Skip to main content
Top
Published in: Osteoporosis International 1/2022

01-01-2022 | Osteoporosis | Review

A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis

Authors: S. Singh, S. Dutta, S. Khasbage, T. Kumar, J. Sachin, J. Sharma, S B Varthya

Published in: Osteoporosis International | Issue 1/2022

Login to get access

Abstract

The study was conducted to illustrate the effect of Romosozumab in postmenopausal osteoporosis patients. Romosozumab decreased the incidence of vertebral, nonvertebral, and clinical fractures significantly. In addition, decreased incidence of falls and increased bone mineral density at lumbar spine, total hip, and femoral neck was observed. Romosozumab is a monoclonal antibody that acts against the sclerostin pathway leading to enhanced bone formation and reduced bone resorption in patients with osteoporosis. Electronic search was performed on Medline (via PubMed), The Cochrane Central Register of Controlled Trials, and clinicaltrials.gov, till May 2020, for RCTs evaluating the effectiveness of Romosozumab in postmenopausal osteoporosis. RCTs evaluating the effect of Romosozumab on fractures and bone mineral density in postmenopausal osteoporosis patients. Meta-analysis was performed by Cochrane review manager 5 (RevMan) version 5.3. Cochrane risk of bias 2.0 tool and GRADE pro-GDT were applied for methodological quality and overall evidence quality, respectively. One hundred seventy-nine studies were screened, and 10 eligible studies were included in the analysis, with a total of 6137 patients in romosozumab group and 5732 patients in control group. Romosozumab significantly reduced the incidence of vertebral fractures [OR = 0.43 (95%CI = 0.35–0.52), High-quality evidence], nonvertebral fractures [OR = 0.78 (95%CI = 0.66–0.92), High quality], and clinical fractures [OR = 0.70 (95%CI = 0.60–0.82), High quality] at 24 months. Significant reduction in incidence risk of falls [OR = 0.87 (95%CI = 0.78–0.96), High quality] was observed with romosozumab. Bone mineral density was significantly increased in the romosozumab treated groups at lumbar spine [MD = 12.66 (95%CI = 12.66–12.67), High quality], total hip [MD = 5.69 (95%CI = 5.68 – 5.69), Moderate quality], and femoral neck [MD = 5.18 (95%CI = 5.18–5.19), Moderate quality] at 12 months. The total adverse events [RR = 0.98(95%CI = 0.96–1.01), Moderate quality] and serious adverse events [RR = 0.98(95%CI = 0.88–1.08), Moderate quality] with romosozumab were comparable to the control group. The current analysis with evidence on efficacy and safety of Romosozumab, authors opine to recommend the use of Romosozumab treatment for post-menopausal osteoporosis.
Systematic review registration: PROSPERO registration number: CRD42019112196
Appendix
Available only for authorised users
Literature
1.
go back to reference Osteoporosis prevention, diagnosis, and therapy (2001). Jama 285 785–795 Osteoporosis prevention, diagnosis, and therapy (2001). Jama 285 785–795
2.
go back to reference Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet (London, England) 377:1276–1287CrossRef Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet (London, England) 377:1276–1287CrossRef
4.
go back to reference Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136CrossRef Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136CrossRef
5.
go back to reference Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet (London, England) 393:364–376CrossRef Compston JE, McClung MR, Leslie WD (2019) Osteoporosis. Lancet (London, England) 393:364–376CrossRef
6.
go back to reference Black DM, Rosen CJ (2016) Clinical Practice. Postmenopausal Osteoporosis. N Engl J Med 374:254–262CrossRef Black DM, Rosen CJ (2016) Clinical Practice. Postmenopausal Osteoporosis. N Engl J Med 374:254–262CrossRef
7.
go back to reference Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543CrossRef Balemans W, Ebeling M, Patel N et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543CrossRef
8.
go back to reference Krause C, Korchynskyi O, de Rooij K et al (2010) Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J Biol Chem 285:41614–41626CrossRef Krause C, Korchynskyi O, de Rooij K et al (2010) Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J Biol Chem 285:41614–41626CrossRef
9.
go back to reference Brunkow ME, Gardner JC, Van Ness J et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589CrossRef Brunkow ME, Gardner JC, Van Ness J et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589CrossRef
10.
go back to reference Kanis JA, Cooper C, Rizzoli R, Reginster JY, on behalf of the Scientific Advisory Board of the European Society for C, Economic Aspects of O, the Committees of Scientific A, National Societies of the International Osteoporosis Foundation (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44CrossRef Kanis JA, Cooper C, Rizzoli R, Reginster JY, on behalf of the Scientific Advisory Board of the European Society for C, Economic Aspects of O, the Committees of Scientific A, National Societies of the International Osteoporosis Foundation (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44CrossRef
11.
go back to reference Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D (2019) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab 104:1595–1622CrossRef Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D (2019) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society* Clinical Practice Guideline. J Clin Endocrinol Metab 104:1595–1622CrossRef
12.
go back to reference Lim SY, Bolster MB (2017) Profile of romosozumab and its potential in the management of osteoporosis. Drug Des Dev Ther 11:1221–1231CrossRef Lim SY, Bolster MB (2017) Profile of romosozumab and its potential in the management of osteoporosis. Drug Des Dev Ther 11:1221–1231CrossRef
14.
go back to reference Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543CrossRef Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543CrossRef
15.
go back to reference Genant HK, Engelke K, Bolognese MA et al (2017) Effects of romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J Bone Miner Res 32:181–187CrossRef Genant HK, Engelke K, Bolognese MA et al (2017) Effects of romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J Bone Miner Res 32:181–187CrossRef
16.
go back to reference Ishibashi H, Crittenden DB, Miyauchi A, Libanati C, Maddox J, Fan M, Chen L, Grauer A (2017) Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone 103:209–215CrossRef Ishibashi H, Crittenden DB, Miyauchi A, Libanati C, Maddox J, Fan M, Chen L, Grauer A (2017) Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone 103:209–215CrossRef
17.
go back to reference Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet (London, England) 390:1585–1594CrossRef Langdahl BL, Libanati C, Crittenden DB et al (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet (London, England) 390:1585–1594CrossRef
18.
go back to reference McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420CrossRef McClung MR, Grauer A, Boonen S et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420CrossRef
19.
go back to reference Cosman F, Crittenden DB, Ferrari S, Khan A, Lane NE, Lippuner K, Matsumoto T, Milmont CE, Libanati C, Grauer A (2018) FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226CrossRef Cosman F, Crittenden DB, Ferrari S, Khan A, Lane NE, Lippuner K, Matsumoto T, Milmont CE, Libanati C, Grauer A (2018) FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226CrossRef
20.
go back to reference Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R (2020) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society Guideline Update. J Clin Endocrinol Metab 105:587–594CrossRef Shoback D, Rosen CJ, Black DM, Cheung AM, Murad MH, Eastell R (2020) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society Guideline Update. J Clin Endocrinol Metab 105:587–594CrossRef
21.
go back to reference Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical research ed) 355:i4919 Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ (Clinical research ed) 355:i4919
22.
go back to reference McGuinness LA, Higgins JPT (2020) Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12(1):55–61CrossRef McGuinness LA, Higgins JPT (2020) Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12(1):55–61CrossRef
25.
go back to reference Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 327:557–560CrossRef Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 327:557–560CrossRef
26.
go back to reference Kjaergard LL, Villumsen J, Gluud C (2001) Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 135:982–989CrossRef Kjaergard LL, Villumsen J, Gluud C (2001) Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 135:982–989CrossRef
28.
go back to reference ClinicalTrials.gov. National Library of Medicine (U.S.). (2018). A randomized phase 3 study to evaluate two formulations of romosozumab in postmenopausal women with osteoporosis. Identifier: NCT02016716. Retrieved 10 October, 2020 from https://clinicaltrials.gov/ct2/show/NCT02016716 ClinicalTrials.gov. National Library of Medicine (U.S.). (2018). A randomized phase 3 study to evaluate two formulations of romosozumab in postmenopausal women with osteoporosis. Identifier: NCT02016716. Retrieved 10 October, 2020 from https://​clinicaltrials.​gov/​ct2/​show/​NCT02016716
29.
go back to reference ClinicalTrials.gov. National Library of Medicine (U.S.). (2019). A safety and efficacy study to evaluate romosozumab (AMG 785) in South Korean women with osteoporosis. Identifier: NCT02791516. Retrieved 10 October, 2020 from https://clinicaltrials.gov/ct2/show/study/NCT02791516 ClinicalTrials.gov. National Library of Medicine (U.S.). (2019). A safety and efficacy study to evaluate romosozumab (AMG 785) in South Korean women with osteoporosis. Identifier: NCT02791516. Retrieved 10 October, 2020 from https://​clinicaltrials.​gov/​ct2/​show/​study/​NCT02791516
30.
go back to reference Padhi D, Allison M, Kivitz AJ, Gutierrez MJ, Stouch B, Wang C, Jang G (2014) Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double-blind, placebo-controlled study. J Clin Pharmacol 54:168–178CrossRef Padhi D, Allison M, Kivitz AJ, Gutierrez MJ, Stouch B, Wang C, Jang G (2014) Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double-blind, placebo-controlled study. J Clin Pharmacol 54:168–178CrossRef
31.
go back to reference Saag KG, Petersen J, Grauer A (2018) Romosozumab versus Alendronate and Fracture risk in women with osteoporosis. N Engl J Med 378:195–196PubMed Saag KG, Petersen J, Grauer A (2018) Romosozumab versus Alendronate and Fracture risk in women with osteoporosis. N Engl J Med 378:195–196PubMed
32.
go back to reference Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, Miyauchi A, Maddox J, Chen L, Horlait S (2018) A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103:3183–3193CrossRef Lewiecki EM, Blicharski T, Goemaere S, Lippuner K, Meisner PD, Miller PD, Miyauchi A, Maddox J, Chen L, Horlait S (2018) A phase III randomized placebo-controlled trial to evaluate efficacy and safety of romosozumab in men with osteoporosis. J Clin Endocrinol Metab 103:3183–3193CrossRef
33.
go back to reference Lewiecki EM, Dinavahi RV, Lazaretti-Castro M, Ebeling PR, Adachi JD, Miyauchi A, Gielen E, Milmont CE, Libanati C, Grauer A (2019) One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME Extension Study. J Bone Miner Res 34:419–428CrossRef Lewiecki EM, Dinavahi RV, Lazaretti-Castro M, Ebeling PR, Adachi JD, Miyauchi A, Gielen E, Milmont CE, Libanati C, Grauer A (2019) One year of romosozumab followed by two years of denosumab maintains fracture risk reductions: results of the FRAME Extension Study. J Bone Miner Res 34:419–428CrossRef
34.
go back to reference McClung MR, Brown JP, Diez-Perez A et al (2018) Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a randomized, double-blind, phase 2, parallel group study. J Bone Miner Res 33:1397–1406CrossRef McClung MR, Brown JP, Diez-Perez A et al (2018) Effects of 24 months of treatment with romosozumab followed by 12 months of denosumab or placebo in postmenopausal women with low bone mineral density: a randomized, double-blind, phase 2, parallel group study. J Bone Miner Res 33:1397–1406CrossRef
35.
go back to reference Schemitsch EH, Miclau T, Karachalios T et al (2020) A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J Bone Joint Surg Am 102:693–702CrossRef Schemitsch EH, Miclau T, Karachalios T et al (2020) A randomized, placebo-controlled study of romosozumab for the treatment of hip fractures. J Bone Joint Surg Am 102:693–702CrossRef
36.
go back to reference Liu Y, Cao Y, Zhang S, Zhang W, Zhang B, Tang Q, Li Z, Wu J (2018) Romosozumab treatment in postmenopausal women with osteoporosis: a meta-analysis of randomized controlled trials. Climacteric 21:189–195CrossRef Liu Y, Cao Y, Zhang S, Zhang W, Zhang B, Tang Q, Li Z, Wu J (2018) Romosozumab treatment in postmenopausal women with osteoporosis: a meta-analysis of randomized controlled trials. Climacteric 21:189–195CrossRef
37.
go back to reference Hernandez AV, Pérez-López FR, Piscoya A, Pasupuleti V, Roman YM, Thota P, Herrera A (2019) Comparative efficacy of bone anabolic therapies in women with postmenopausal osteoporosis: a systematic review and network meta-analysis of randomized controlled trials. Maturitas 129:12–22CrossRef Hernandez AV, Pérez-López FR, Piscoya A, Pasupuleti V, Roman YM, Thota P, Herrera A (2019) Comparative efficacy of bone anabolic therapies in women with postmenopausal osteoporosis: a systematic review and network meta-analysis of randomized controlled trials. Maturitas 129:12–22CrossRef
38.
go back to reference Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427CrossRef Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427CrossRef
39.
go back to reference Möckel L, Bartneck M, Möckel C (2020) Risk of falls in postmenopausal women treated with romosozumab: preliminary indices from a meta-analysis of randomized, controlled trials. Osteoporosis Sarcopenia 6:20–26CrossRef Möckel L, Bartneck M, Möckel C (2020) Risk of falls in postmenopausal women treated with romosozumab: preliminary indices from a meta-analysis of randomized, controlled trials. Osteoporosis Sarcopenia 6:20–26CrossRef
40.
go back to reference Kaveh S, Hosseinifard H, Ghadimi N, Vojdanian M, Aryankhesal A (2020) Efficacy and safety of Romosozumab in treatment for low bone mineral density: a systematic review and meta-analysis. Clin Rheumatol 39:3261–3276CrossRef Kaveh S, Hosseinifard H, Ghadimi N, Vojdanian M, Aryankhesal A (2020) Efficacy and safety of Romosozumab in treatment for low bone mineral density: a systematic review and meta-analysis. Clin Rheumatol 39:3261–3276CrossRef
41.
go back to reference Chen W, Yang H, Jiang XJAoJ, (2020) Effects of romosozumab on low bone mineral density or osteoporosis in postmenopausal women: a systematic review. Ann Joint 5:18–18CrossRef Chen W, Yang H, Jiang XJAoJ, (2020) Effects of romosozumab on low bone mineral density or osteoporosis in postmenopausal women: a systematic review. Ann Joint 5:18–18CrossRef
42.
go back to reference Mariscal G, Nuñez JH, Bhatia S, Barrios C, Domenech-Fernández P (2020) Safety of romosozumab in osteoporotic men and postmenopausal women: a meta-analysis and systematic review. Monoclonal antibodies in immunodiagnosis and immunotherapy 39:29–36CrossRef Mariscal G, Nuñez JH, Bhatia S, Barrios C, Domenech-Fernández P (2020) Safety of romosozumab in osteoporotic men and postmenopausal women: a meta-analysis and systematic review. Monoclonal antibodies in immunodiagnosis and immunotherapy 39:29–36CrossRef
Metadata
Title
A systematic review and meta-analysis of efficacy and safety of Romosozumab in postmenopausal osteoporosis
Authors
S. Singh
S. Dutta
S. Khasbage
T. Kumar
J. Sachin
J. Sharma
S B Varthya
Publication date
01-01-2022
Publisher
Springer London
Published in
Osteoporosis International / Issue 1/2022
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-021-06095-y

Other articles of this Issue 1/2022

Osteoporosis International 1/2022 Go to the issue