Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Septicemia | Research

Effects of hydrogen-rich saline in neuroinflammation and mitochondrial dysfunction in rat model of sepsis-associated encephalopathy

Authors: John Sieh Dumbuya, Siqi Li, Lili Liang, Yanchen Chen, Jiang Du, Qiyi Zeng

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Sepsis-associated encephalopathy (SAE) is one of the most common types of sepsis-related organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae in suspected patients. At present there is no specific treatment for SAE rather than supportive therapy and judicious use of antibiotics, which are sometimes associated with adverse effects. Molecular hydrogen (H2) has been reported to play crucial role in regulating inflammatory responses, neuronal injury, apoptosis and mitochondrial dysfunction in adult models of SAE. Here we report the protective effect of hydrogen-rich saline in juvenile SAE rat model and its possible underling mechanism(s).

Materials and methods

Rats were challenged with lipopolysaccharide (LPS) at a dose of 8 mg/kg injected intraperitoneally to induce sepsis and hydrogen-rich saline (HRS) administered 1 h following LPS induction at a dose of 5 ml/kg. Rats were divided into: sham, sham + HRS, LPS and LPS + HRS. At 48 h, rats were sacrificed and Nissl staining for neuronal injury, TUNEL assay for apoptotic cells detection, immunohistochemistry, and ELISA protocol for inflammatory cytokines determination, mitochondrial dysfunction parameters, electron microscopy and western blot analysis were studied to examine the effect of HRS in LPS-induced septic rats.

Results

Rats treated with HRS improved neuronal injury, improvement in rats’ survival rate. ELISA analysis showed decreased TNF-α and IL-1β and increased IL-10 expression levels in the HRS-treated group. Apoptotic cells were decreased after HRS administration in septic rats. The numbers of GFAP and IBA-1positive cells were attenuated in the HRS-treated group when compared to the LPS group. Subsequently, GFAP and IBA-1 immunoreactivity were decreased after HRS treatment. Mitochondrial membrane potential detected by JC-1 dye and ATP content were decreased in septic rats, which were improved after HRS treatment, while release of ROS was increased in the LPS group reverted by HRS treatment, ameliorating mitochondrial dysfunction. Further analysis by transmission electron microscopy showed decreased number of mitochondria and synapses, and disrupted mitochondrial membrane ultrastructure in the LPS group, while HRS administration increased mitochondria and synapses number.

Conclusion

These data demonstrated that HRS can improve survival rate, attenuate neuroinflammation, astrocyte and microglial activation, neuronal injury and mitochondrial dysfunction in juvenile SAE rat model, making it a potential therapeutic candidate in treating paediatric SAE.
Literature
3.
go back to reference Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, Nadel S, Schlapbach LJ, Tasker RC, Argent AC, Brierley J, Carcillo J, Carrol ED, Carroll CL, Cheifetz IM, Choong K, Cies JJ, Cruz AT, De Luca D, Deep A, Faust SN, De Oliveira CF, Hall MW, Ishimine P, Javouhey E, Joosten KFM, Joshi P, Karam O, Kneyber MCJ, Lemson J, MacLaren G, Mehta NM, Møller MH, Newth CJL, Nguyen TC, Nishisaki A, Nunnally ME, Parker MM, Paul RM, Randolph AG, Ranjit S, Romer LH, Scott HF, Tume LN, Verger JT, Williams EA, Wolf J, Wong HR, Zimmerman JJ, Kissoon N, Tissieres P. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(Suppl 1):10–67. https://doi.org/10.1007/s00134-019-05878-6.CrossRefPubMedPubMedCentral Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, Nadel S, Schlapbach LJ, Tasker RC, Argent AC, Brierley J, Carcillo J, Carrol ED, Carroll CL, Cheifetz IM, Choong K, Cies JJ, Cruz AT, De Luca D, Deep A, Faust SN, De Oliveira CF, Hall MW, Ishimine P, Javouhey E, Joosten KFM, Joshi P, Karam O, Kneyber MCJ, Lemson J, MacLaren G, Mehta NM, Møller MH, Newth CJL, Nguyen TC, Nishisaki A, Nunnally ME, Parker MM, Paul RM, Randolph AG, Ranjit S, Romer LH, Scott HF, Tume LN, Verger JT, Williams EA, Wolf J, Wong HR, Zimmerman JJ, Kissoon N, Tissieres P. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(Suppl 1):10–67. https://​doi.​org/​10.​1007/​s00134-019-05878-6.CrossRefPubMedPubMedCentral
4.
go back to reference Zhao YZ, Gao ZY, Ma LQ, Zhuang YY, Guan FL. Research on biogenesis of mitochondria in astrocytes in sepsis-associated encephalopathy models. Eur Rev Med Pharmacol Sci. 2017;21(17):3924–34.PubMed Zhao YZ, Gao ZY, Ma LQ, Zhuang YY, Guan FL. Research on biogenesis of mitochondria in astrocytes in sepsis-associated encephalopathy models. Eur Rev Med Pharmacol Sci. 2017;21(17):3924–34.PubMed
17.
go back to reference Hadem J, Hafer C, Schneider AS, Wiesner O, Beutel G, Fuehner T, Welte T, Hoeper MM, Kielstein JT. Therapeutic plasma exchange as rescue therapy in severe sepsis and septic shock: retrospective observational single-centre study of 23 patients. BMC Anesthesiol. 2014;7(14):24. https://doi.org/10.1186/1471-2253-14-24.CrossRef Hadem J, Hafer C, Schneider AS, Wiesner O, Beutel G, Fuehner T, Welte T, Hoeper MM, Kielstein JT. Therapeutic plasma exchange as rescue therapy in severe sepsis and septic shock: retrospective observational single-centre study of 23 patients. BMC Anesthesiol. 2014;7(14):24. https://​doi.​org/​10.​1186/​1471-2253-14-24.CrossRef
28.
go back to reference Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q, Zhao Q, Zhang J, Sheng J. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-κB pathway and NLRP3 inflammasome. Mol Neurobiol. 2016;53(5):3462–76. https://doi.org/10.1007/s12035-015-9242-y.CrossRefPubMed Shao A, Wu H, Hong Y, Tu S, Sun X, Wu Q, Zhao Q, Zhang J, Sheng J. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-κB pathway and NLRP3 inflammasome. Mol Neurobiol. 2016;53(5):3462–76. https://​doi.​org/​10.​1007/​s12035-015-9242-y.CrossRefPubMed
38.
go back to reference Ke H, Liu D, Li T, Chu X, Xin D, Han M, Wang S, Wang Z. Hydrogen-rich saline regulates microglial phagocytosis and restores behavioral deficits following hypoxia-ischemia injury in neonatal mice via the akt pathway. Drug Des Devel Ther. 2020;21(14):3827–39. https://doi.org/10.2147/DDDT.S264684.CrossRef Ke H, Liu D, Li T, Chu X, Xin D, Han M, Wang S, Wang Z. Hydrogen-rich saline regulates microglial phagocytosis and restores behavioral deficits following hypoxia-ischemia injury in neonatal mice via the akt pathway. Drug Des Devel Ther. 2020;21(14):3827–39. https://​doi.​org/​10.​2147/​DDDT.​S264684.CrossRef
53.
go back to reference Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://doi.org/10.1038/nature21029.CrossRefPubMedPubMedCentral Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://​doi.​org/​10.​1038/​nature21029.CrossRefPubMedPubMedCentral
56.
go back to reference Wang P, Zhao M, Chen Z, Wu G, Fujino M, Zhang C, Zhou W, Zhao M, Hirano SI, Li XK, Zhao L. Hydrogen gas attenuates hypoxic-ischemic brain injury via regulation of the MAPK/HO-1/PGC-1a pathway in neonatal rats. Oxid Med Cell Longev. 2020;13(2020):6978784. https://doi.org/10.1155/2020/6978784.CrossRef Wang P, Zhao M, Chen Z, Wu G, Fujino M, Zhang C, Zhou W, Zhao M, Hirano SI, Li XK, Zhao L. Hydrogen gas attenuates hypoxic-ischemic brain injury via regulation of the MAPK/HO-1/PGC-1a pathway in neonatal rats. Oxid Med Cell Longev. 2020;13(2020):6978784. https://​doi.​org/​10.​1155/​2020/​6978784.CrossRef
64.
go back to reference Michels M, Ávila P, Pescador B, Vieira A, Abatti M, Cucker L, Borges H, Goulart AI, Junior CC, Barichello T, Quevedo J, Dal-Pizzol F. Microglial cells depletion increases inflammation and modifies microglial phenotypes in an animal model of severe sepsis. Mol Neurobiol. 2019;56(11):7296–304. https://doi.org/10.1007/s12035-019-1606-2.CrossRefPubMed Michels M, Ávila P, Pescador B, Vieira A, Abatti M, Cucker L, Borges H, Goulart AI, Junior CC, Barichello T, Quevedo J, Dal-Pizzol F. Microglial cells depletion increases inflammation and modifies microglial phenotypes in an animal model of severe sepsis. Mol Neurobiol. 2019;56(11):7296–304. https://​doi.​org/​10.​1007/​s12035-019-1606-2.CrossRefPubMed
Metadata
Title
Effects of hydrogen-rich saline in neuroinflammation and mitochondrial dysfunction in rat model of sepsis-associated encephalopathy
Authors
John Sieh Dumbuya
Siqi Li
Lili Liang
Yanchen Chen
Jiang Du
Qiyi Zeng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03746-4

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.