Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

01-12-2022 | Acute Kidney Injury | Research

Derivation and validation of urinary TIMP-1 for the prediction of acute kidney injury and mortality in critically ill children

Authors: Hui Huang, Qiang Lin, Xiaomei Dai, Jiao Chen, Zhenjiang Bai, Xiaozhong Li, Fang Fang, Yanhong Li

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Acute kidney injury (AKI) is associated with high morbidity and mortality. Multiple urinary biomarkers have been identified to be associated with the prediction of AKI and outcomes. However, the accuracy of these urinary biomarkers for AKI and associated outcomes has not been clearly defined, especially in heterogeneous populations. The aims of the study were to compare the ability of 10 existing or potential urinary biomarkers to predict AKI and pediatric intensive care unit (PICU) mortality and validate urinary tissue inhibitor of metalloproteinases-1 (uTIMP-1) as a better biomarker for early prediction in heterogeneous critically ill children.

Methods

A derivation-validation approach with separate critically ill cohorts was designed. We first conducted a prospective cohort study to determine the ability of 10 urinary biomarkers serially measured in 123 children during the first 7 days of PICU stay to predict AKI and PICU mortality (derivation study) and further validated the better biomarker of uTIMP-1 in a separate cohort of 357 critically ill children (validation study). AKI diagnosis was based on KDIGO classification with serum creatinine and urine output. PICU mortality was defined as all-cause mortality.

Results

In the derivation cohort, 17 of 123 (13.8%) children developed AKI stage 3 or died during the PICU stay, and both the initial and peak uTIMP-1 displayed the highest AUCs of 0.87 (0.79–0.94) and 0.90 (0.84–0.96), respectively, for predicting AKI stage 3 or death. In the validation cohort, 78 of 357 (21.8%) developed AKI during the first week after admission, and 38 (10.6%) died during the PICU stay. The initial uTIMP-1 level was validated to be independently associated with AKI (AOR = 2.88, 95% CI 1.97–4.21), severe AKI (AOR = 2.62, 95% CI 1.78–3.88), AKI stage 3 (AOR = 2.94, 95% CI 1.84–4.68) and PICU mortality (AOR = 1.92, 95% CI 1.11–3.30) after adjustment for potential confounders. The predictive values of uTIMP-1 for AKI, severe AKI, AKI stage 3 and PICU mortality were 0.80 (0.74–0.86), 0.83 (0.77–0.89), 0.84 (0.77–0.92) and 0.83 (0.76–0.89), respectively.

Conclusions

Urinary TIMP-1 levels have been identified and validated to be independently associated with AKI and PICU mortality in independent prospective cohorts and may be an early potential indicator of AKI and PICU mortality in critically ill children.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.PubMed Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, Investigators A. Epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med. 2017;376:11–20.PubMed
3.
go back to reference Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.PubMed Kellum JA, Prowle JR. Paradigms of acute kidney injury in the intensive care setting. Nat Rev Nephrol. 2018;14:217–30.PubMed
4.
go back to reference Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.PubMed Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.PubMed
5.
go back to reference Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol. 2017;12:149–73.PubMed Malhotra R, Siew ED. Biomarkers for the early detection and prognosis of acute kidney injury. Clin J Am Soc Nephrol. 2017;12:149–73.PubMed
6.
go back to reference Kestenbaum B, Seliger SL. Commentary on biomarkers for early detection and prognosis of AKI. Clin J Am Soc Nephrol. 2017;12:174–5.PubMed Kestenbaum B, Seliger SL. Commentary on biomarkers for early detection and prognosis of AKI. Clin J Am Soc Nephrol. 2017;12:174–5.PubMed
7.
go back to reference Honore PM, Jacobs R, Joannes-Boyau O, Verfaillie L, De Regt J, Van Gorp V, et al. Biomarkers for early diagnosis of AKI in the ICU: ready for prime time use at the bedside? Ann Intensive Care. 2012;2:24.PubMedPubMedCentral Honore PM, Jacobs R, Joannes-Boyau O, Verfaillie L, De Regt J, Van Gorp V, et al. Biomarkers for early diagnosis of AKI in the ICU: ready for prime time use at the bedside? Ann Intensive Care. 2012;2:24.PubMedPubMedCentral
8.
go back to reference Lameire NH, Vanholder RC, Van Biesen WA. How to use biomarkers efficiently in acute kidney injury. Kidney Int. 2011;79:1047–50.PubMed Lameire NH, Vanholder RC, Van Biesen WA. How to use biomarkers efficiently in acute kidney injury. Kidney Int. 2011;79:1047–50.PubMed
10.
go back to reference McCaffrey J, Dhakal AK, Milford DV, Webb NJ, Lennon R. Recent developments in the detection and management of acute kidney injury. Arch Dis Child. 2017;102:91–6.PubMed McCaffrey J, Dhakal AK, Milford DV, Webb NJ, Lennon R. Recent developments in the detection and management of acute kidney injury. Arch Dis Child. 2017;102:91–6.PubMed
11.
go back to reference Li Y, Wang J, Bai Z, Chen J, Wang X, Pan J, et al. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr. 2016;175:39–48.PubMed Li Y, Wang J, Bai Z, Chen J, Wang X, Pan J, et al. Early fluid overload is associated with acute kidney injury and PICU mortality in critically ill children. Eur J Pediatr. 2016;175:39–48.PubMed
12.
go back to reference Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated pediatric risk of mortality score. Crit Care Med. 1996;24:743–52.PubMed Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated pediatric risk of mortality score. Crit Care Med. 1996;24:743–52.PubMed
13.
go back to reference Fang F, Hu X, Dai X, Wang S, Bai Z, Chen J, et al. Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children. Crit Care. 2018;22:256.PubMedPubMedCentral Fang F, Hu X, Dai X, Wang S, Bai Z, Chen J, et al. Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children. Crit Care. 2018;22:256.PubMedPubMedCentral
14.
go back to reference Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.PubMed Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179–84.PubMed
15.
go back to reference Soler YA, Nieves-Plaza M, Prieto M, Garcia-De Jesus R, Suarez-Rivera M. Pediatric risk, injury, failure, loss, end-stage renal disease score identifies acute kidney injury and predicts mortality in critically ill children: a prospective study. Pediatr Crit Care Med. 2013;14:e189–95.PubMedPubMedCentral Soler YA, Nieves-Plaza M, Prieto M, Garcia-De Jesus R, Suarez-Rivera M. Pediatric risk, injury, failure, loss, end-stage renal disease score identifies acute kidney injury and predicts mortality in critically ill children: a prospective study. Pediatr Crit Care Med. 2013;14:e189–95.PubMedPubMedCentral
16.
go back to reference Volpon LC, Sugo EK, Consulin JC, Tavares TL, Aragon DC, Carlotti AP. Epidemiology and outcome of acute kidney injury according to pediatric risk, injury, failure, loss, end-stage renal disease and kidney disease: improving global outcomes criteria in critically ill children—a prospective study. Pediatr Crit Care Med. 2016;17:e229–38.PubMed Volpon LC, Sugo EK, Consulin JC, Tavares TL, Aragon DC, Carlotti AP. Epidemiology and outcome of acute kidney injury according to pediatric risk, injury, failure, loss, end-stage renal disease and kidney disease: improving global outcomes criteria in critically ill children—a prospective study. Pediatr Crit Care Med. 2016;17:e229–38.PubMed
17.
go back to reference Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3:948–54.PubMedPubMedCentral Zappitelli M, Parikh CR, Akcan-Arikan A, Washburn KK, Moffett BS, Goldstein SL. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin J Am Soc Nephrol. 2008;3:948–54.PubMedPubMedCentral
18.
go back to reference Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–90.PubMed Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–90.PubMed
19.
go back to reference Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.PubMedPubMedCentral Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–37.PubMedPubMedCentral
20.
go back to reference Chen J, Sun Y, Wang S, Dai X, Huang H, Bai Z, et al. The effectiveness of urinary TIMP-2 and IGFBP-7 in predicting acute kidney injury in critically ill neonates. Pediatr Res. 2020;87:1052–9.PubMed Chen J, Sun Y, Wang S, Dai X, Huang H, Bai Z, et al. The effectiveness of urinary TIMP-2 and IGFBP-7 in predicting acute kidney injury in critically ill neonates. Pediatr Res. 2020;87:1052–9.PubMed
21.
go back to reference Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25.PubMedPubMedCentral Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25.PubMedPubMedCentral
22.
go back to reference Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Govil D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.PubMed Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Govil D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–23.PubMed
23.
go back to reference Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11:R84.PubMedPubMedCentral Zappitelli M, Washburn KK, Arikan AA, Loftis L, Ma Q, Devarajan P, et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit Care. 2007;11:R84.PubMedPubMedCentral
24.
go back to reference Mishra OP, Rai AK, Srivastava P, Pandey K, Abhinay A, Prasad R, et al. Predictive ability of urinary biomarkers for outcome in children with acute kidney injury. Pediatr Nephrol. 2017;32:521–7.PubMed Mishra OP, Rai AK, Srivastava P, Pandey K, Abhinay A, Prasad R, et al. Predictive ability of urinary biomarkers for outcome in children with acute kidney injury. Pediatr Nephrol. 2017;32:521–7.PubMed
25.
go back to reference Zwiers AJ, de Wildt SN, van Rosmalen J, de Rijke YB, Buijs EA, Tibboel D, et al. Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study. Crit Care. 2015;19:181.PubMedPubMedCentral Zwiers AJ, de Wildt SN, van Rosmalen J, de Rijke YB, Buijs EA, Tibboel D, et al. Urinary neutrophil gelatinase-associated lipocalin identifies critically ill young children with acute kidney injury following intensive care admission: a prospective cohort study. Crit Care. 2015;19:181.PubMedPubMedCentral
26.
go back to reference Westhoff JH, Tonshoff B, Waldherr S, Poschl J, Teufel U, Westhoff TH, et al. Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) * insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS ONE. 2015;10:e0143628.PubMedPubMedCentral Westhoff JH, Tonshoff B, Waldherr S, Poschl J, Teufel U, Westhoff TH, et al. Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) * insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS ONE. 2015;10:e0143628.PubMedPubMedCentral
27.
go back to reference Ivanisevic I, Peco-Antic A, Vulicevic I, Hercog D, Milovanovic V, Kotur-Stevuljevic J, et al. L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol. 2013;28:963–9.PubMed Ivanisevic I, Peco-Antic A, Vulicevic I, Hercog D, Milovanovic V, Kotur-Stevuljevic J, et al. L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol. 2013;28:963–9.PubMed
28.
go back to reference Bai Z, Fang F, Xu Z, Lu C, Wang X, Chen J, et al. Serum and urine FGF23 and IGFBP-7 for the prediction of acute kidney injury in critically ill children. BMC Pediatr. 2018;18:192.PubMedPubMedCentral Bai Z, Fang F, Xu Z, Lu C, Wang X, Chen J, et al. Serum and urine FGF23 and IGFBP-7 for the prediction of acute kidney injury in critically ill children. BMC Pediatr. 2018;18:192.PubMedPubMedCentral
30.
go back to reference Erez DL, Denburg MR, Afolayan S, Jodele S, Wallace G, Davies SM, et al. Acute kidney injury in children after hematopoietic cell transplantation is associated with elevated urine CXCL10 and CXCL9. Biol Blood Marrow Transplant. 2020;26:1266–72.PubMedPubMedCentral Erez DL, Denburg MR, Afolayan S, Jodele S, Wallace G, Davies SM, et al. Acute kidney injury in children after hematopoietic cell transplantation is associated with elevated urine CXCL10 and CXCL9. Biol Blood Marrow Transplant. 2020;26:1266–72.PubMedPubMedCentral
31.
go back to reference Huang H, Zhou H, Wang W, Dai X, Li W, Chen J, et al. Prediction of acute kidney injury, sepsis and mortality in children with urinary CXCL10. Pediatr Res. 2021. Huang H, Zhou H, Wang W, Dai X, Li W, Chen J, et al. Prediction of acute kidney injury, sepsis and mortality in children with urinary CXCL10. Pediatr Res. 2021.
32.
go back to reference Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008;73:465–72.PubMed Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I, Moore P, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2008;73:465–72.PubMed
33.
go back to reference Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58:2301–9.PubMedPubMedCentral Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58:2301–9.PubMedPubMedCentral
34.
go back to reference Jia HM, Huang LF, Zheng Y, Li WX. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis. Crit Care. 2017;21:77.PubMedPubMedCentral Jia HM, Huang LF, Zheng Y, Li WX. Diagnostic value of urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 for acute kidney injury: a meta-analysis. Crit Care. 2017;21:77.PubMedPubMedCentral
35.
go back to reference George B, Wen X, Mercke N, Gomez M, O’Bryant C, Bowles DW, et al. Profiling of kidney injury biomarkers in patients receiving cisplatin: time-dependent changes in the absence of clinical nephrotoxicity. Clin Pharmacol Ther. 2017;101:510–8.PubMed George B, Wen X, Mercke N, Gomez M, O’Bryant C, Bowles DW, et al. Profiling of kidney injury biomarkers in patients receiving cisplatin: time-dependent changes in the absence of clinical nephrotoxicity. Clin Pharmacol Ther. 2017;101:510–8.PubMed
36.
go back to reference O’Seaghdha CM, Hwang SJ, Larson MG, Meigs JB, Vasan RS, Fox CS. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol. 2013;24:1880–8.PubMedPubMedCentral O’Seaghdha CM, Hwang SJ, Larson MG, Meigs JB, Vasan RS, Fox CS. Analysis of a urinary biomarker panel for incident kidney disease and clinical outcomes. J Am Soc Nephrol. 2013;24:1880–8.PubMedPubMedCentral
37.
go back to reference Woolley DE, Roberts DR, Evanson JM. Inhibition of human collagenase activity by a small molecular weight serum protein. Biochem Biophys Res Commun. 1975;66:747–54.PubMed Woolley DE, Roberts DR, Evanson JM. Inhibition of human collagenase activity by a small molecular weight serum protein. Biochem Biophys Res Commun. 1975;66:747–54.PubMed
38.
go back to reference Ries C. Cytokine functions of TIMP-1. Cell Mol Life Sci. 2014;71:659–72.PubMed Ries C. Cytokine functions of TIMP-1. Cell Mol Life Sci. 2014;71:659–72.PubMed
39.
go back to reference Hoffmann D, Fuchs TC, Henzler T, Matheis KA, Herget T, Dekant W, et al. Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology. 2010;277:49–58.PubMed Hoffmann D, Fuchs TC, Henzler T, Matheis KA, Herget T, Dekant W, et al. Evaluation of a urinary kidney biomarker panel in rat models of acute and subchronic nephrotoxicity. Toxicology. 2010;277:49–58.PubMed
40.
go back to reference Won AJ, Kim S, Kim YG, Kim KB, Choi WS, Kacew S, et al. Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury. Mol Biosyst. 2016;12:133–44.PubMed Won AJ, Kim S, Kim YG, Kim KB, Choi WS, Kacew S, et al. Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury. Mol Biosyst. 2016;12:133–44.PubMed
41.
go back to reference Kim KS, Yang HY, Song H, Kang YR, Kwon J, An J, et al. Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury. J Toxicol Environ Health A. 2017;80:453–64.PubMed Kim KS, Yang HY, Song H, Kang YR, Kwon J, An J, et al. Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury. J Toxicol Environ Health A. 2017;80:453–64.PubMed
42.
go back to reference Bojic S, Kotur-Stevuljevic J, Kalezic N, Stevanovic P, Jelic-Ivanovic Z, Bilanovic D, et al. Diagnostic value of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in sepsis-associated acute kidney injury. Tohoku J Exp Med. 2015;237:103–9.PubMed Bojic S, Kotur-Stevuljevic J, Kalezic N, Stevanovic P, Jelic-Ivanovic Z, Bilanovic D, et al. Diagnostic value of matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in sepsis-associated acute kidney injury. Tohoku J Exp Med. 2015;237:103–9.PubMed
43.
go back to reference Lorente L, Martin MM, Labarta L, Diaz C, Sole-Violan J, Blanquer J, et al. Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. Crit Care. 2009;13:R158.PubMedPubMedCentral Lorente L, Martin MM, Labarta L, Diaz C, Sole-Violan J, Blanquer J, et al. Matrix metalloproteinase-9, -10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. Crit Care. 2009;13:R158.PubMedPubMedCentral
44.
go back to reference Bojic S, Kotur-Stevuljevic J, Aleksic A, Gacic J, Memon L, Simic-Ogrizovic S. Matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in sepsis after major abdominal surgery. Dis Markers. 2018;2018:5064684.PubMedPubMedCentral Bojic S, Kotur-Stevuljevic J, Aleksic A, Gacic J, Memon L, Simic-Ogrizovic S. Matrix metalloproteinase-9 and tissue inhibitor of matrix metalloproteinase-1 in sepsis after major abdominal surgery. Dis Markers. 2018;2018:5064684.PubMedPubMedCentral
45.
go back to reference Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15:R146.PubMedPubMedCentral Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15:R146.PubMedPubMedCentral
Metadata
Title
Derivation and validation of urinary TIMP-1 for the prediction of acute kidney injury and mortality in critically ill children
Authors
Hui Huang
Qiang Lin
Xiaomei Dai
Jiao Chen
Zhenjiang Bai
Xiaozhong Li
Fang Fang
Yanhong Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03302-0

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.