Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2018

01-03-2018

RNA interference-based therapy and its delivery systems

Authors: Xiuhui Chen, Lingegowda S. Mangala, Cristian Rodriguez-Aguayo, Xianchao Kong, Gabriel Lopez-Berestein, Anil K. Sood

Published in: Cancer and Metastasis Reviews | Issue 1/2018

Login to get access

Abstract

RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers “smart” targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Literature
8.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMedCrossRef
20.
go back to reference Rupaimoole, R., Han, H. D., Lopez-Berestein, G., & Sood, A. K. (2011). MicroRNA therapeutics: principles, expectations, and challenges. Chinese Journal of Cancer, 30(6), 368–370.PubMedPubMedCentralCrossRef Rupaimoole, R., Han, H. D., Lopez-Berestein, G., & Sood, A. K. (2011). MicroRNA therapeutics: principles, expectations, and challenges. Chinese Journal of Cancer, 30(6), 368–370.PubMedPubMedCentralCrossRef
25.
28.
go back to reference Homami, A., & Ghazi, F. (2016). MicroRNAs as biomarkers associated with bladder cancer. Medical Journal of the Islamic Republic of Iran, 30, 475.PubMedPubMedCentral Homami, A., & Ghazi, F. (2016). MicroRNAs as biomarkers associated with bladder cancer. Medical Journal of the Islamic Republic of Iran, 30, 475.PubMedPubMedCentral
32.
go back to reference Torres, A., Torres, K., Pesci, A., Ceccaroni, M., Paszkowski, T., Cassandrini, P., et al. (2013). Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. International Journal of Cancer, 132(7), 1633–1645. https://doi.org/10.1002/ijc.27840.PubMedCrossRef Torres, A., Torres, K., Pesci, A., Ceccaroni, M., Paszkowski, T., Cassandrini, P., et al. (2013). Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. International Journal of Cancer, 132(7), 1633–1645. https://​doi.​org/​10.​1002/​ijc.​27840.PubMedCrossRef
42.
go back to reference Blake, S. J., Bokhari, F. F., & McMillan, N. A. (2012). RNA interference for viral infections. Current Drug Targets, 13(11), 1411–1420.PubMedCrossRef Blake, S. J., Bokhari, F. F., & McMillan, N. A. (2012). RNA interference for viral infections. Current Drug Targets, 13(11), 1411–1420.PubMedCrossRef
46.
go back to reference Kravatsky, Y. V., Chechetkin, V. R., Fedoseeva, D. M., Gorbacheva, M. A., Kretova, O. V., & Tchurikov, N. A. (2016). Mutation frequencies in HIV-1 subtype-A genome in regions containing efficient RNAi targets. Molekuliarnaia Biologiia (Mosk), 50(3), 480–485. https://doi.org/10.7868/S0026898416020117. Kravatsky, Y. V., Chechetkin, V. R., Fedoseeva, D. M., Gorbacheva, M. A., Kretova, O. V., & Tchurikov, N. A. (2016). Mutation frequencies in HIV-1 subtype-A genome in regions containing efficient RNAi targets. Molekuliarnaia Biologiia (Mosk), 50(3), 480–485. https://​doi.​org/​10.​7868/​S002689841602011​7.
48.
go back to reference Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G., et al. (2005). Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 11(1), 56–62. https://doi.org/10.1038/nm1174.PubMedCrossRef Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G., et al. (2005). Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 11(1), 56–62. https://​doi.​org/​10.​1038/​nm1174.PubMedCrossRef
52.
58.
59.
go back to reference Jiao, X., Fan, Z., Chen, H., He, P., Li, Y., Zhang, Q., et al. (2017). Serum and exosomal miR-122 and miR-199a as a biomarker to predict therapeutic efficacy of hepatitis C patients. Journal of Medical Virology, 89(9),1597–1605. https://doi.org/10.1002/jmv.24829. Jiao, X., Fan, Z., Chen, H., He, P., Li, Y., Zhang, Q., et al. (2017). Serum and exosomal miR-122 and miR-199a as a biomarker to predict therapeutic efficacy of hepatitis C patients. Journal of Medical Virology, 89(9),1597–1605. https://​doi.​org/​10.​1002/​jmv.​24829.
63.
go back to reference Kwekkeboom, R. F., Lei, Z., Doevendans, P. A., Musters, R. J., & Sluijter, J. P. (2014). Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clinical Science (London, England), 127(6), 351–365. https://doi.org/10.1042/CS20140005.CrossRef Kwekkeboom, R. F., Lei, Z., Doevendans, P. A., Musters, R. J., & Sluijter, J. P. (2014). Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clinical Science (London, England), 127(6), 351–365. https://​doi.​org/​10.​1042/​CS20140005.CrossRef
64.
74.
go back to reference Zou, H. L., Wang, Y., Gang, Q., Zhang, Y., & Sun, Y. (2017). Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 255(6), 1159–1166. https://doi.org/10.1007/s00417-017-3638-5. Zou, H. L., Wang, Y., Gang, Q., Zhang, Y., & Sun, Y. (2017). Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 255(6), 1159–1166. https://​doi.​org/​10.​1007/​s00417-017-3638-5.
79.
go back to reference Huleihel, L., Sellares, J., Cardenes, N., Alvarez, D., Faner, R., Sakamoto, K., et al. (2017). Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal of Physiology Lung Cellular and Molecular Physiology, 313(1), L92–L103. https://doi.org/10.1152/ajplung.00323.2016. Huleihel, L., Sellares, J., Cardenes, N., Alvarez, D., Faner, R., Sakamoto, K., et al. (2017). Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal of Physiology Lung Cellular and Molecular Physiology, 313(1), L92–L103. https://​doi.​org/​10.​1152/​ajplung.​00323.​2016.
80.
go back to reference Qu, Y., Zhang, Q., Cai, X., Li, F., Ma, Z., Xu, M., et al. (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular and Molecular Medicine, 21(10), 2491–2502. https://doi.org/10.1111/jcmm.13170. Qu, Y., Zhang, Q., Cai, X., Li, F., Ma, Z., Xu, M., et al. (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular and Molecular Medicine, 21(10), 2491–2502. https://​doi.​org/​10.​1111/​jcmm.​13170.
81.
go back to reference Wei, G. J., An, G., Shi, Z. W., Wang, K. F., Guan, Y., Wang, Y. S., et al. (2017). Suppression of microRNA-383 enhances therapeutic potential of human bone-marrow-derived mesenchymal stem cells in treating spinal cord injury via GDNF. Cellular Physiology and Biochemistry, 41(4), 1435–1444. https://doi.org/10.1159/000468057.PubMedCrossRef Wei, G. J., An, G., Shi, Z. W., Wang, K. F., Guan, Y., Wang, Y. S., et al. (2017). Suppression of microRNA-383 enhances therapeutic potential of human bone-marrow-derived mesenchymal stem cells in treating spinal cord injury via GDNF. Cellular Physiology and Biochemistry, 41(4), 1435–1444. https://​doi.​org/​10.​1159/​000468057.PubMedCrossRef
105.
go back to reference Schluep, T., Lickliter, J., Hamilton, J., Lewis, D. L., Lai, C. L., Lau, J. Y., et al. (2017). Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clinical Pharmacol Drug Development, 6(4), 350–362.https://doi.org/10.1002/cpdd.318. Schluep, T., Lickliter, J., Hamilton, J., Lewis, D. L., Lai, C. L., Lau, J. Y., et al. (2017). Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clinical Pharmacol Drug Development, 6(4), 350–362.https://​doi.​org/​10.​1002/​cpdd.​318.
112.
go back to reference Chapoy-Villanueva, H., Martinez-Carlin, I., Lopez-Berestein, G., & Chavez-Reyes, A. (2015). Therapeutic silencing of HPV 16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome in a murine cervical cancer model with obesity. Journal of BUON, 20(6), 1471–1479.PubMed Chapoy-Villanueva, H., Martinez-Carlin, I., Lopez-Berestein, G., & Chavez-Reyes, A. (2015). Therapeutic silencing of HPV 16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome in a murine cervical cancer model with obesity. Journal of BUON, 20(6), 1471–1479.PubMed
114.
129.
134.
136.
go back to reference Yang, C., Gao, S., Dagnaes-Hansen, F., Jakobsen, M., & Kjems, J. (2017). Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Applied Materials & Interfaces, 9(14), 12203–12216. https://doi.org/10.1021/acsami.6b16556.CrossRef Yang, C., Gao, S., Dagnaes-Hansen, F., Jakobsen, M., & Kjems, J. (2017). Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Applied Materials & Interfaces, 9(14), 12203–12216. https://​doi.​org/​10.​1021/​acsami.​6b16556.CrossRef
138.
go back to reference Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research, 7(4), 497–506. https://doi.org/10.1007/s13346-017-0368-5. Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research, 7(4), 497–506. https://​doi.​org/​10.​1007/​s13346-017-0368-5.
144.
go back to reference Zhong, J., Huang, H. L., Li, J., Qian, F. C., Li, L. Q., Niu, P. P., et al. (2015). Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells. Hepatobiliary & Pancreatic Diseases International, 14(1), 82–89.CrossRef Zhong, J., Huang, H. L., Li, J., Qian, F. C., Li, L. Q., Niu, P. P., et al. (2015). Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells. Hepatobiliary & Pancreatic Diseases International, 14(1), 82–89.CrossRef
159.
go back to reference Shahzad, M. M., Mangala, L. S., Han, H. D., Lu, C., Bottsford-Miller, J., Nishimura, M., et al. (2011). Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 13(4), 309–319.PubMedPubMedCentralCrossRef Shahzad, M. M., Mangala, L. S., Han, H. D., Lu, C., Bottsford-Miller, J., Nishimura, M., et al. (2011). Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 13(4), 309–319.PubMedPubMedCentralCrossRef
163.
go back to reference Lakhin, A. V., Tarantul, V. Z., & Gening, L. V. (2013). Aptamers: problems, solutions and prospects. Acta Naturae, 5(4), 34–43.PubMedPubMedCentral Lakhin, A. V., Tarantul, V. Z., & Gening, L. V. (2013). Aptamers: problems, solutions and prospects. Acta Naturae, 5(4), 34–43.PubMedPubMedCentral
172.
go back to reference Guo, J., Russell, E. G., Darcy, R., Cotter, T. G., McKenna, S. L., Cahill, M. R., et al. (2017). Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: Physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Molecular Pharmaceutics, 14(3), 940–952. https://doi.org/10.1021/acs.molpharmaceut.6b01150.PubMedCrossRef Guo, J., Russell, E. G., Darcy, R., Cotter, T. G., McKenna, S. L., Cahill, M. R., et al. (2017). Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: Physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Molecular Pharmaceutics, 14(3), 940–952. https://​doi.​org/​10.​1021/​acs.​molpharmaceut.​6b01150.PubMedCrossRef
178.
179.
185.
go back to reference Takara, K., Sakaeda, T., & Okumura, K. (2006). An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Current Pharmaceutical Design, 12(3), 273–286.PubMedCrossRef Takara, K., Sakaeda, T., & Okumura, K. (2006). An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Current Pharmaceutical Design, 12(3), 273–286.PubMedCrossRef
196.
go back to reference Gottesman, M. M., & Pastan, I. H. (2015). The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. Journal of the National Cancer Institute, 107(9), djv222. https://doi.org/10.1093/jnci/djv222. Gottesman, M. M., & Pastan, I. H. (2015). The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. Journal of the National Cancer Institute, 107(9), djv222. https://​doi.​org/​10.​1093/​jnci/​djv222.
197.
go back to reference Borst, P., Evers, R., Kool, M., & Wijnholds, J. (2000). A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 92(16), 1295–1302.PubMedCrossRef Borst, P., Evers, R., Kool, M., & Wijnholds, J. (2000). A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 92(16), 1295–1302.PubMedCrossRef
Metadata
Title
RNA interference-based therapy and its delivery systems
Authors
Xiuhui Chen
Lingegowda S. Mangala
Cristian Rodriguez-Aguayo
Xianchao Kong
Gabriel Lopez-Berestein
Anil K. Sood
Publication date
01-03-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9717-6

Other articles of this Issue 1/2018

Cancer and Metastasis Reviews 1/2018 Go to the issue

Announcement

Biographies

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine