Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Review

Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry

Authors: Chufang Liao, Shanshan Liang, Yining Wang, Ting Zhong, Xiangning Liu

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Literature
1.
go back to reference Van Hul W, Balemans W, Van Hul E, Dikkers FG, Obee H, Stokroos RJ, et al. Van buchem disease (hyperostosis corticalis generalisata) maps to chromosome 17q12-q21. Am J Hum Genet. 1998;62(2):391–9.PubMedPubMedCentralCrossRef Van Hul W, Balemans W, Van Hul E, Dikkers FG, Obee H, Stokroos RJ, et al. Van buchem disease (hyperostosis corticalis generalisata) maps to chromosome 17q12-q21. Am J Hum Genet. 1998;62(2):391–9.PubMedPubMedCentralCrossRef
2.
go back to reference Balemans W, Van Den Ende J, Paes-Alves AF, Dikkers FG, Willems PJ, Vanhoenacker F, et al. Localization of the gene for sclerosteosis to the van buchem disease–gene region on chromosome 17q12–q21. Am J Hum Genet. 1999;64(6):1661–9.PubMedPubMedCentralCrossRef Balemans W, Van Den Ende J, Paes-Alves AF, Dikkers FG, Willems PJ, Vanhoenacker F, et al. Localization of the gene for sclerosteosis to the van buchem disease–gene region on chromosome 17q12–q21. Am J Hum Genet. 1999;64(6):1661–9.PubMedPubMedCentralCrossRef
3.
go back to reference Li X, Ominsky MS, Niu Q, Sun N, Daugherty B, D’Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.PubMedCrossRef Li X, Ominsky MS, Niu Q, Sun N, Daugherty B, D’Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.PubMedCrossRef
4.
go back to reference Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone. 2004;35(4):828–35.PubMedCrossRef Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone. 2004;35(4):828–35.PubMedCrossRef
5.
6.
go back to reference Sun M, Chen Z, Wu X, Yu Y, Wang L, Lu A, et al. The roles of sclerostin in immune system and the applications of aptamers in immune-related research. Front Immunol. 2021;12(164): 602330.PubMedPubMedCentralCrossRef Sun M, Chen Z, Wu X, Yu Y, Wang L, Lu A, et al. The roles of sclerostin in immune system and the applications of aptamers in immune-related research. Front Immunol. 2021;12(164): 602330.PubMedPubMedCentralCrossRef
8.
go back to reference Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the sost gene product, a novel cystine knot–containing protein. Am J Hum Genet. 2001;68(3):577–89.PubMedPubMedCentralCrossRef Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the sost gene product, a novel cystine knot–containing protein. Am J Hum Genet. 2001;68(3):577–89.PubMedPubMedCentralCrossRef
9.
go back to reference Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (sost). Hum Mol Genet. 2001;10(5):537–44.PubMedCrossRef Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (sost). Hum Mol Genet. 2001;10(5):537–44.PubMedCrossRef
10.
go back to reference Kim CA, Honjo R, Bertola D, Albano L, Oliveira L, Jales S, et al. A known sost gene mutation causes sclerosteosis in a familial and an isolated case from brazilian origin. Genet Test. 2008;12(4):475–9.PubMedCrossRef Kim CA, Honjo R, Bertola D, Albano L, Oliveira L, Jales S, et al. A known sost gene mutation causes sclerosteosis in a familial and an isolated case from brazilian origin. Genet Test. 2008;12(4):475–9.PubMedCrossRef
11.
go back to reference Piters E, Culha C, Moester M, Van Bezooijen R, Adriaensen D, Mueller T, et al. First missense mutation in the sost gene causing sclerosteosis by loss of sclerostin function. Hum Mutat. 2010;31(7):E1526–43.PubMedCrossRef Piters E, Culha C, Moester M, Van Bezooijen R, Adriaensen D, Mueller T, et al. First missense mutation in the sost gene causing sclerosteosis by loss of sclerostin function. Hum Mutat. 2010;31(7):E1526–43.PubMedCrossRef
12.
go back to reference Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the sost gene in patients with van buchem disease. J Med Genet. 2002;39(2):91–7.PubMedPubMedCentralCrossRef Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the sost gene in patients with van buchem disease. J Med Genet. 2002;39(2):91–7.PubMedPubMedCentralCrossRef
13.
go back to reference Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, et al. A 52-kb deletion in the sost-meox1 intergenic region on 17q12-q21 is associated with van buchem disease in the dutch population. Am J Med Genet. 2002;110(2):144–52.PubMedCrossRef Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, et al. A 52-kb deletion in the sost-meox1 intergenic region on 17q12-q21 is associated with van buchem disease in the dutch population. Am J Med Genet. 2002;110(2):144–52.PubMedCrossRef
14.
go back to reference Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61.PubMedCrossRef Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing wnt/beta-catenin signaling. J Bone Miner Res. 2009;24(10):1651–61.PubMedCrossRef
15.
go back to reference Robling A, Niziolek P, Baldridge L, Condon K, Allen M, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.PubMedCrossRef Robling A, Niziolek P, Baldridge L, Condon K, Allen M, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.PubMedCrossRef
16.
go back to reference Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di Vito M, et al. Effects of intermittent parathyroid hormone (pth) administration on sost mrna and protein in rat bone. J Mol Histol. 2007;38(4):261–9.PubMedCrossRef Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, Di Vito M, et al. Effects of intermittent parathyroid hormone (pth) administration on sost mrna and protein in rat bone. J Mol Histol. 2007;38(4):261–9.PubMedCrossRef
17.
go back to reference Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, et al. Hypoxia decreases sclerostin expression and increases wnt signaling in osteoblasts. J Cell Biochem. 2010;110(2):457–67.PubMedPubMedCentral Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, et al. Hypoxia decreases sclerostin expression and increases wnt signaling in osteoblasts. J Cell Biochem. 2010;110(2):457–67.PubMedPubMedCentral
18.
go back to reference Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel bmp antagonist. Embo J. 2003;22(23):6267–76.PubMedPubMedCentralCrossRef Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel bmp antagonist. Embo J. 2003;22(23):6267–76.PubMedPubMedCentralCrossRef
19.
go back to reference van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, et al. Wnt but not bmp signaling is involved in the inhibitory action of sclerostin on bmp-stimulated bone formation. J Bone Miner Res. 2007;22(1):19–28.PubMedCrossRef van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, et al. Wnt but not bmp signaling is involved in the inhibitory action of sclerostin on bmp-stimulated bone formation. J Bone Miner Res. 2007;22(1):19–28.PubMedCrossRef
20.
go back to reference van Bezooijen RL, Roelen BAJ, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical bmp antagonist. J Exp Med. 2004;199(6):805–14.PubMedPubMedCentralCrossRef van Bezooijen RL, Roelen BAJ, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical bmp antagonist. J Exp Med. 2004;199(6):805–14.PubMedPubMedCentralCrossRef
21.
go back to reference Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, et al. Pth receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26(5):1035–46.PubMedCrossRef Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C, et al. Pth receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res. 2011;26(5):1035–46.PubMedCrossRef
22.
go back to reference Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278(26):24113–7.PubMedCrossRef Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278(26):24113–7.PubMedCrossRef
23.
go back to reference Semenov M, Tamai K, He X. Sost is a ligand for lrp5/lrp6 and a wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.PubMedCrossRef Semenov M, Tamai K, He X. Sost is a ligand for lrp5/lrp6 and a wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.PubMedCrossRef
24.
go back to reference Lim K-E, Bullock WA, Horan DJ, Williams BO, Warman ML, Robling AG. Co-deletion of lrp5 and lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration. Bone. 2021;143: 115708.PubMedCrossRef Lim K-E, Bullock WA, Horan DJ, Williams BO, Warman ML, Robling AG. Co-deletion of lrp5 and lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration. Bone. 2021;143: 115708.PubMedCrossRef
25.
go back to reference Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a rankl-dependent pathway. PLoS ONE. 2011;6(10): e25900.PubMedPubMedCentralCrossRef Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a rankl-dependent pathway. PLoS ONE. 2011;6(10): e25900.PubMedPubMedCentralCrossRef
26.
go back to reference Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93.PubMedCrossRef Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, et al. A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab. 2018;103(9):3183–93.PubMedCrossRef
27.
go back to reference McClung MR, Brown JP, Diez-Perez A, Resch H, Caminis J, Meisner P, et al. Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a randomized, double-blind, phase 2, parallel group study. J Bone Miner Res. 2018;33(8):1397–406.PubMedCrossRef McClung MR, Brown JP, Diez-Perez A, Resch H, Caminis J, Meisner P, et al. Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a randomized, double-blind, phase 2, parallel group study. J Bone Miner Res. 2018;33(8):1397–406.PubMedCrossRef
28.
go back to reference Nealy KL, Harris KB. Romosozumab: a novel injectable sclerostin inhibitor with anabolic and antiresorptive effects for osteoporosis. Ann Pharmacother. 2021;55(5):677–86.PubMedCrossRef Nealy KL, Harris KB. Romosozumab: a novel injectable sclerostin inhibitor with anabolic and antiresorptive effects for osteoporosis. Ann Pharmacother. 2021;55(5):677–86.PubMedCrossRef
29.
go back to reference Toscani D, Bolzoni M, Ferretti M, Palumbo C, Giuliani N. Role of osteocytes in myeloma bone disease: anti-sclerostin antibody as new therapeutic strategy. Front Immunol. 2018;9:2467.PubMedPubMedCentralCrossRef Toscani D, Bolzoni M, Ferretti M, Palumbo C, Giuliani N. Role of osteocytes in myeloma bone disease: anti-sclerostin antibody as new therapeutic strategy. Front Immunol. 2018;9:2467.PubMedPubMedCentralCrossRef
30.
go back to reference Stephen L, Hamersma H, Gardner J, Beighton P. Dental and oral manifestations of sclerosteosis. Int Dent J. 2001;51(4):287–90.PubMedCrossRef Stephen L, Hamersma H, Gardner J, Beighton P. Dental and oral manifestations of sclerosteosis. Int Dent J. 2001;51(4):287–90.PubMedCrossRef
31.
go back to reference Balemans W, Cleiren E, Siebers U, Horst J, Van Hul W. A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the sost gene. Bone. 2005;36(6):943–7.PubMedCrossRef Balemans W, Cleiren E, Siebers U, Horst J, Van Hul W. A generalized skeletal hyperostosis in two siblings caused by a novel mutation in the sost gene. Bone. 2005;36(6):943–7.PubMedCrossRef
32.
go back to reference Balli U, Aydogdu A, Dede FO, Turer CC, Guven B. Gingival crevicular fluid levels of sclerostin, osteoprotegerin, and receptor activator of nuclear factor-κb ligand in periodontitis. J Periodontol. 2015;86(12):1396–404.PubMedCrossRef Balli U, Aydogdu A, Dede FO, Turer CC, Guven B. Gingival crevicular fluid levels of sclerostin, osteoprotegerin, and receptor activator of nuclear factor-κb ligand in periodontitis. J Periodontol. 2015;86(12):1396–404.PubMedCrossRef
33.
go back to reference Chatzopoulos GS, Costalonga M, Mansky KC, Wolff LF. Wnt-5a and sost levels in gingival crevicular fluid depend on the inflammatory and osteoclastogenic activities of periodontal tissues. Medicina. 2021;57(8):788.PubMedPubMedCentralCrossRef Chatzopoulos GS, Costalonga M, Mansky KC, Wolff LF. Wnt-5a and sost levels in gingival crevicular fluid depend on the inflammatory and osteoclastogenic activities of periodontal tissues. Medicina. 2021;57(8):788.PubMedPubMedCentralCrossRef
34.
go back to reference Yakar N, Guncu GN, Akman AC, Pınar A, Karabulut E, Nohutcu RM. Evaluation of gingival crevicular fluid and peri-implant crevicular fluid levels of sclerostin, tweak, rankl and opg. Cytokine. 2019;113:433–9.PubMedCrossRef Yakar N, Guncu GN, Akman AC, Pınar A, Karabulut E, Nohutcu RM. Evaluation of gingival crevicular fluid and peri-implant crevicular fluid levels of sclerostin, tweak, rankl and opg. Cytokine. 2019;113:433–9.PubMedCrossRef
35.
go back to reference Isler SC, Soysal F, Akca G, Bakirarar B, Ozcan G, Unsal B. The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis. Odontology. 2021;109(1):103–13.PubMedCrossRef Isler SC, Soysal F, Akca G, Bakirarar B, Ozcan G, Unsal B. The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis. Odontology. 2021;109(1):103–13.PubMedCrossRef
37.
go back to reference Napimoga MH, Nametala C, da Silva FL, Miranda TS, Bossonaro JP, Demasi APD, et al. Involvement of the wnt-β-catenin signalling antagonists, sclerostin and dickkopf-related protein 1, in chronic periodontitis. J Clin Periodontol. 2014;41(6):550–7.PubMedCrossRef Napimoga MH, Nametala C, da Silva FL, Miranda TS, Bossonaro JP, Demasi APD, et al. Involvement of the wnt-β-catenin signalling antagonists, sclerostin and dickkopf-related protein 1, in chronic periodontitis. J Clin Periodontol. 2014;41(6):550–7.PubMedCrossRef
38.
go back to reference Sankardas PA, Lavu V, Lakakula BV, Rao SR. Differential expression of periostin, sclerostin, receptor activator of nuclear factor-κb, and receptor activator of nuclear factor-κb ligand genes in severe chronic periodontitis. J Investig Clin Dent. 2019;10(1): e12369.PubMedCrossRef Sankardas PA, Lavu V, Lakakula BV, Rao SR. Differential expression of periostin, sclerostin, receptor activator of nuclear factor-κb, and receptor activator of nuclear factor-κb ligand genes in severe chronic periodontitis. J Investig Clin Dent. 2019;10(1): e12369.PubMedCrossRef
39.
go back to reference Jäger A, Götz W, Lossdörfer S, Rath-Deschner B. Localization of sost/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res. 2010;45(2):246–54.PubMedCrossRef Jäger A, Götz W, Lossdörfer S, Rath-Deschner B. Localization of sost/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res. 2010;45(2):246–54.PubMedCrossRef
40.
go back to reference Manokawinchoke J, Limjeerajarus N, Limjeerajarus C, Sastravaha P, Everts V, Pavasant P. Mechanical force-induced tgfb1 increases expression of sost/postn by hpdl cells. J Dent Res. 2015;94(7):983–9.PubMedCrossRef Manokawinchoke J, Limjeerajarus N, Limjeerajarus C, Sastravaha P, Everts V, Pavasant P. Mechanical force-induced tgfb1 increases expression of sost/postn by hpdl cells. J Dent Res. 2015;94(7):983–9.PubMedCrossRef
41.
go back to reference Ueda M, Goto T, Kuroishi KN, Gunjigake KK, Ikeda E, Kataoka S, et al. Asporin in compressed periodontal ligament cells inhibits bone formation. Arch Oral Biol. 2016;62:86–92.PubMedCrossRef Ueda M, Goto T, Kuroishi KN, Gunjigake KK, Ikeda E, Kataoka S, et al. Asporin in compressed periodontal ligament cells inhibits bone formation. Arch Oral Biol. 2016;62:86–92.PubMedCrossRef
42.
go back to reference Nishiyama Y, Matsumoto T, Lee J, Saitou T, Imamura T, Moriyama K, et al. Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch Oral Biol. 2015;60(1):45–54.PubMedCrossRef Nishiyama Y, Matsumoto T, Lee J, Saitou T, Imamura T, Moriyama K, et al. Changes in the spatial distribution of sclerostin in the osteocytic lacuno-canalicular system in alveolar bone due to orthodontic forces, as detected on multimodal confocal fluorescence imaging analyses. Arch Oral Biol. 2015;60(1):45–54.PubMedCrossRef
43.
go back to reference Kim J-H, Kim AR, Choi YH, Kim A, Sohn Y, Woo G-H, et al. Intermittent pth administration improves alveolar bone formation in type 1 diabetic rats with periodontitis. J Transl Med. 2018;16(1):70.PubMedPubMedCentralCrossRef Kim J-H, Kim AR, Choi YH, Kim A, Sohn Y, Woo G-H, et al. Intermittent pth administration improves alveolar bone formation in type 1 diabetic rats with periodontitis. J Transl Med. 2018;16(1):70.PubMedPubMedCentralCrossRef
45.
go back to reference Naka T, Yokose S. Spatiotemporal expression of sclerostin in odontoblasts during embryonic mouse tooth morphogenesis. J Endod. 2011;37(3):340–5.PubMedCrossRef Naka T, Yokose S. Spatiotemporal expression of sclerostin in odontoblasts during embryonic mouse tooth morphogenesis. J Endod. 2011;37(3):340–5.PubMedCrossRef
46.
go back to reference Odagaki N, Ishihara Y, Wang Z, Ei Hsu Hlaing E, Nakamura M, Hoshijima M, et al. Role of osteocyte-pdl crosstalk in tooth movement via sost/sclerostin. J Dent Res. 2018;97(12):1374–82.PubMedCrossRef Odagaki N, Ishihara Y, Wang Z, Ei Hsu Hlaing E, Nakamura M, Hoshijima M, et al. Role of osteocyte-pdl crosstalk in tooth movement via sost/sclerostin. J Dent Res. 2018;97(12):1374–82.PubMedCrossRef
47.
go back to reference Yadav S, Assefnia A, Gupta H, Vishwanath M, Kalajzic Z, Allareddy V, et al. The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model. Eur J Orthodont. 2016;38(1):44–50.CrossRef Yadav S, Assefnia A, Gupta H, Vishwanath M, Kalajzic Z, Allareddy V, et al. The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model. Eur J Orthodont. 2016;38(1):44–50.CrossRef
48.
go back to reference Shu R, Bai D, Sheu T, He Y, Yang X, Xue C, et al. Sclerostin promotes bone remodeling in the process of tooth movement. PLoS ONE. 2017;12(1): e0167312.PubMedPubMedCentralCrossRef Shu R, Bai D, Sheu T, He Y, Yang X, Xue C, et al. Sclerostin promotes bone remodeling in the process of tooth movement. PLoS ONE. 2017;12(1): e0167312.PubMedPubMedCentralCrossRef
49.
go back to reference Liu M, Kurimoto P, Zhang J, Niu Q, Stolina M, Dechow P, et al. Sclerostin and dkk1 inhibition preserves and augments alveolar bone volume and architecture in rats with alveolar bone loss. J Dent Res. 2018;97(9):1031–8.PubMedCrossRef Liu M, Kurimoto P, Zhang J, Niu Q, Stolina M, Dechow P, et al. Sclerostin and dkk1 inhibition preserves and augments alveolar bone volume and architecture in rats with alveolar bone loss. J Dent Res. 2018;97(9):1031–8.PubMedCrossRef
50.
go back to reference Kim J, Lee D, Woo G, Cha J, Bak E, Yoo Y. Osteocytic sclerostin expression in alveolar bone in rats with diabetes mellitus and ligature-induced periodontitis. J Periodontol. 2015;86(8):1005–11.PubMedCrossRef Kim J, Lee D, Woo G, Cha J, Bak E, Yoo Y. Osteocytic sclerostin expression in alveolar bone in rats with diabetes mellitus and ligature-induced periodontitis. J Periodontol. 2015;86(8):1005–11.PubMedCrossRef
51.
go back to reference Kim J, Lee D, Cha J, Bak E, Yoo Y. Receptor activator of nuclear factor-κb ligand and sclerostin expression in osteocytes of alveolar bone in rats with ligature-induced periodontitis. J Periodontol. 2014;85(11):e370–8.PubMedCrossRef Kim J, Lee D, Cha J, Bak E, Yoo Y. Receptor activator of nuclear factor-κb ligand and sclerostin expression in osteocytes of alveolar bone in rats with ligature-induced periodontitis. J Periodontol. 2014;85(11):e370–8.PubMedCrossRef
52.
go back to reference Liao C, Ou Y, Wu Y, Zhou Y, Liang S, Wang Y. Sclerostin inhibits odontogenic differentiation of human pulp-derived odontoblast-like cells under mechanical stress. J Cell Physiol. 2019;234(11):20779–89.PubMedCrossRef Liao C, Ou Y, Wu Y, Zhou Y, Liang S, Wang Y. Sclerostin inhibits odontogenic differentiation of human pulp-derived odontoblast-like cells under mechanical stress. J Cell Physiol. 2019;234(11):20779–89.PubMedCrossRef
54.
go back to reference Amri N, Djole S, Petit S, Babajko S, Coudert A, Castaneda B, et al. Distorted patterns of dentinogenesis and eruption in msx2 null mutants: involvement of sost/sclerostin. Am J Pathol. 2016;186(10):2577–87.PubMedCrossRef Amri N, Djole S, Petit S, Babajko S, Coudert A, Castaneda B, et al. Distorted patterns of dentinogenesis and eruption in msx2 null mutants: involvement of sost/sclerostin. Am J Pathol. 2016;186(10):2577–87.PubMedCrossRef
55.
go back to reference Liao C, Wang Y, Ou Y, Wu Y, Zhou Y, Liang S. Effects of sclerostin on lipopolysaccharide-induced inflammatory phenotype in human odontoblasts and dental pulp cells. Int J Biochem Cell Biol. 2019;117: 105628.PubMedCrossRef Liao C, Wang Y, Ou Y, Wu Y, Zhou Y, Liang S. Effects of sclerostin on lipopolysaccharide-induced inflammatory phenotype in human odontoblasts and dental pulp cells. Int J Biochem Cell Biol. 2019;117: 105628.PubMedCrossRef
56.
go back to reference Collignon A, Amri N, Lesieur J, Sadoine J, Ribes S, Menashi S, et al. Sclerostin deficiency promotes reparative dentinogenesis. J Dent Res. 2017;96(7):815–21.PubMedCrossRef Collignon A, Amri N, Lesieur J, Sadoine J, Ribes S, Menashi S, et al. Sclerostin deficiency promotes reparative dentinogenesis. J Dent Res. 2017;96(7):815–21.PubMedCrossRef
57.
go back to reference Janjić K, Samiei M, Moritz A, Agis H. The influence of pro-inflammatory factors on sclerostin and dickkopf-1 production in human dental pulp cells under hypoxic conditions. Front Bioeng Biotechnol. 2019;7:430.PubMedPubMedCentralCrossRef Janjić K, Samiei M, Moritz A, Agis H. The influence of pro-inflammatory factors on sclerostin and dickkopf-1 production in human dental pulp cells under hypoxic conditions. Front Bioeng Biotechnol. 2019;7:430.PubMedPubMedCentralCrossRef
58.
go back to reference Almeida ABD, Santos EJLD, Abuna GF, Ribeiro CS, Casati MZ, Ruiz KGS, et al. Isolation and characterization of a human cementocyte-like cell line, hcy-23. Braz Oral Res. 2019;33:e058.PubMedCrossRef Almeida ABD, Santos EJLD, Abuna GF, Ribeiro CS, Casati MZ, Ruiz KGS, et al. Isolation and characterization of a human cementocyte-like cell line, hcy-23. Braz Oral Res. 2019;33:e058.PubMedCrossRef
59.
go back to reference Lehnen SD, Götz W, Baxmann M, Jäger A. Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann Anat. 2012;194(5):415–21.PubMedCrossRef Lehnen SD, Götz W, Baxmann M, Jäger A. Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann Anat. 2012;194(5):415–21.PubMedCrossRef
60.
go back to reference Zhao N, Nociti FH, Duan P, Prideaux M, Zhao H, Foster BL, et al. Isolation and functional analysis of an immortalized murine cementocyte cell line, idg-cm6. J Bone Miner Res. 2016;31(2):430–42.PubMedCrossRef Zhao N, Nociti FH, Duan P, Prideaux M, Zhao H, Foster BL, et al. Isolation and functional analysis of an immortalized murine cementocyte cell line, idg-cm6. J Bone Miner Res. 2016;31(2):430–42.PubMedCrossRef
61.
go back to reference Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;24(2):279–91. Klein-Nulend J, Bacabac R, Bakker A. Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater. 2012;24(2):279–91.
63.
go back to reference Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90.PubMedCrossRef Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S. Mechanosensation and transduction in osteocytes. Bone. 2013;54(2):182–90.PubMedCrossRef
64.
go back to reference Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocr Metab. 2010;95(5):2248–53.PubMedCrossRef Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocr Metab. 2010;95(5):2248–53.PubMedCrossRef
65.
go back to reference Kuchler U, Schwarze UY, Dobsak T, Heimel P, Bosshardt DD, Kneissel M, et al. Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci. 2014;6(2):70–6.PubMedPubMedCentralCrossRef Kuchler U, Schwarze UY, Dobsak T, Heimel P, Bosshardt DD, Kneissel M, et al. Dental and periodontal phenotype in sclerostin knockout mice. Int J Oral Sci. 2014;6(2):70–6.PubMedPubMedCentralCrossRef
66.
go back to reference Yao Y, Kauffmann F, Maekawa S, Sarment LV, Sugai JV, Schmiedeler CA, et al. Sclerostin antibody stimulates periodontal regeneration in large alveolar bone defects. Sci Rep. 2020;10(1):16217.PubMedPubMedCentralCrossRef Yao Y, Kauffmann F, Maekawa S, Sarment LV, Sugai JV, Schmiedeler CA, et al. Sclerostin antibody stimulates periodontal regeneration in large alveolar bone defects. Sci Rep. 2020;10(1):16217.PubMedPubMedCentralCrossRef
68.
go back to reference Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implan Res. 2012;23(Suppl 5):1–21.CrossRef Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implan Res. 2012;23(Suppl 5):1–21.CrossRef
69.
go back to reference Kitaura H, Kimura K, Ishida M, Sugisawa H, Kohara H, Yoshimatsu M, et al. Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. Sci World J. 2014;2014: 617032.CrossRef Kitaura H, Kimura K, Ishida M, Sugisawa H, Kohara H, Yoshimatsu M, et al. Effect of cytokines on osteoclast formation and bone resorption during mechanical force loading of the periodontal membrane. Sci World J. 2014;2014: 617032.CrossRef
70.
go back to reference Seo B, Miura M, Gronthos S, Bartold P, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55.PubMedCrossRef Seo B, Miura M, Gronthos S, Bartold P, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55.PubMedCrossRef
71.
go back to reference Liu M, Dai J, Lin Y, Yang L, Dong H, Li Y, et al. Effect of the cyclic stretch on the expression of osteogenesis genes in human periodontal ligament cells. Gene. 2012;491(2):187–93.PubMedCrossRef Liu M, Dai J, Lin Y, Yang L, Dong H, Li Y, et al. Effect of the cyclic stretch on the expression of osteogenesis genes in human periodontal ligament cells. Gene. 2012;491(2):187–93.PubMedCrossRef
72.
go back to reference Ren D, Wei F, Hu L, Yang S, Wang C, Yuan X. Phosphorylation of runx2, induced by cyclic mechanical tension via erk1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts. J Cell Physiol. 2015;230(10):2426–36.PubMedCrossRef Ren D, Wei F, Hu L, Yang S, Wang C, Yuan X. Phosphorylation of runx2, induced by cyclic mechanical tension via erk1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts. J Cell Physiol. 2015;230(10):2426–36.PubMedCrossRef
73.
go back to reference Tang N, Zhao Z, Zhang L, Yu Q, Li J, Xu Z, et al. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci. 2012;8(3):422–30.PubMedPubMedCentralCrossRef Tang N, Zhao Z, Zhang L, Yu Q, Li J, Xu Z, et al. Up-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain. Arch Med Sci. 2012;8(3):422–30.PubMedPubMedCentralCrossRef
74.
go back to reference Zhao Y, Wang C, Li S, Song H, Wei F, Pan K, et al. Expression of osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitro. Eur J Oral Sci. 2008;116(3):199–206.PubMedCrossRef Zhao Y, Wang C, Li S, Song H, Wei F, Pan K, et al. Expression of osterix in mechanical stress-induced osteogenic differentiation of periodontal ligament cells in vitro. Eur J Oral Sci. 2008;116(3):199–206.PubMedCrossRef
75.
go back to reference Ei Hsu Hlaing E, Ishihara Y, Odagaki N, Wang Z, Ikegame M, Kamioka H. The expression and regulation of wnt1 in tooth movement-initiated mechanotransduction. Am J Orthod Dentofacial Orthop. 2020;158(6):e151-60.PubMedCrossRef Ei Hsu Hlaing E, Ishihara Y, Odagaki N, Wang Z, Ikegame M, Kamioka H. The expression and regulation of wnt1 in tooth movement-initiated mechanotransduction. Am J Orthod Dentofacial Orthop. 2020;158(6):e151-60.PubMedCrossRef
76.
go back to reference Lundgren T, Linde A. Voltage-gated calcium channels and nonvoltage-gated calcium uptake pathways in the rat incisor odontoblast plasma membrane. Calcif Tissue Int. 1997;60(1):79–85.PubMedCrossRef Lundgren T, Linde A. Voltage-gated calcium channels and nonvoltage-gated calcium uptake pathways in the rat incisor odontoblast plasma membrane. Calcif Tissue Int. 1997;60(1):79–85.PubMedCrossRef
77.
go back to reference Lundquist P. Odontoblast phosphate and calcium transport in dentinogenesis. Swed Dent J Suppl. 2002;154:1–52. Lundquist P. Odontoblast phosphate and calcium transport in dentinogenesis. Swed Dent J Suppl. 2002;154:1–52.
78.
go back to reference Liu Q, Ma N, Zhu Q, Duan X, Shi H, Xiang D, et al. Dentin sialophosphoprotein deletion leads to femoral head cartilage attenuation and subchondral bone ill-mineralization. J Histochem Cytochem. 2020;68(10):703–18.PubMedPubMedCentralCrossRef Liu Q, Ma N, Zhu Q, Duan X, Shi H, Xiang D, et al. Dentin sialophosphoprotein deletion leads to femoral head cartilage attenuation and subchondral bone ill-mineralization. J Histochem Cytochem. 2020;68(10):703–18.PubMedPubMedCentralCrossRef
79.
go back to reference Magloire H, Romeas A, Melin M, Couble M, Bleicher F, Farges J. Molecular regulation of odontoblast activity under dentin injury. Adv Dent Res. 2001;15(1):46–50.PubMedCrossRef Magloire H, Romeas A, Melin M, Couble M, Bleicher F, Farges J. Molecular regulation of odontoblast activity under dentin injury. Adv Dent Res. 2001;15(1):46–50.PubMedCrossRef
80.
go back to reference Mitsiadis T, Rahiotis C. Parallels between tooth development and repair: conserved molecular mechanisms following carious and dental injury. J Dent Res. 2004;83(12):896–902.PubMedCrossRef Mitsiadis T, Rahiotis C. Parallels between tooth development and repair: conserved molecular mechanisms following carious and dental injury. J Dent Res. 2004;83(12):896–902.PubMedCrossRef
82.
go back to reference Yagi T, Suga S. Sem investigations on the human sclerosed dentinal tubules. Shigaku. 1990;78(2):313–37.PubMed Yagi T, Suga S. Sem investigations on the human sclerosed dentinal tubules. Shigaku. 1990;78(2):313–37.PubMed
83.
go back to reference Bartlett D, Shah P. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion. J Dent Res. 2006;85(4):306–12.PubMedCrossRef Bartlett D, Shah P. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion. J Dent Res. 2006;85(4):306–12.PubMedCrossRef
84.
go back to reference Bergstrom J, Eliasson S. Cervical abrasion in relation to toothbrushing and periodontal health. Scand J Dent Res. 1988;96(5):405–11.PubMed Bergstrom J, Eliasson S. Cervical abrasion in relation to toothbrushing and periodontal health. Scand J Dent Res. 1988;96(5):405–11.PubMed
85.
go back to reference Tanaka M, Naito T, Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil. 2003;30(1):60–7.PubMedCrossRef Tanaka M, Naito T, Yokota M, Kohno M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J Oral Rehabil. 2003;30(1):60–7.PubMedCrossRef
86.
go back to reference van Bezooijen R, Bronckers A, Gortzak R, Hogendoorn P, Van der Wee-Pals L, Balemans W, et al. Sclerostin in mineralized matrices and van buchem disease. J Dent Res. 2009;88(6):569–74.PubMedCrossRef van Bezooijen R, Bronckers A, Gortzak R, Hogendoorn P, Van der Wee-Pals L, Balemans W, et al. Sclerostin in mineralized matrices and van buchem disease. J Dent Res. 2009;88(6):569–74.PubMedCrossRef
87.
go back to reference Iglesias-Linares A, Hartsfield JK. Cellular and molecular pathways leading to external root resorption. J Dent Res. 2017;96(2):145–52.PubMedCrossRef Iglesias-Linares A, Hartsfield JK. Cellular and molecular pathways leading to external root resorption. J Dent Res. 2017;96(2):145–52.PubMedCrossRef
88.
go back to reference Bao X, Liu Y, Han G, Zuo Z, Hu M. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor. Int J Mol Sci. 2013;14(10):21140–52.PubMedPubMedCentralCrossRef Bao X, Liu Y, Han G, Zuo Z, Hu M. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor. Int J Mol Sci. 2013;14(10):21140–52.PubMedPubMedCentralCrossRef
89.
go back to reference Bao X, Liu X, Zhang Y, Cui Y, Yao J, Hu M. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro. Biomed Res Int. 2014;2014: 487535.PubMedPubMedCentral Bao X, Liu X, Zhang Y, Cui Y, Yao J, Hu M. Strontium promotes cementoblasts differentiation through inhibiting sclerostin expression in vitro. Biomed Res Int. 2014;2014: 487535.PubMedPubMedCentral
90.
go back to reference Wei T, Xie Y, Wen X, Zhao N, Shen G. Establishment of three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp Ther Med. 2020;20(4):3174–84.PubMedPubMedCentral Wei T, Xie Y, Wen X, Zhao N, Shen G. Establishment of three-dimensional cementocyte differentiation scaffolds to study orthodontic root resorption. Exp Ther Med. 2020;20(4):3174–84.PubMedPubMedCentral
91.
go back to reference Bai S, Chen Y, Dai H, Huang L. Effect of sclerostin on the functions and related mechanisms of cementoblasts under mechanical stress. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37(2):162–7.PubMed Bai S, Chen Y, Dai H, Huang L. Effect of sclerostin on the functions and related mechanisms of cementoblasts under mechanical stress. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37(2):162–7.PubMed
92.
go back to reference Durand SH, Flacher V, Roméas A, Carrouel F, Colomb E, Vincent C, et al. Lipoteichoic acid increases tlr and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol. 2006;176(5):2880–7.PubMedCrossRef Durand SH, Flacher V, Roméas A, Carrouel F, Colomb E, Vincent C, et al. Lipoteichoic acid increases tlr and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol. 2006;176(5):2880–7.PubMedCrossRef
93.
go back to reference Farges JC, Carrouel F, Keller JF, Baudouin C, Msika P, Bleicher F, et al. Cytokine production by human odontoblast-like cells upon toll-like receptor-2 engagement. Immunobiology. 2011;216(4):513–7.PubMedCrossRef Farges JC, Carrouel F, Keller JF, Baudouin C, Msika P, Bleicher F, et al. Cytokine production by human odontoblast-like cells upon toll-like receptor-2 engagement. Immunobiology. 2011;216(4):513–7.PubMedCrossRef
94.
go back to reference Abdalla R, Mitchell RJ, Fang Ren Y. Non-carious cervical lesions imaged by focus variation microscopy. J Dent. 2017;63:14–20.PubMedCrossRef Abdalla R, Mitchell RJ, Fang Ren Y. Non-carious cervical lesions imaged by focus variation microscopy. J Dent. 2017;63:14–20.PubMedCrossRef
95.
go back to reference Téclès O, Laurent P, Zygouritsas S, Burger A, Camps J, Dejou J, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. 2005;50(2):103–8.PubMedCrossRef Téclès O, Laurent P, Zygouritsas S, Burger A, Camps J, Dejou J, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. 2005;50(2):103–8.PubMedCrossRef
96.
go back to reference Sloan A, Smith A. Stem cells and the dental pulp: Potential roles in dentine regeneration and repair. Oral Dis. 2007;13(2):151–7.PubMedCrossRef Sloan A, Smith A. Stem cells and the dental pulp: Potential roles in dentine regeneration and repair. Oral Dis. 2007;13(2):151–7.PubMedCrossRef
97.
go back to reference Chen X, Baum W, Dwyer D, Stock M, Schwabe K, Ke H, et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013;72(10):1732–6.PubMedCrossRef Chen X, Baum W, Dwyer D, Stock M, Schwabe K, Ke H, et al. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013;72(10):1732–6.PubMedCrossRef
98.
go back to reference Eddleston A, Marenzana M, Moore AR, Stephens P, Muzylak M, Marshall D, et al. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res. 2009;24(10):1662–71.PubMedCrossRef Eddleston A, Marenzana M, Moore AR, Stephens P, Muzylak M, Marshall D, et al. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J Bone Miner Res. 2009;24(10):1662–71.PubMedCrossRef
99.
go back to reference Marenzana M, Vugler A, Moore A, Robinson M. Effect of sclerostin-neutralising antibody on periarticular and systemic bone in a murine model of rheumatoid arthritis: a microct study. Arthritis Res Ther. 2013;15(5):R125.PubMedPubMedCentralCrossRef Marenzana M, Vugler A, Moore A, Robinson M. Effect of sclerostin-neutralising antibody on periarticular and systemic bone in a murine model of rheumatoid arthritis: a microct study. Arthritis Res Ther. 2013;15(5):R125.PubMedPubMedCentralCrossRef
100.
go back to reference Feng X, Feng G, Xing J, Shen B, Tan W, Huang D, et al. Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (dpscs). Cell Tissue Res. 2014;356(2):369–80.PubMedCrossRef Feng X, Feng G, Xing J, Shen B, Tan W, Huang D, et al. Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (dpscs). Cell Tissue Res. 2014;356(2):369–80.PubMedCrossRef
101.
102.
go back to reference Iezzi I, Pagella P, Mattioli-Belmonte M, Mitsiadis TA. The effects of ageing on dental pulp stem cells, the tooth longevity elixir. Eur Cell Mater. 2019;37:175–85.PubMedCrossRef Iezzi I, Pagella P, Mattioli-Belmonte M, Mitsiadis TA. The effects of ageing on dental pulp stem cells, the tooth longevity elixir. Eur Cell Mater. 2019;37:175–85.PubMedCrossRef
104.
go back to reference Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26(2):373–9.PubMedCrossRef Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res. 2011;26(2):373–9.PubMedCrossRef
105.
go back to reference Roforth MM, Fujita K, McGregor UI, Kirmani S, McCready LK, Peterson JM, et al. Effects of age on bone mrna levels of sclerostin and other genes relevant to bone metabolism in humans. Bone. 2014;59:1–6.PubMedCrossRef Roforth MM, Fujita K, McGregor UI, Kirmani S, McCready LK, Peterson JM, et al. Effects of age on bone mrna levels of sclerostin and other genes relevant to bone metabolism in humans. Bone. 2014;59:1–6.PubMedCrossRef
106.
go back to reference Wehmeyer C, Frank S, Beckmann D, Böttcher M, Cromme C, König U, et al. Sclerostin inhibition promotes tnf-dependent inflammatory joint destruction. Sci Transl Med. 2016;8(330):330ra35.PubMedCrossRef Wehmeyer C, Frank S, Beckmann D, Böttcher M, Cromme C, König U, et al. Sclerostin inhibition promotes tnf-dependent inflammatory joint destruction. Sci Transl Med. 2016;8(330):330ra35.PubMedCrossRef
107.
108.
go back to reference Korah L, Amri N, Bugueno IM, Hotton D, Tenenbaum H, Huck O, et al. Experimental periodontitis in msx2 mutant mice induces alveolar bone necrosis. J Periodontol. 2020;91(5):693–704.PubMedCrossRef Korah L, Amri N, Bugueno IM, Hotton D, Tenenbaum H, Huck O, et al. Experimental periodontitis in msx2 mutant mice induces alveolar bone necrosis. J Periodontol. 2020;91(5):693–704.PubMedCrossRef
109.
go back to reference Taut AD, Jin Q, Chung J, Galindo-Moreno P, Yi ES, Sugai JV, et al. Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J Bone Miner Res. 2013;28(11):2347–56.PubMedCrossRef Taut AD, Jin Q, Chung J, Galindo-Moreno P, Yi ES, Sugai JV, et al. Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J Bone Miner Res. 2013;28(11):2347–56.PubMedCrossRef
110.
go back to reference Balli U, Keles ZP, Avci B, Guler S, Cetinkaya BO, Keles GC. Assessment of periostin levels in serum and gingival crevicular fluid of patients with periodontal disease. J Periodontal Res. 2015;50(6):707–13.PubMedCrossRef Balli U, Keles ZP, Avci B, Guler S, Cetinkaya BO, Keles GC. Assessment of periostin levels in serum and gingival crevicular fluid of patients with periodontal disease. J Periodontal Res. 2015;50(6):707–13.PubMedCrossRef
111.
go back to reference Aral CA, Köseoğlu S, Sağlam M, Pekbağrıyanık T, Savran L. Gingival crevicular fluid and salivary periostin levels in non-smoker subjects with chronic and aggressive periodontitis : periostin levels in chronic and aggressive periodontitis. Inflammation. 2016;39(3):986–93.PubMed Aral CA, Köseoğlu S, Sağlam M, Pekbağrıyanık T, Savran L. Gingival crevicular fluid and salivary periostin levels in non-smoker subjects with chronic and aggressive periodontitis : periostin levels in chronic and aggressive periodontitis. Inflammation. 2016;39(3):986–93.PubMed
112.
go back to reference Ríos HF, Ma D, Xie Y, Giannobile WV, Bonewald L, Conway S, et al. Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol. 2008;79(8):1480–90.PubMedPubMedCentralCrossRef Ríos HF, Ma D, Xie Y, Giannobile WV, Bonewald L, Conway S, et al. Periostin is essential for the integrity and function of the periodontal ligament during occlusal loading in mice. J Periodontol. 2008;79(8):1480–90.PubMedPubMedCentralCrossRef
113.
go back to reference Ren Y, Han X, Ho SP, Harris SE, Cao Z, Economides AN, et al. Removal of sost or blocking its product sclerostin rescues defects in the periodontitis mouse model. Faseb J. 2015;29(7):2702–11.PubMedPubMedCentralCrossRef Ren Y, Han X, Ho SP, Harris SE, Cao Z, Economides AN, et al. Removal of sost or blocking its product sclerostin rescues defects in the periodontitis mouse model. Faseb J. 2015;29(7):2702–11.PubMedPubMedCentralCrossRef
114.
go back to reference Virdi AS, Liu M, Sena K, Maletich J, McNulty M, Ke HZ, et al. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am. 2012;94(18):1670–80.PubMedPubMedCentralCrossRef Virdi AS, Liu M, Sena K, Maletich J, McNulty M, Ke HZ, et al. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am. 2012;94(18):1670–80.PubMedPubMedCentralCrossRef
115.
go back to reference Liu S, Virdi AS, Sena K, Sumner DR. Sclerostin antibody prevents particle-induced implant loosening by stimulating bone formation and inhibiting bone resorption in a rat model. Arthritis Rheum. 2012;64(12):4012–20.PubMedCrossRef Liu S, Virdi AS, Sena K, Sumner DR. Sclerostin antibody prevents particle-induced implant loosening by stimulating bone formation and inhibiting bone resorption in a rat model. Arthritis Rheum. 2012;64(12):4012–20.PubMedCrossRef
116.
go back to reference Yu SH, Hao J, Fretwurst T, Liu M, Kostenuik P, Giannobile WV, et al. Sclerostin-neutralizing antibody enhances bone regeneration around oral implants. Tissue Eng Part A. 2018;24(21–22):1672–9.PubMedPubMedCentralCrossRef Yu SH, Hao J, Fretwurst T, Liu M, Kostenuik P, Giannobile WV, et al. Sclerostin-neutralizing antibody enhances bone regeneration around oral implants. Tissue Eng Part A. 2018;24(21–22):1672–9.PubMedPubMedCentralCrossRef
117.
go back to reference Maillard S, Sicard L, Andrique C, Torrens C, Lesieur J, Baroukh B, et al. Combining sclerostin neutralization with tissue engineering: an improved strategy for craniofacial bone repair. Acta Biomater. 2022;140:178–89.PubMedCrossRef Maillard S, Sicard L, Andrique C, Torrens C, Lesieur J, Baroukh B, et al. Combining sclerostin neutralization with tissue engineering: an improved strategy for craniofacial bone repair. Acta Biomater. 2022;140:178–89.PubMedCrossRef
118.
go back to reference Hu B, Li Y, Wang M, Zhu Y, Zhou Y, Sui B, et al. Functional reconstruction of critical-sized load-bearing bone defects using a sclerostin-targeting mir-210-3p-based construct to enhance osteogenic activity. Acta Biomater. 2018;76:275–82.PubMedCrossRef Hu B, Li Y, Wang M, Zhu Y, Zhou Y, Sui B, et al. Functional reconstruction of critical-sized load-bearing bone defects using a sclerostin-targeting mir-210-3p-based construct to enhance osteogenic activity. Acta Biomater. 2018;76:275–82.PubMedCrossRef
119.
go back to reference Shu R, Ai D, Bai D, Song J, Zhao M, Han X. The effects of sost on implant osseointegration in ovariectomy osteoporotic mice. Arch Oral Biol. 2017;74:82–91.PubMedCrossRef Shu R, Ai D, Bai D, Song J, Zhao M, Han X. The effects of sost on implant osseointegration in ovariectomy osteoporotic mice. Arch Oral Biol. 2017;74:82–91.PubMedCrossRef
120.
go back to reference Korn P, Kramer I, Schlottig F, Tödtmann N, Eckelt U, Bürki A, et al. Systemic sclerostin antibody treatment increases osseointegration and biomechanical competence of zoledronic-acid-coated dental implants in a rat osteoporosis model. Eur Cell Mater. 2019;37:333–46.PubMedCrossRef Korn P, Kramer I, Schlottig F, Tödtmann N, Eckelt U, Bürki A, et al. Systemic sclerostin antibody treatment increases osseointegration and biomechanical competence of zoledronic-acid-coated dental implants in a rat osteoporosis model. Eur Cell Mater. 2019;37:333–46.PubMedCrossRef
121.
go back to reference Chen X, Moriyama Y, Takemura Y, Rokuta M, Ayukawa Y. Influence of osteoporosis and mechanical loading on bone around osseointegrated dental implants: a rodent study. J Mech Behav Biomed Mater. 2021;123: 104771.PubMedCrossRef Chen X, Moriyama Y, Takemura Y, Rokuta M, Ayukawa Y. Influence of osteoporosis and mechanical loading on bone around osseointegrated dental implants: a rodent study. J Mech Behav Biomed Mater. 2021;123: 104771.PubMedCrossRef
122.
go back to reference Fixen C, Tunoa J. Romosozumab: a review of efficacy, safety, and cardiovascular risk. Curr Osteoporos Rep. 2021;19(1):15–22.PubMedCrossRef Fixen C, Tunoa J. Romosozumab: a review of efficacy, safety, and cardiovascular risk. Curr Osteoporos Rep. 2021;19(1):15–22.PubMedCrossRef
123.
go back to reference Singh S, Dutta S, Khasbage S, Kumar T, Sachin J, Sharma J, et al. A systematic review and meta-analysis of efficacy and safety of romosozumab in postmenopausal osteoporosis. Osteoporos Int. 2022;33(1):1–12.PubMedCrossRef Singh S, Dutta S, Khasbage S, Kumar T, Sachin J, Sharma J, et al. A systematic review and meta-analysis of efficacy and safety of romosozumab in postmenopausal osteoporosis. Osteoporos Int. 2022;33(1):1–12.PubMedCrossRef
125.
go back to reference Brandenburg VM, Verhulst A, Babler A, D’Haese PC, Evenepoel P, Kaesler N. Sclerostin in chronic kidney disease-mineral bone disorder think first before you block it! Nephrol Dial Transplant. 2019;34(3):408–14.PubMedCrossRef Brandenburg VM, Verhulst A, Babler A, D’Haese PC, Evenepoel P, Kaesler N. Sclerostin in chronic kidney disease-mineral bone disorder think first before you block it! Nephrol Dial Transplant. 2019;34(3):408–14.PubMedCrossRef
Metadata
Title
Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry
Authors
Chufang Liao
Shanshan Liang
Yining Wang
Ting Zhong
Xiangning Liu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03417-4

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.