.
go back to reference Kim YG, Chandrasegaran S. Chimeric restriction endonuclease. Proc National Acad Sci. 1994;91(3):883–7.CrossRef Kim YG, Chandrasegaran S. Chimeric restriction endonuclease. Proc National Acad Sci. 1994;91(3):883–7.CrossRef
257.
go back to reference Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72.PubMedCrossRef Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72.PubMedCrossRef
258.
go back to reference Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315–25.PubMedPubMedCentralCrossRef Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39(14):6315–25.PubMedPubMedCentralCrossRef
259.
go back to reference Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.PubMedPubMedCentralCrossRef Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.PubMedPubMedCentralCrossRef
260.
go back to reference Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. P Natl Acad Sci Usa. 2012;109(39):E2579–86.CrossRef Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. P Natl Acad Sci Usa. 2012;109(39):E2579–86.CrossRef
261.
go back to reference Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.PubMedPubMedCentralCrossRef Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.PubMedPubMedCentralCrossRef
262.
go back to reference Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. P Natl Acad Sci USA. 1998;95(18):10570–5.CrossRef Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. FokI dimerization is required for DNA cleavage. P Natl Acad Sci USA. 1998;95(18):10570–5.CrossRef
263.
go back to reference Morbitzer R, Römer P, Boch J, Lahaye T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc National Acad Sci. 2010;107(50):21617–22.CrossRef Morbitzer R, Römer P, Boch J, Lahaye T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc National Acad Sci. 2010;107(50):21617–22.CrossRef
264.
go back to reference Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28(17):3361–9.PubMedPubMedCentralCrossRef Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28(17):3361–9.PubMedPubMedCentralCrossRef
265.
go back to reference Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61.PubMedPubMedCentralCrossRef Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61.PubMedPubMedCentralCrossRef
266.
go back to reference Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.PubMedCrossRef Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.PubMedCrossRef
267.
go back to reference Genome CD, Nucleases E-F. genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.CrossRef Genome CD, Nucleases E-F. genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.CrossRef
268.
go back to reference Becker S, Boch J. TALE and TALEN genome editing technologies. Gene Genome Ed. 2021;2: 100007.CrossRef Becker S, Boch J. TALE and TALEN genome editing technologies. Gene Genome Ed. 2021;2: 100007.CrossRef
269.
270.
272.
go back to reference Roots SW. Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: first steps toward developing hybridoma techniques and gene therapy. BioEssays. 1992;14(7):495–500.CrossRef Roots SW. Use of the HPRT gene and the HAT selection technique in DNA-mediated transformation of mammalian cells: first steps toward developing hybridoma techniques and gene therapy. BioEssays. 1992;14(7):495–500.CrossRef
273.
go back to reference Szybalska EH, Szybalski W. Genetics of human cell lines, iv. Dna-mediated heritable transformation of a biochemical trait. Proc national Acad Sci. 1962;48(12):2026–34.CrossRef Szybalska EH, Szybalski W. Genetics of human cell lines, iv. Dna-mediated heritable transformation of a biochemical trait. Proc national Acad Sci. 1962;48(12):2026–34.CrossRef
274.
go back to reference Dulak J. Gene therapy. The legacy of Wacław Szybalski. Acta Biochim Pol. 2021;68(3):359–75.PubMed Dulak J. Gene therapy. The legacy of Wacław Szybalski. Acta Biochim Pol. 2021;68(3):359–75.PubMed
275.
go back to reference Bigda JJ, Koszałka P. Wacław Szybalski’s contribution to immunotherapy: HGPRT mutation & HAT selection as first steps to gene therapy and hybrid techniques in mammalian cells. Gene. 2013;525(2):158–61.PubMedCrossRef Bigda JJ, Koszałka P. Wacław Szybalski’s contribution to immunotherapy: HGPRT mutation & HAT selection as first steps to gene therapy and hybrid techniques in mammalian cells. Gene. 2013;525(2):158–61.PubMedCrossRef
276.
277.
go back to reference Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of t lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8.PubMedCrossRef Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of t lymphocytes from normal human bone marrows. Science. 1976;193(4257):1007–8.PubMedCrossRef
278.
go back to reference Meijerink MR, Scheffer HJ, Narayanan G (eds.) Irreversible electroporation in clinical practice. 2018. 285 p. Meijerink MR, Scheffer HJ, Narayanan G (eds.) Irreversible electroporation in clinical practice. 2018. 285 p.
279.
go back to reference Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Schlossman SF, Reinherz EL. 1983. Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J Exp Medicine. 157(2):705–19. Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Schlossman SF, Reinherz EL. 1983. Clonotypic structures involved in antigen-specific human T cell function. Relationship to the T3 molecular complex. J Exp Medicine. 157(2):705–19.
280.
go back to reference Reinherz EL, Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Acuto O, et al. Comparison of T3-associated 49- and 43-kilodalton cell surface molecules on individual human T-cell clones: evidence for peptide variability in T-cell receptor structures. Proc National Acad Sci. 1983;80(13):4104–8.CrossRef Reinherz EL, Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Acuto O, et al. Comparison of T3-associated 49- and 43-kilodalton cell surface molecules on individual human T-cell clones: evidence for peptide variability in T-cell receptor structures. Proc National Acad Sci. 1983;80(13):4104–8.CrossRef
281.
go back to reference Meuer SC, Acuto O, Hussey RE, Hodgdon JC, Fitzgerald KA, Schlossman SF, et al. Evidence for the T3-associated 90K heterodimer as the T-cell antigen receptor. Nature. 1983;303(5920):808–10.PubMedCrossRef Meuer SC, Acuto O, Hussey RE, Hodgdon JC, Fitzgerald KA, Schlossman SF, et al. Evidence for the T3-associated 90K heterodimer as the T-cell antigen receptor. Nature. 1983;303(5920):808–10.PubMedCrossRef
282.
go back to reference Cone RD, Mulligan RC. High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc National Acad Sci. 1984;81(20):6349–53.CrossRef Cone RD, Mulligan RC. High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc National Acad Sci. 1984;81(20):6349–53.CrossRef
283.
go back to reference NCT00004498. Phase I Study of Adenoviral Vector Mediated Gene Transfer for Ornithine Transcarbamylase in Adults With Partial Ornithine Transcarbamylase Deficiency [Internet]. https://clinicaltrials.gov/ct2/show/NCT00004498. NCT00004498. Phase I Study of Adenoviral Vector Mediated Gene Transfer for Ornithine Transcarbamylase in Adults With Partial Ornithine Transcarbamylase Deficiency [Internet]. https://​clinicaltrials.​gov/​ct2/​show/​NCT00004498.​
284.
go back to reference Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc National Acad Sci. 1989;86(24):10024–8.CrossRef Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc National Acad Sci. 1989;86(24):10024–8.CrossRef
285.
go back to reference Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc National Acad Sci. 1993;90(2):720–4.CrossRef Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc National Acad Sci. 1993;90(2):720–4.CrossRef
286.
go back to reference Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–7.PubMedCrossRef Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996;272(5259):263–7.PubMedCrossRef
287.
go back to reference Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91(4):501–10.PubMedCrossRef Ivics Z, Hackett PB, Plasterk RH, Izsvák Z. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91(4):501–10.PubMedCrossRef
289.
go back to reference Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao G, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.PubMedCrossRef Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao G, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.PubMedCrossRef
290.
go back to reference Cavazzana-Calvo M, Hacein-Bey S, de Basile GS, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.PubMedCrossRef Cavazzana-Calvo M, Hacein-Bey S, de Basile GS, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.PubMedCrossRef
291.
go back to reference McGarrity GJ, Hoyah G, Winemiller A, Andre K, Stein D, Blick G, et al. Patient monitoring and follow-up in lentiviral clinical trials. J Gene Medicine. 2013;15(2):78–82.PubMedCrossRef McGarrity GJ, Hoyah G, Winemiller A, Andre K, Stein D, Blick G, et al. Patient monitoring and follow-up in lentiviral clinical trials. J Gene Medicine. 2013;15(2):78–82.PubMedCrossRef
292.
go back to reference Hacein-Bey-Abina S, Kalle CV, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal t cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.PubMedCrossRef Hacein-Bey-Abina S, Kalle CV, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal t cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.PubMedCrossRef
293.
go back to reference NCT00393029. Phase II Study of Metastatic Cancer That Overexpresses P53 Using Lymphodepleting Conditioning Followed by Infusion of Anti-P53 TCR-Gene Engineered Lymphocytes [Internet]. https://clinicaltrials.gov/ct2/show/NCT00393029 T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia NCT00393029. Phase II Study of Metastatic Cancer That Overexpresses P53 Using Lymphodepleting Conditioning Followed by Infusion of Anti-P53 TCR-Gene Engineered Lymphocytes [Internet]. https://​clinicaltrials.​gov/​ct2/​show/​NCT00393029 T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia
295.
go back to reference Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, et al. Human RPE65 gene therapy for leber congenital amaurosis: persistence of early visual improvements and safety at 1 Year. Hum Gene Ther. 2009;20(9):999–1004.PubMedPubMedCentralCrossRef Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, et al. Human RPE65 gene therapy for leber congenital amaurosis: persistence of early visual improvements and safety at 1 Year. Hum Gene Ther. 2009;20(9):999–1004.PubMedPubMedCentralCrossRef
296.
go back to reference Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected t cells in humans. Biol Blood Marrow Tr. 2010;16(9):1245–56.CrossRef Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected t cells in humans. Biol Blood Marrow Tr. 2010;16(9):1245–56.CrossRef
297.
go back to reference Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.PubMedPubMedCentralCrossRef Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102.PubMedPubMedCentralCrossRef
298.
go back to reference Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):9573.CrossRef Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):9573.CrossRef
299.
go back to reference Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified t cells in chronic lymphoid leukemia. New Engl J Medicine. 2011;365(8):725–33.CrossRef Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified t cells in chronic lymphoid leukemia. New Engl J Medicine. 2011;365(8):725–33.CrossRef
300.
go back to reference Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28.PubMedPubMedCentralCrossRef Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28.PubMedPubMedCentralCrossRef
301.
go back to reference Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc National Acad Sci. 2012;109(39):E2579–86.CrossRef Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc National Acad Sci. 2012;109(39):E2579–86.CrossRef
304.
go back to reference McGowan E, Lin Q, Ma G, Yin H, Chen S, Lin Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed Pharmacother. 2020;121: 109625.PubMedCrossRef McGowan E, Lin Q, Ma G, Yin H, Chen S, Lin Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed Pharmacother. 2020;121: 109625.PubMedCrossRef
Metadata
Title
Current strategies employed in the manipulation of gene expression for clinical purposes
Authors
Hsing-Chuan Tsai
Violena Pietrobon
Maoyu Peng
Suning Wang
Lihong Zhao
Francesco M. Marincola
Qi Cai
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03747-3

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.