Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Review

Non-viral gene delivery systems for tissue repair and regeneration

Authors: Pan Wu, Haojiao Chen, Ronghua Jin, Tingting Weng, Jon Kee Ho, Chuangang You, Liping Zhang, Xingang Wang, Chunmao Han

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Critical tissue defects frequently result from trauma, burns, chronic wounds and/or surgery. The ideal treatment for such tissue loss is autografting, but donor sites are often limited. Tissue engineering (TE) is an inspiring alternative for tissue repair and regeneration (TRR). One of the current state-of-the-art methods for TRR is gene therapy. Non-viral gene delivery systems (nVGDS) have great potential for TE and have several advantages over viral delivery including lower immunogenicity and toxicity, better cell specificity, better modifiability, and higher productivity. However, there is no ideal nVGDS for TRR, hence, there is widespread research to improve their properties. This review introduces the basic principles and key aspects of commonly-used nVGDSs. We focus on recent advances in their applications, current challenges, and future directions.
Literature
1.
go back to reference Peck MD. Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns. 2011;37(7):1087–100.PubMedCrossRef Peck MD. Epidemiology of burns throughout the world. Part I: distribution and risk factors. Burns. 2011;37(7):1087–100.PubMedCrossRef
3.
go back to reference Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003;55(12):1595–611.PubMedCrossRef Ruszczak Z. Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev. 2003;55(12):1595–611.PubMedCrossRef
4.
go back to reference Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918–29.PubMedPubMedCentralCrossRef Spicer PP, Kretlow JD, Young S, Jansen JA, Kasper FK, Mikos AG. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat Protoc. 2012;7(10):1918–29.PubMedPubMedCentralCrossRef
6.
go back to reference Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8(6):457–70.PubMedCrossRef Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8(6):457–70.PubMedCrossRef
7.
go back to reference Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007;28(6):1123–31.PubMedCrossRef Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH. Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials. 2007;28(6):1123–31.PubMedCrossRef
8.
go back to reference Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003;20(8):1103–12.PubMedCrossRef Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res. 2003;20(8):1103–12.PubMedCrossRef
9.
go back to reference Raftery RM, Walsh DP, Castano IM, Heise A, Duffy GP, Cryan SA, et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv Mater. 2016;28(27):5447–69.PubMedCrossRef Raftery RM, Walsh DP, Castano IM, Heise A, Duffy GP, Cryan SA, et al. Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv Mater. 2016;28(27):5447–69.PubMedCrossRef
10.
go back to reference Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14(1):46–60.PubMed Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14(1):46–60.PubMed
11.
go back to reference Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.PubMedCrossRef Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–58.PubMedCrossRef
12.
go back to reference Majidi A, Nikkhah M, Sadeghian F, Hosseinkhani S. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: imitation of a real cargo. Eur J Pharm Biopharm. 2016;107:191–204.PubMedCrossRef Majidi A, Nikkhah M, Sadeghian F, Hosseinkhani S. Development of novel recombinant biomimetic chimeric MPG-based peptide as nanocarriers for gene delivery: imitation of a real cargo. Eur J Pharm Biopharm. 2016;107:191–204.PubMedCrossRef
13.
go back to reference Kulkarni M, Greiser U, O’Brien T, Pandit A. Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol. 2010;28(1):28–36.PubMedCrossRef Kulkarni M, Greiser U, O’Brien T, Pandit A. Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol. 2010;28(1):28–36.PubMedCrossRef
14.
go back to reference Islam MA, Park TE, Singh B, Maharjan S, Firdous J, Cho M, et al. Major degradable polycations as carriers for DNA and siRNA. J Control Release. 2014;193:74–89.PubMedCrossRef Islam MA, Park TE, Singh B, Maharjan S, Firdous J, Cho M, et al. Major degradable polycations as carriers for DNA and siRNA. J Control Release. 2014;193:74–89.PubMedCrossRef
15.
go back to reference Jung M, Shim I, Kim E, Park Y, Yang Y, Lee S, et al. Controlled release of cell-permeable gene complex from poly(l-lactide) scaffold for enhanced stem cell tissue engineering. J Control Release. 2011;152(2):294–302.PubMedCrossRef Jung M, Shim I, Kim E, Park Y, Yang Y, Lee S, et al. Controlled release of cell-permeable gene complex from poly(l-lactide) scaffold for enhanced stem cell tissue engineering. J Control Release. 2011;152(2):294–302.PubMedCrossRef
16.
go back to reference Wang W, Balk M, Deng Z, Wischke C, Gossen M, Behl M, et al. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J Control Release. 2016;242:71–9.PubMedCrossRef Wang W, Balk M, Deng Z, Wischke C, Gossen M, Behl M, et al. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J Control Release. 2016;242:71–9.PubMedCrossRef
17.
go back to reference Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H, Coelho JFJ. High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 2017;47:113–23.PubMedCrossRef Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H, Coelho JFJ. High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 2017;47:113–23.PubMedCrossRef
18.
go back to reference Buschmann J, Harter L, Gao S, Hemmi S, Welti M, Hild N, et al. Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury. 2012;43(10):1689–97.PubMedCrossRef Buschmann J, Harter L, Gao S, Hemmi S, Welti M, Hild N, et al. Tissue engineered bone grafts based on biomimetic nanocomposite PLGA/amorphous calcium phosphate scaffold and human adipose-derived stem cells. Injury. 2012;43(10):1689–97.PubMedCrossRef
19.
go back to reference Figueroa ER, Lin AY, Yan J, Luo L, Foster AE, Drezek RA. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials. 2014;35(5):1725–34.PubMedCrossRef Figueroa ER, Lin AY, Yan J, Luo L, Foster AE, Drezek RA. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials. 2014;35(5):1725–34.PubMedCrossRef
20.
go back to reference Park HJ, Yang F, Cho SW. Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev. 2012;64(1):40–52.PubMedCrossRef Park HJ, Yang F, Cho SW. Nonviral delivery of genetic medicine for therapeutic angiogenesis. Adv Drug Deliv Rev. 2012;64(1):40–52.PubMedCrossRef
21.
go back to reference Lu CH, Chang YH, Lin SY, Li KC, Hu YC. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv. 2013;31(8):1695–706.PubMedCrossRef Lu CH, Chang YH, Lin SY, Li KC, Hu YC. Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv. 2013;31(8):1695–706.PubMedCrossRef
22.
23.
go back to reference Fang JM, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA. 1996;93(12):5753–8.PubMedPubMedCentralCrossRef Fang JM, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci USA. 1996;93(12):5753–8.PubMedPubMedCentralCrossRef
24.
go back to reference Trentin D, Hubbell J, Hall H. Non-viral gene delivery for local and controlled DNA release. J Control Release. 2005;102(1):263–75.PubMedCrossRef Trentin D, Hubbell J, Hall H. Non-viral gene delivery for local and controlled DNA release. J Control Release. 2005;102(1):263–75.PubMedCrossRef
26.
go back to reference Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol. 2010;21(5):640–5.PubMedCrossRef Pichon C, Billiet L, Midoux P. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr Opin Biotechnol. 2010;21(5):640–5.PubMedCrossRef
27.
go back to reference Zhang R, Zheng N, Song Z, Yin L, Cheng J. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials. 2014;35(10):3443–54.PubMedPubMedCentralCrossRef Zhang R, Zheng N, Song Z, Yin L, Cheng J. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials. 2014;35(10):3443–54.PubMedPubMedCentralCrossRef
28.
go back to reference Siegman S, Truong NF, Segura T. Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation. Acta Biomater. 2015;28:45–54.PubMedPubMedCentralCrossRef Siegman S, Truong NF, Segura T. Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation. Acta Biomater. 2015;28:45–54.PubMedPubMedCentralCrossRef
29.
go back to reference Deng X, Zheng N, Song Z, Yin L, Cheng J. Trigger-responsive, fast-degradable poly(beta-amino ester)s for enhanced DNA unpackaging and reduced toxicity. Biomaterials. 2014;35(18):5006–15.PubMedPubMedCentralCrossRef Deng X, Zheng N, Song Z, Yin L, Cheng J. Trigger-responsive, fast-degradable poly(beta-amino ester)s for enhanced DNA unpackaging and reduced toxicity. Biomaterials. 2014;35(18):5006–15.PubMedPubMedCentralCrossRef
30.
go back to reference Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, et al. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012;158(3):371–8.PubMedCrossRef Xiang S, Tong H, Shi Q, Fernandes JC, Jin T, Dai K, et al. Uptake mechanisms of non-viral gene delivery. J Control Release. 2012;158(3):371–8.PubMedCrossRef
31.
go back to reference Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–96.PubMedCrossRef Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–96.PubMedCrossRef
33.
go back to reference Hamano N, Negishi Y, Fujisawa A, Manandhar M, Sato H, Katagiri F, et al. Modification of the C16Y peptide on nanoparticles is an effective approach to target endothelial and cancer cells via the integrin receptor. Int J Pharm. 2012;428(1–2):114–7.PubMedCrossRef Hamano N, Negishi Y, Fujisawa A, Manandhar M, Sato H, Katagiri F, et al. Modification of the C16Y peptide on nanoparticles is an effective approach to target endothelial and cancer cells via the integrin receptor. Int J Pharm. 2012;428(1–2):114–7.PubMedCrossRef
34.
go back to reference Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomed. 2015;10:2191–206. Murugan K, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int J Nanomed. 2015;10:2191–206.
35.
go back to reference Remaut K, Oorschot V, Braeckmans K, Klumperman J, De Smedt SC. Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: an additional barrier to non viral gene delivery. J Control Release. 2014;195:29–36.PubMedCrossRef Remaut K, Oorschot V, Braeckmans K, Klumperman J, De Smedt SC. Lysosomal capturing of cytoplasmic injected nanoparticles by autophagy: an additional barrier to non viral gene delivery. J Control Release. 2014;195:29–36.PubMedCrossRef
36.
go back to reference Singh B, Maharjan S, Park TE, Jiang T, Kang SK, Choi YJ, et al. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci. 2015;15(5):622–35.PubMedCrossRef Singh B, Maharjan S, Park TE, Jiang T, Kang SK, Choi YJ, et al. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci. 2015;15(5):622–35.PubMedCrossRef
37.
go back to reference Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–63.PubMedCrossRef Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–63.PubMedCrossRef
38.
go back to reference Boussif O, Zanta MA, Behr JP. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996;3(12):1074–80.PubMed Boussif O, Zanta MA, Behr JP. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther. 1996;3(12):1074–80.PubMed
39.
go back to reference Pigeon L, Goncalves C, Gosset D, Pichon C, Midoux P. An E3-14.7K peptide that promotes microtubules-mediated transport of plasmid DNA increases polyplexes transfection efficiency. Small. 2013;9(22):3845–51.PubMedCrossRef Pigeon L, Goncalves C, Gosset D, Pichon C, Midoux P. An E3-14.7K peptide that promotes microtubules-mediated transport of plasmid DNA increases polyplexes transfection efficiency. Small. 2013;9(22):3845–51.PubMedCrossRef
41.
go back to reference Kirchenbuechler I, Kirchenbuechler D, Elbaum M. Correlation between cationic lipid-based transfection and cell division. Exp Cell Res. 2016;345(1):1–5.PubMedCrossRef Kirchenbuechler I, Kirchenbuechler D, Elbaum M. Correlation between cationic lipid-based transfection and cell division. Exp Cell Res. 2016;345(1):1–5.PubMedCrossRef
42.
43.
go back to reference Mclane LM, Corbett AH. Nuclear localization signals and human disease. IUBMB Life. 2009;61(7):697–706.PubMedCrossRef Mclane LM, Corbett AH. Nuclear localization signals and human disease. IUBMB Life. 2009;61(7):697–706.PubMedCrossRef
44.
go back to reference Miller AM, Dean DA. Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev. 2009;61(7–8):603–13.PubMedCrossRef Miller AM, Dean DA. Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Deliv Rev. 2009;61(7–8):603–13.PubMedCrossRef
45.
go back to reference Cohen RN, van der Aa MA, Macaraeg N, Lee AP, Szoka FJ. Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Control Release. 2009;135(2):166–74.PubMedPubMedCentralCrossRef Cohen RN, van der Aa MA, Macaraeg N, Lee AP, Szoka FJ. Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection. J Control Release. 2009;135(2):166–74.PubMedPubMedCentralCrossRef
46.
go back to reference Chandrashekhar C, Pons B, Muller CD, Tounsi N, Mulherkar R, Zuber G. Oligobenzylethylenimine enriches linear polyethylenimine with a pH-sensitive membrane-disruptive property and leads to enhanced gene delivery activity. Acta Biomater. 2013;9(2):4985–93.PubMedCrossRef Chandrashekhar C, Pons B, Muller CD, Tounsi N, Mulherkar R, Zuber G. Oligobenzylethylenimine enriches linear polyethylenimine with a pH-sensitive membrane-disruptive property and leads to enhanced gene delivery activity. Acta Biomater. 2013;9(2):4985–93.PubMedCrossRef
47.
go back to reference Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface. 2010;7(Suppl 1):S67–82.PubMedCrossRef Grigsby CL, Leong KW. Balancing protection and release of DNA: tools to address a bottleneck of non-viral gene delivery. J R Soc Interface. 2010;7(Suppl 1):S67–82.PubMedCrossRef
48.
go back to reference Yin L, Song Z, Kim KH, Zheng N, Tang H, Lu H, et al. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials. 2013;34(9):2340–9.PubMedCrossRef Yin L, Song Z, Kim KH, Zheng N, Tang H, Lu H, et al. Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. Biomaterials. 2013;34(9):2340–9.PubMedCrossRef
49.
go back to reference Raisin S, Belamie E, Morille M. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials. 2016;104:223–37.PubMedCrossRef Raisin S, Belamie E, Morille M. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials. 2016;104:223–37.PubMedCrossRef
50.
go back to reference Newcomb CJ, Sur S, Ortony JH, Lee OS, Matson JB, Boekhoven J, et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat Commun. 2014;5:3321.PubMedPubMedCentralCrossRef Newcomb CJ, Sur S, Ortony JH, Lee OS, Matson JB, Boekhoven J, et al. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures. Nat Commun. 2014;5:3321.PubMedPubMedCentralCrossRef
51.
go back to reference Escriou V, Carriere M, Scherman D, Wils P. NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv Drug Deliv Rev. 2003;55(PII S0169-409X(02)00184-92):295–306.PubMedCrossRef Escriou V, Carriere M, Scherman D, Wils P. NLS bioconjugates for targeting therapeutic genes to the nucleus. Adv Drug Deliv Rev. 2003;55(PII S0169-409X(02)00184-92):295–306.PubMedCrossRef
52.
go back to reference Hu Y, Xu B, Ji Q, Shou D, Sun X, Xu J, et al. A mannosylated cell-penetrating peptide-graft-polyethylenimine as a gene delivery vector. Biomaterials. 2014;35(13):4236–46.PubMedCrossRef Hu Y, Xu B, Ji Q, Shou D, Sun X, Xu J, et al. A mannosylated cell-penetrating peptide-graft-polyethylenimine as a gene delivery vector. Biomaterials. 2014;35(13):4236–46.PubMedCrossRef
53.
go back to reference Ter-Avetisyan G, Tunnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, et al. Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem. 2009;284(6):3370–8.PubMedPubMedCentralCrossRef Ter-Avetisyan G, Tunnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, et al. Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem. 2009;284(6):3370–8.PubMedPubMedCentralCrossRef
54.
go back to reference Nomani A, Hyvönen Z, Pulkkinen E, Hiekkala M, Ruponen M. Intracellular gene delivery is dependent on the type of non-viral carrier and defined by the cell surface glycosaminoglycans. J Control Release. 2014;187:59–65.PubMedCrossRef Nomani A, Hyvönen Z, Pulkkinen E, Hiekkala M, Ruponen M. Intracellular gene delivery is dependent on the type of non-viral carrier and defined by the cell surface glycosaminoglycans. J Control Release. 2014;187:59–65.PubMedCrossRef
55.
go back to reference Hwang ME, Keswani RK, Pack DW. Dependence of PEI and PAMAM gene delivery on clathrin- and caveolin-dependent trafficking pathways. Pharm Res. 2015;32(6):2051–9.PubMedCrossRef Hwang ME, Keswani RK, Pack DW. Dependence of PEI and PAMAM gene delivery on clathrin- and caveolin-dependent trafficking pathways. Pharm Res. 2015;32(6):2051–9.PubMedCrossRef
56.
go back to reference Minchin RF, Yang S. Endosomal disruptors in non-viral gene delivery. Expert Opin Drug Deliv. 2010;7(3):331–9.PubMedCrossRef Minchin RF, Yang S. Endosomal disruptors in non-viral gene delivery. Expert Opin Drug Deliv. 2010;7(3):331–9.PubMedCrossRef
57.
go back to reference Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliver Rev. 2012;64(1):78–94.CrossRef Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliver Rev. 2012;64(1):78–94.CrossRef
58.
go back to reference Majumdar A, Petrescu AD, Xiong Y, Noy N. Nuclear translocation of cellular retinoic acid-binding protein II is regulated by retinoic acid-controlled SUMOylation. J Biol Chem. 2011;286(49):42749–57.PubMedPubMedCentralCrossRef Majumdar A, Petrescu AD, Xiong Y, Noy N. Nuclear translocation of cellular retinoic acid-binding protein II is regulated by retinoic acid-controlled SUMOylation. J Biol Chem. 2011;286(49):42749–57.PubMedPubMedCentralCrossRef
59.
go back to reference Tanaka H, Akita H, Ishiba R, Tange K, Arai M, Kubo K, et al. Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-scaffold for nuclear targeting of plasmid DNA. Biomaterials. 2014;35(5):1755–61.PubMedCrossRef Tanaka H, Akita H, Ishiba R, Tange K, Arai M, Kubo K, et al. Neutral biodegradable lipid-envelope-type nanoparticle using vitamin A-scaffold for nuclear targeting of plasmid DNA. Biomaterials. 2014;35(5):1755–61.PubMedCrossRef
60.
go back to reference Wang M, Hu H, Sun Y, Qiu L, Zhang J, Guan G, et al. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan—PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials. 2013;34(38):10120–32.PubMedCrossRef Wang M, Hu H, Sun Y, Qiu L, Zhang J, Guan G, et al. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan—PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials. 2013;34(38):10120–32.PubMedCrossRef
61.
go back to reference Takasu A, Kondo S, Ito A, Furukawa Y, Higuchi M, Kinoshita T, et al. Artificial extracellular matrix proteins containing phenylalanine analogues biosynthesized in bacteria using t7 expression system and the PEGylation. Biomacromol. 2011;12(10):3444–52.CrossRef Takasu A, Kondo S, Ito A, Furukawa Y, Higuchi M, Kinoshita T, et al. Artificial extracellular matrix proteins containing phenylalanine analogues biosynthesized in bacteria using t7 expression system and the PEGylation. Biomacromol. 2011;12(10):3444–52.CrossRef
62.
go back to reference Yang Y, Li X, Cheng L, He S, Zou J, Chen F, et al. Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater. 2011;7(6):2533–43.PubMedCrossRef Yang Y, Li X, Cheng L, He S, Zou J, Chen F, et al. Core-sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater. 2011;7(6):2533–43.PubMedCrossRef
63.
go back to reference Naicker K, Ariatti M, Singh M. PEGylated galactosylated cationic liposomes for hepatocytic gene delivery. Colloids Surf B Biointerfaces. 2014;122:482–90.PubMedCrossRef Naicker K, Ariatti M, Singh M. PEGylated galactosylated cationic liposomes for hepatocytic gene delivery. Colloids Surf B Biointerfaces. 2014;122:482–90.PubMedCrossRef
64.
go back to reference Rata-Aguilar A, Segovia-Ramos N, Jódar-Reyes AB, Ramos-Pérez V, Borrós S, Ortega-Vinuesa JL, et al. The role of hydrophobic alkyl chains in the physicochemical properties of poly(β-amino ester)/DNA complexes. Colloids Surf B Biointerfaces. 2015;126:374–80.PubMedCrossRef Rata-Aguilar A, Segovia-Ramos N, Jódar-Reyes AB, Ramos-Pérez V, Borrós S, Ortega-Vinuesa JL, et al. The role of hydrophobic alkyl chains in the physicochemical properties of poly(β-amino ester)/DNA complexes. Colloids Surf B Biointerfaces. 2015;126:374–80.PubMedCrossRef
65.
go back to reference Yu B, Ouyang C, Qiu K, Zhao J, Ji L, Chao H. Lipophilic tetranuclear ruthenium(II) complexes as two-photon luminescent tracking non-viral gene vectors. Chem Eur J. 2015;21(9):3691–700.PubMedCrossRef Yu B, Ouyang C, Qiu K, Zhao J, Ji L, Chao H. Lipophilic tetranuclear ruthenium(II) complexes as two-photon luminescent tracking non-viral gene vectors. Chem Eur J. 2015;21(9):3691–700.PubMedCrossRef
66.
go back to reference Eltoukhy AA, Chen D, Alabi CA, Langer R, Anderson DG. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv Mater. 2013;25(10):1487–93.PubMedCrossRef Eltoukhy AA, Chen D, Alabi CA, Langer R, Anderson DG. Degradable terpolymers with alkyl side chains demonstrate enhanced gene delivery potency and nanoparticle stability. Adv Mater. 2013;25(10):1487–93.PubMedCrossRef
67.
go back to reference More HT, Frezzo JA, Dai J, Yamano S, Montclare JK. Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials. 2014;35(25):7188–93.PubMedPubMedCentralCrossRef More HT, Frezzo JA, Dai J, Yamano S, Montclare JK. Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials. 2014;35(25):7188–93.PubMedPubMedCentralCrossRef
68.
go back to reference Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release. 2014;174:126–36.PubMedCrossRef Wang F, Wang Y, Zhang X, Zhang W, Guo S, Jin F. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release. 2014;174:126–36.PubMedCrossRef
69.
go back to reference Li W, Liu Y, Du J, Ren K, Wang Y. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection. Nanoscale. 2015;7(18):8476–84.PubMedCrossRef Li W, Liu Y, Du J, Ren K, Wang Y. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection. Nanoscale. 2015;7(18):8476–84.PubMedCrossRef
70.
go back to reference Zhu K, Li J, Lai H, Yang C, Guo C, Wang C. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system. Int J Nanomed. 2014;9:5837–47. Zhu K, Li J, Lai H, Yang C, Guo C, Wang C. Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nanoparticles based non-viral gene delivery system. Int J Nanomed. 2014;9:5837–47.
71.
go back to reference Mccarthy HO, Mccaffrey J, Mccrudden CM, Zholobenko A, Ali AA, Mcbride JW, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release. 2014;189:141–9.PubMedCrossRef Mccarthy HO, Mccaffrey J, Mccrudden CM, Zholobenko A, Ali AA, Mcbride JW, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release. 2014;189:141–9.PubMedCrossRef
72.
go back to reference Zheng N, Yin L, Song Z, Ma L, Tang H, Gabrielson NP, et al. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials. 2014;35(4):1302–14.PubMedCrossRef Zheng N, Yin L, Song Z, Ma L, Tang H, Gabrielson NP, et al. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials. 2014;35(4):1302–14.PubMedCrossRef
73.
go back to reference Gabrielson NP, Lu H, Yin L, Kim KH, Cheng J. A cell-penetrating helical polymer for siRNA delivery to mammalian cells. Mol Ther. 2012;20(8):1599–609.PubMedPubMedCentralCrossRef Gabrielson NP, Lu H, Yin L, Kim KH, Cheng J. A cell-penetrating helical polymer for siRNA delivery to mammalian cells. Mol Ther. 2012;20(8):1599–609.PubMedPubMedCentralCrossRef
74.
go back to reference Lu H, Wang J, Bai Y, Lang JW, Liu S, Lin Y, et al. Ionic polypeptides with unusual helical stability. Nat Commun. 2011;2:206.PubMedCrossRef Lu H, Wang J, Bai Y, Lang JW, Liu S, Lin Y, et al. Ionic polypeptides with unusual helical stability. Nat Commun. 2011;2:206.PubMedCrossRef
75.
go back to reference Letoha T, Kolozsi C, Ekes C, Keller-Pinter A, Kusz E, Szakonyi G, et al. Contribution of syndecans to lipoplex-mediated gene delivery. Eur J Pharm Sci. 2013;49(4):550–5.PubMedCrossRef Letoha T, Kolozsi C, Ekes C, Keller-Pinter A, Kusz E, Szakonyi G, et al. Contribution of syndecans to lipoplex-mediated gene delivery. Eur J Pharm Sci. 2013;49(4):550–5.PubMedCrossRef
76.
go back to reference Gu J, Chen X, Xin H, Fang X, Sha X. Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. Int J Pharm. 2014;461(1–2):559–69.PubMedCrossRef Gu J, Chen X, Xin H, Fang X, Sha X. Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. Int J Pharm. 2014;461(1–2):559–69.PubMedCrossRef
77.
go back to reference Lee W, Kim Y, Zhang Q, Park T, Kang S, Kim D, et al. Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis. Nanomed Nanotechnol Biol Med. 2014;10(3):525–34.CrossRef Lee W, Kim Y, Zhang Q, Park T, Kang S, Kim D, et al. Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis. Nanomed Nanotechnol Biol Med. 2014;10(3):525–34.CrossRef
78.
go back to reference Weng A, Manunta MDI, Thakur M, Gilabert-Oriol R, Tagalakis AD, Eddaoudi A, et al. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. J Control Release. 2015;206:75–90.PubMedCrossRef Weng A, Manunta MDI, Thakur M, Gilabert-Oriol R, Tagalakis AD, Eddaoudi A, et al. Improved intracellular delivery of peptide- and lipid-nanoplexes by natural glycosides. J Control Release. 2015;206:75–90.PubMedCrossRef
80.
go back to reference Zhang Q, Yi W, Wang B, Zhang J, Ren L, Chen Q, et al. Linear polycations by ring-opening polymerization as non-viral gene delivery vectors. Biomaterials. 2013;34(21):5391–401.PubMedCrossRef Zhang Q, Yi W, Wang B, Zhang J, Ren L, Chen Q, et al. Linear polycations by ring-opening polymerization as non-viral gene delivery vectors. Biomaterials. 2013;34(21):5391–401.PubMedCrossRef
81.
go back to reference Soltani F, Sankian M, Hatefi A, Ramezani M. Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery. Int J Pharm. 2013;441(1–2):307–15.PubMedCrossRef Soltani F, Sankian M, Hatefi A, Ramezani M. Development of a novel histone H1-based recombinant fusion peptide for targeted non-viral gene delivery. Int J Pharm. 2013;441(1–2):307–15.PubMedCrossRef
82.
go back to reference Won Y, Adhikary PP, Lim KS, Kim HJ, Kim JK, Kim Y. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat Mater. 2014;13(12):1157–64.PubMedCrossRef Won Y, Adhikary PP, Lim KS, Kim HJ, Kim JK, Kim Y. Oligopeptide complex for targeted non-viral gene delivery to adipocytes. Nat Mater. 2014;13(12):1157–64.PubMedCrossRef
83.
go back to reference Beloor J, Ramakrishna S, Nam K, Seon Choi C, Kim J, Kim SH, et al. Effective gene delivery into human stem cells with a cell-targeting peptide-modified bioreducible polymer. Small. 2015;11(17):2069–79.PubMedCrossRef Beloor J, Ramakrishna S, Nam K, Seon Choi C, Kim J, Kim SH, et al. Effective gene delivery into human stem cells with a cell-targeting peptide-modified bioreducible polymer. Small. 2015;11(17):2069–79.PubMedCrossRef
84.
go back to reference Chu DS, Schellinger JG, Bocek MJ, Johnson RN, Pun SH. Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery. Biomaterials. 2013;34(37):9632–7.PubMedCrossRef Chu DS, Schellinger JG, Bocek MJ, Johnson RN, Pun SH. Optimization of Tet1 ligand density in HPMA-co-oligolysine copolymers for targeted neuronal gene delivery. Biomaterials. 2013;34(37):9632–7.PubMedCrossRef
85.
go back to reference Schellinger JG, Pahang JA, Johnson RN, Chu DS, Sellers DL, Maris DO, et al. Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Biomaterials. 2013;34(9):2318–26.PubMedCrossRef Schellinger JG, Pahang JA, Johnson RN, Chu DS, Sellers DL, Maris DO, et al. Melittin-grafted HPMA-oligolysine based copolymers for gene delivery. Biomaterials. 2013;34(9):2318–26.PubMedCrossRef
86.
go back to reference Zhang M, Xu R, Xia X, Yang Y, Gu J, Qin G, et al. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials. 2014;35(1):423–31.PubMedCrossRef Zhang M, Xu R, Xia X, Yang Y, Gu J, Qin G, et al. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials. 2014;35(1):423–31.PubMedCrossRef
88.
89.
go back to reference Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, et al. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials. 2011;32(2):469–77.PubMedCrossRef Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, et al. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials. 2011;32(2):469–77.PubMedCrossRef
90.
go back to reference Li A, Qin L, Zhu D, Zhu R, Sun J, Wang S. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials. 2010;31(4):748–56.PubMedCrossRef Li A, Qin L, Zhu D, Zhu R, Sun J, Wang S. Signalling pathways involved in the activation of dendritic cells by layered double hydroxide nanoparticles. Biomaterials. 2010;31(4):748–56.PubMedCrossRef
91.
go back to reference Wang J, Zhu R, Gao B, Wu B, Li K, Sun X, et al. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials. 2014;35(1):466–78.PubMedCrossRef Wang J, Zhu R, Gao B, Wu B, Li K, Sun X, et al. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. Biomaterials. 2014;35(1):466–78.PubMedCrossRef
92.
go back to reference Xing R, Liu G, Zhu J, Hou Y, Chen X. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. Pharm Res. 2014;31(6):1377–89.PubMedCrossRef Xing R, Liu G, Zhu J, Hou Y, Chen X. Functional magnetic nanoparticles for non-viral gene delivery and MR imaging. Pharm Res. 2014;31(6):1377–89.PubMedCrossRef
93.
go back to reference Ewe A, Schaper A, Barnert S, Schubert R, Temme A, Bakowsky U, et al. Storage stability of optimal liposome–polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomater. 2014;10(6):2663–73.PubMedCrossRef Ewe A, Schaper A, Barnert S, Schubert R, Temme A, Bakowsky U, et al. Storage stability of optimal liposome–polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomater. 2014;10(6):2663–73.PubMedCrossRef
94.
go back to reference Mead BP, Mastorakos P, Suk JS, Klibanov AL, Hanes J, Price RJ. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release. 2016;223:109–17.PubMedCrossRef Mead BP, Mastorakos P, Suk JS, Klibanov AL, Hanes J, Price RJ. Targeted gene transfer to the brain via the delivery of brain-penetrating DNA nanoparticles with focused ultrasound. J Control Release. 2016;223:109–17.PubMedCrossRef
95.
go back to reference Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. Adv Genet. 2015;89:25–48.PubMed Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. Adv Genet. 2015;89:25–48.PubMed
96.
go back to reference Yamamoto M, Tabata Y. Tissue engineering by modulated gene delivery. Adv Drug Deliv Rev. 2006;58(4):535–54.PubMedCrossRef Yamamoto M, Tabata Y. Tissue engineering by modulated gene delivery. Adv Drug Deliv Rev. 2006;58(4):535–54.PubMedCrossRef
97.
go back to reference Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.PubMedCrossRef Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.PubMedCrossRef
98.
go back to reference Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev. 2012;41(21):7147–94.PubMedCrossRef Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, et al. Cationic polymers and their therapeutic potential. Chem Soc Rev. 2012;41(21):7147–94.PubMedCrossRef
99.
go back to reference Buyens K, De Smedt SC, Braeckmans K, Demeester J, Peeters L, van Grunsven LA, et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release. 2012;158(3):362–70.PubMedCrossRef Buyens K, De Smedt SC, Braeckmans K, Demeester J, Peeters L, van Grunsven LA, et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release. 2012;158(3):362–70.PubMedCrossRef
100.
go back to reference Yao Q, Cosme JGL, Xu T, Miszuk JM, Picciani PHS, Fong H, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–27.PubMedCrossRef Yao Q, Cosme JGL, Xu T, Miszuk JM, Picciani PHS, Fong H, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–27.PubMedCrossRef
101.
go back to reference Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12(4):459–65.PubMedCrossRef Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006;12(4):459–65.PubMedCrossRef
102.
go back to reference Cho SW, Yang F, Son SM, Park HJ, Green JJ, Bogatyrev S, et al. Therapeutic angiogenesis using genetically engineered human endothelial cells. J Control Release. 2012;160(3):515–24.PubMedPubMedCentralCrossRef Cho SW, Yang F, Son SM, Park HJ, Green JJ, Bogatyrev S, et al. Therapeutic angiogenesis using genetically engineered human endothelial cells. J Control Release. 2012;160(3):515–24.PubMedPubMedCentralCrossRef
103.
go back to reference Georgiou M, Bunting SCJ, Davies HA, Loughlin AJ, Golding JP, Phillips JB. Engineered neural tissue for peripheral nerve repair. Biomaterials. 2013;34(30):7335–43.PubMedCrossRef Georgiou M, Bunting SCJ, Davies HA, Loughlin AJ, Golding JP, Phillips JB. Engineered neural tissue for peripheral nerve repair. Biomaterials. 2013;34(30):7335–43.PubMedCrossRef
104.
go back to reference Frohlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther. 2008;3(4):254–64.PubMedPubMedCentralCrossRef Frohlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther. 2008;3(4):254–64.PubMedPubMedCentralCrossRef
105.
go back to reference Wegman F, Geuze RE, van der Helm YJ, Cumhur OF, Dhert WJ, Alblas J. Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model. J Tissue Eng Regen Med. 2014;8(10):763–70.PubMedCrossRef Wegman F, Geuze RE, van der Helm YJ, Cumhur OF, Dhert WJ, Alblas J. Gene delivery of bone morphogenetic protein-2 plasmid DNA promotes bone formation in a large animal model. J Tissue Eng Regen Med. 2014;8(10):763–70.PubMedCrossRef
106.
go back to reference Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 2008;90(Suppl 1):48–54.PubMedCrossRef Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE. Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am. 2008;90(Suppl 1):48–54.PubMedCrossRef
107.
go back to reference Intra J, Salem AK. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release. 2008;130(2):129–38.PubMedPubMedCentralCrossRef Intra J, Salem AK. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release. 2008;130(2):129–38.PubMedPubMedCentralCrossRef
108.
go back to reference Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethyleneimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45(3):268–75.PubMedCrossRef Godbey WT, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly(ethyleneimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45(3):268–75.PubMedCrossRef
109.
go back to reference Elangovan S, D’Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–47.PubMedCrossRef Elangovan S, D’Mello SR, Hong L, Ross RD, Allamargot C, Dawson DV, et al. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials. 2014;35(2):737–47.PubMedCrossRef
110.
go back to reference Reckhenrich AK, Koch C, Egana JT, Plank C. The use of non-viral gene vectors for bioactive poly-(d, l-lactide) implant surfaces in bone tissue engineering. Eur Cell Mater. 2012;23:441–8.PubMedCrossRef Reckhenrich AK, Koch C, Egana JT, Plank C. The use of non-viral gene vectors for bioactive poly-(d, l-lactide) implant surfaces in bone tissue engineering. Eur Cell Mater. 2012;23:441–8.PubMedCrossRef
111.
go back to reference Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T, et al. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther. 2007;15(9):1655–62.PubMedCrossRef Itaka K, Ohba S, Miyata K, Kawaguchi H, Nakamura K, Takato T, et al. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles. Mol Ther. 2007;15(9):1655–62.PubMedCrossRef
112.
go back to reference Nguyen MK, Jeon O, Krebs MD, Schapira D, Alsberg E. Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials. 2014;35(24):6278–86.PubMedPubMedCentralCrossRef Nguyen MK, Jeon O, Krebs MD, Schapira D, Alsberg E. Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials. 2014;35(24):6278–86.PubMedPubMedCentralCrossRef
113.
go back to reference Kasper FK, Kushibiki T, Kimura Y, Mikos AG, Tabata Y. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres. J Control Release. 2005;107(3):547–61.PubMedCrossRef Kasper FK, Kushibiki T, Kimura Y, Mikos AG, Tabata Y. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres. J Control Release. 2005;107(3):547–61.PubMedCrossRef
114.
go back to reference Kasper FK, Young S, Tanahashi K, Barry MA, Tabata Y, Jansen JA, et al. Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect. J Biomed Mater Res A. 2006;78(2):335–42.PubMedCrossRef Kasper FK, Young S, Tanahashi K, Barry MA, Tabata Y, Jansen JA, et al. Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect. J Biomed Mater Res A. 2006;78(2):335–42.PubMedCrossRef
115.
go back to reference Chew SA, Kretlow JD, Spicer PP, Edwards AW, Baggett LS, Tabata Y, et al. Delivery of plasmid DNA encoding bone morphogenetic protein-2 with a biodegradable branched polycationic polymer in a critical-size rat cranial defect model. Tissue Eng Part A. 2011;17(5–6):751–63.PubMedCrossRef Chew SA, Kretlow JD, Spicer PP, Edwards AW, Baggett LS, Tabata Y, et al. Delivery of plasmid DNA encoding bone morphogenetic protein-2 with a biodegradable branched polycationic polymer in a critical-size rat cranial defect model. Tissue Eng Part A. 2011;17(5–6):751–63.PubMedCrossRef
116.
go back to reference Zhao X, Li Z, Pan H, Liu W, Lv M, Leung F, et al. Enhanced gene delivery by chitosan-disulfide-conjugated LMW-PEI for facilitating osteogenic differentiation. Acta Biomater. 2013;9(5):6694–703.PubMedCrossRef Zhao X, Li Z, Pan H, Liu W, Lv M, Leung F, et al. Enhanced gene delivery by chitosan-disulfide-conjugated LMW-PEI for facilitating osteogenic differentiation. Acta Biomater. 2013;9(5):6694–703.PubMedCrossRef
117.
go back to reference Shekaran A, García JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, et al. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials. 2014;35(21):5453–61.PubMedPubMedCentralCrossRef Shekaran A, García JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, et al. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials. 2014;35(21):5453–61.PubMedPubMedCentralCrossRef
118.
go back to reference Pan H, Zheng Q, Yang S, Guo X, Wu B, Zou Z, et al. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration. J Biomed Mater Res A. 2014;102(8):2864–74.PubMedCrossRef Pan H, Zheng Q, Yang S, Guo X, Wu B, Zou Z, et al. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration. J Biomed Mater Res A. 2014;102(8):2864–74.PubMedCrossRef
119.
go back to reference Macdonald KK, Cheung CY, Anseth KS. Cellular delivery of TGFbeta1 promotes osteoinductive signalling for bone regeneration. J Tissue Eng Regen Med. 2007;1(4):314–7.PubMedCrossRef Macdonald KK, Cheung CY, Anseth KS. Cellular delivery of TGFbeta1 promotes osteoinductive signalling for bone regeneration. J Tissue Eng Regen Med. 2007;1(4):314–7.PubMedCrossRef
120.
go back to reference Yan J, Zhang C, Zhao Y, Cao C, Wu K, Zhao L, et al. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials. 2014;35(27):7734–49.PubMedCrossRef Yan J, Zhang C, Zhao Y, Cao C, Wu K, Zhao L, et al. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials. 2014;35(27):7734–49.PubMedCrossRef
121.
go back to reference Oliveira AC, Ferraz MP, Monteiro FJ, Simoes S. Cationic liposome-DNA complexes as gene delivery vectors: development and behaviour towards bone-like cells. Acta Biomater. 2009;5(6):2142–51.PubMedCrossRef Oliveira AC, Ferraz MP, Monteiro FJ, Simoes S. Cationic liposome-DNA complexes as gene delivery vectors: development and behaviour towards bone-like cells. Acta Biomater. 2009;5(6):2142–51.PubMedCrossRef
122.
go back to reference Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28(6):1267–79.PubMedCrossRef Olton D, Li J, Wilson ME, Rogers T, Close J, Huang L, et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28(6):1267–79.PubMedCrossRef
123.
go back to reference Zhang X, Kovtun A, Mendoza-Palomares C, Oulad-Abdelghani M, Fioretti F, Rinckenbach S, et al. SiRNA-loaded multi-shell nanoparticles incorporated into a multilayered film as a reservoir for gene silencing. Biomaterials. 2010;31(23):6013–8.PubMedCrossRef Zhang X, Kovtun A, Mendoza-Palomares C, Oulad-Abdelghani M, Fioretti F, Rinckenbach S, et al. SiRNA-loaded multi-shell nanoparticles incorporated into a multilayered film as a reservoir for gene silencing. Biomaterials. 2010;31(23):6013–8.PubMedCrossRef
124.
go back to reference Uskokovic V, Uskokovic DP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater. 2011;96(1):152–91.PubMedCrossRef Uskokovic V, Uskokovic DP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater. 2011;96(1):152–91.PubMedCrossRef
125.
go back to reference Ma J, Wang J, Ai X, Zhang S. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnol Adv. 2014;32(4):744–60.PubMedCrossRef Ma J, Wang J, Ai X, Zhang S. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates. Biotechnol Adv. 2014;32(4):744–60.PubMedCrossRef
126.
go back to reference Curtin CM, Tierney EG, Mcsorley K, Cryan SA, Duffy GP, O’Brien FJ. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater. 2015;4(2):223–7.PubMedCrossRef Curtin CM, Tierney EG, Mcsorley K, Cryan SA, Duffy GP, O’Brien FJ. Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater. 2015;4(2):223–7.PubMedCrossRef
127.
go back to reference Rose LC, Kucharski C, Uludag H. Protein expression following non-viral delivery of plasmid DNA coding for basic FGF and BMP-2 in a rat ectopic model. Biomaterials. 2012;33(11):3363–74.PubMedCrossRef Rose LC, Kucharski C, Uludag H. Protein expression following non-viral delivery of plasmid DNA coding for basic FGF and BMP-2 in a rat ectopic model. Biomaterials. 2012;33(11):3363–74.PubMedCrossRef
128.
129.
go back to reference Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19(1):243.PubMedPubMedCentralCrossRef Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19(1):243.PubMedPubMedCentralCrossRef
130.
go back to reference Wood FM. Skin regeneration: the complexities of translation into clinical practise. Int J Biochem Cell Biol. 2014;56:133–40.PubMedCrossRef Wood FM. Skin regeneration: the complexities of translation into clinical practise. Int J Biochem Cell Biol. 2014;56:133–40.PubMedCrossRef
131.
go back to reference Dieckmann C, Renner R, Milkova L, Simon JC. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp Dermatol. 2010;19(8):697–706.PubMedCrossRef Dieckmann C, Renner R, Milkova L, Simon JC. Regenerative medicine in dermatology: biomaterials, tissue engineering, stem cells, gene transfer and beyond. Exp Dermatol. 2010;19(8):697–706.PubMedCrossRef
132.
go back to reference Guo R, Xu S, Ma L, Huang A, Gao C. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen–chitosan dermal equivalents. Biomaterials. 2011;32(4):1019–31.PubMedCrossRef Guo R, Xu S, Ma L, Huang A, Gao C. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen–chitosan dermal equivalents. Biomaterials. 2011;32(4):1019–31.PubMedCrossRef
133.
go back to reference Liu X, Ma L, Liang J, Zhang B, Teng J, Gao C. RNAi functionalized collagen–chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials. 2013;34(8):2038–48.PubMedCrossRef Liu X, Ma L, Liang J, Zhang B, Teng J, Gao C. RNAi functionalized collagen–chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials. 2013;34(8):2038–48.PubMedCrossRef
134.
go back to reference Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell AL, Kyriakides TR, Saltzman WM. An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials. 2013;34(15):3891–901.PubMedPubMedCentralCrossRef Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell AL, Kyriakides TR, Saltzman WM. An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials. 2013;34(15):3891–901.PubMedPubMedCentralCrossRef
135.
go back to reference Reckhenrich AK, Hopfner U, Krotz F, Zhang Z, Koch C, Kremer M, et al. Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector. Biomaterials. 2011;32(7):1996–2003.PubMedCrossRef Reckhenrich AK, Hopfner U, Krotz F, Zhang Z, Koch C, Kremer M, et al. Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector. Biomaterials. 2011;32(7):1996–2003.PubMedCrossRef
136.
go back to reference He S, Xia T, Wang H, Wei L, Luo X, Li X. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater. 2012;8(7):2659–69.PubMedCrossRef He S, Xia T, Wang H, Wei L, Luo X, Li X. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater. 2012;8(7):2659–69.PubMedCrossRef
137.
go back to reference Monaghan M, Browne S, Schenke-Layland K, Pandit A. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol Ther. 2014;22(4):786–96.PubMedPubMedCentralCrossRef Monaghan M, Browne S, Schenke-Layland K, Pandit A. A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol Ther. 2014;22(4):786–96.PubMedPubMedCentralCrossRef
138.
go back to reference Thiersch M, Rimann M, Panagiotopoulou V, Ozturk E, Biedermann T, Textor M, et al. The angiogenic response to PLL-g-PEG-mediated HIF-1alpha plasmid DNA delivery in healthy and diabetic rats. Biomaterials. 2013;34(16):4173–82.PubMedCrossRef Thiersch M, Rimann M, Panagiotopoulou V, Ozturk E, Biedermann T, Textor M, et al. The angiogenic response to PLL-g-PEG-mediated HIF-1alpha plasmid DNA delivery in healthy and diabetic rats. Biomaterials. 2013;34(16):4173–82.PubMedCrossRef
139.
go back to reference Nelson CE, Gupta MK, Adolph EJ, Guelcher SA, Duvall CL. SiRNA delivery from an injectable scaffold for wound therapy. Adv Wound Care. 2013;2(3):93–9.CrossRef Nelson CE, Gupta MK, Adolph EJ, Guelcher SA, Duvall CL. SiRNA delivery from an injectable scaffold for wound therapy. Adv Wound Care. 2013;2(3):93–9.CrossRef
140.
go back to reference Hu D, Zhang Z, Zhang Y, Zhang W, Wang H, Cai W, et al. A potential skin substitute constructed with hEGF gene modified HaCaT cells for treatment of burn wounds in a rat model. Burns. 2012;38(5):702–12.PubMedCrossRef Hu D, Zhang Z, Zhang Y, Zhang W, Wang H, Cai W, et al. A potential skin substitute constructed with hEGF gene modified HaCaT cells for treatment of burn wounds in a rat model. Burns. 2012;38(5):702–12.PubMedCrossRef
141.
go back to reference Tao K, Bai XZ, Zhang ZF, Shi JH, Hu XL, Tang CW, et al. Construction of the tissue engineering seed cell (HaCaT-EGF) and analysis of its biological characteristics. Asian Pac J Trop Med. 2013;6(11):893–6.PubMedCrossRef Tao K, Bai XZ, Zhang ZF, Shi JH, Hu XL, Tang CW, et al. Construction of the tissue engineering seed cell (HaCaT-EGF) and analysis of its biological characteristics. Asian Pac J Trop Med. 2013;6(11):893–6.PubMedCrossRef
142.
go back to reference Thomas-Virnig CL, Centanni JM, Johnston CE, He LK, Schlosser SJ, Van Winkle KF, et al. Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue. Mol Ther. 2009;17(3):562–9.PubMedPubMedCentralCrossRef Thomas-Virnig CL, Centanni JM, Johnston CE, He LK, Schlosser SJ, Van Winkle KF, et al. Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue. Mol Ther. 2009;17(3):562–9.PubMedPubMedCentralCrossRef
143.
go back to reference Gibson AL, Thomas-Virnig CL, Centanni JM, Schlosser SJ, Johnston CE, Van Winkle KF, et al. Nonviral human beta defensin-3 expression in a bioengineered human skin tissue: a therapeutic alternative for infected wounds. Wound Repair Regen. 2012;20(3):414–24.PubMedPubMedCentralCrossRef Gibson AL, Thomas-Virnig CL, Centanni JM, Schlosser SJ, Johnston CE, Van Winkle KF, et al. Nonviral human beta defensin-3 expression in a bioengineered human skin tissue: a therapeutic alternative for infected wounds. Wound Repair Regen. 2012;20(3):414–24.PubMedPubMedCentralCrossRef
144.
go back to reference Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm. 2011;8(5):1471–9.PubMedCrossRef Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm. 2011;8(5):1471–9.PubMedCrossRef
145.
go back to reference Lu C, Yeh T, Yeh C, Fang YD, Sung L, Lin S, et al. Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther. 2013;22(1):186–95.PubMedPubMedCentralCrossRef Lu C, Yeh T, Yeh C, Fang YD, Sung L, Lin S, et al. Regenerating cartilages by engineered ASCs: prolonged TGF-β3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther. 2013;22(1):186–95.PubMedPubMedCentralCrossRef
146.
go back to reference Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, et al. Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater. 2013;25:248–67.PubMedCrossRef Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, et al. Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater. 2013;25:248–67.PubMedCrossRef
147.
go back to reference Lu H, Lv L, Dai Y, Wu G, Zhao H, Zhang F. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS ONE. 2013;8(7):e69950.PubMedPubMedCentralCrossRef Lu H, Lv L, Dai Y, Wu G, Zhao H, Zhang F. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS ONE. 2013;8(7):e69950.PubMedPubMedCentralCrossRef
148.
go back to reference Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, et al. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials. 2011;32(1):268–78.PubMedCrossRef Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, Do HJ, et al. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials. 2011;32(1):268–78.PubMedCrossRef
149.
go back to reference Ravi N, Gupta G, Milbrandt TA, Puleo DA. Porous PLGA scaffolds for controlled release of naked and polyethyleneimine-complexed DNA. Biomed Mater. 2012;7(5):55007.CrossRef Ravi N, Gupta G, Milbrandt TA, Puleo DA. Porous PLGA scaffolds for controlled release of naked and polyethyleneimine-complexed DNA. Biomed Mater. 2012;7(5):55007.CrossRef
150.
go back to reference Babister JC, Tare RS, Green DW, Inglis S, Mann S, Oreffo RO. Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using “bead-in-bead” polysaccharide capsules. Biomaterials. 2008;29(1):58–65.PubMedCrossRef Babister JC, Tare RS, Green DW, Inglis S, Mann S, Oreffo RO. Genetic manipulation of human mesenchymal progenitors to promote chondrogenesis using “bead-in-bead” polysaccharide capsules. Biomaterials. 2008;29(1):58–65.PubMedCrossRef
151.
go back to reference Odabas S, Feichtinger GA, Korkusuz P, Inci I, Bilgic E, Yar AS, et al. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. J Tissue Eng Regen Med. 2013;7(10):831–40.PubMed Odabas S, Feichtinger GA, Korkusuz P, Inci I, Bilgic E, Yar AS, et al. Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. J Tissue Eng Regen Med. 2013;7(10):831–40.PubMed
152.
go back to reference Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater. 2013;25:229–47.PubMedPubMedCentralCrossRef Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater. 2013;25:229–47.PubMedPubMedCentralCrossRef
153.
go back to reference Sun XD, Jeng L, Bolliet C, Olsen BR, Spector M. Non-viral endostatin plasmid transfection of mesenchymal stem cells via collagen scaffolds. Biomaterials. 2009;30(6):1222–31.PubMedCrossRef Sun XD, Jeng L, Bolliet C, Olsen BR, Spector M. Non-viral endostatin plasmid transfection of mesenchymal stem cells via collagen scaffolds. Biomaterials. 2009;30(6):1222–31.PubMedCrossRef
154.
go back to reference Goh JC, Ouyang HW, Teoh SH, Chan CK, Lee EH. Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng. 2003;9(Suppl 1):S31–44.PubMedCrossRef Goh JC, Ouyang HW, Teoh SH, Chan CK, Lee EH. Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng. 2003;9(Suppl 1):S31–44.PubMedCrossRef
155.
go back to reference Suwalski A, Dabboue H, Delalande A, Bensamoun SF, Canon F, Midoux P, et al. Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials. 2010;31(19):5237–45.PubMedCrossRef Suwalski A, Dabboue H, Delalande A, Bensamoun SF, Canon F, Midoux P, et al. Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. Biomaterials. 2010;31(19):5237–45.PubMedCrossRef
156.
go back to reference Bolt P, Clerk AN, Luu HH, Kang Q, Kummer JL, Deng ZL, et al. BMP-14 gene therapy increases tendon tensile strength in a rat model of Achilles tendon injury. J Bone Joint Surg Am. 2007;89(6):1315–20.PubMedCrossRef Bolt P, Clerk AN, Luu HH, Kang Q, Kummer JL, Deng ZL, et al. BMP-14 gene therapy increases tendon tensile strength in a rat model of Achilles tendon injury. J Bone Joint Surg Am. 2007;89(6):1315–20.PubMedCrossRef
157.
go back to reference Delalande A, Gosselin MP, Suwalski A, Guilmain W, Leduc C, Berchel M, et al. Enhanced Achilles tendon healing by fibromodulin gene transfer. Nanomedicine. 2015;11(7):1735–44.PubMedCrossRef Delalande A, Gosselin MP, Suwalski A, Guilmain W, Leduc C, Berchel M, et al. Enhanced Achilles tendon healing by fibromodulin gene transfer. Nanomedicine. 2015;11(7):1735–44.PubMedCrossRef
158.
go back to reference Zhou Y, Zhu C, Wu YF, Zhang L, Tang JB. Effective modulation of transforming growth factor-beta1 expression through engineered microRNA-based plasmid-loaded nanospheres. Cytotherapy. 2015;17(3):320–9.PubMedCrossRef Zhou Y, Zhu C, Wu YF, Zhang L, Tang JB. Effective modulation of transforming growth factor-beta1 expression through engineered microRNA-based plasmid-loaded nanospheres. Cytotherapy. 2015;17(3):320–9.PubMedCrossRef
159.
go back to reference Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–11.PubMedPubMedCentralCrossRef Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, et al. Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res. 2014;93(12):1203–11.PubMedPubMedCentralCrossRef
160.
go back to reference Chen R, Chiba M, Mori S, Fukumoto M, Kodama T. Periodontal gene transfer by ultrasound and nano/microbubbles. J Dent Res. 2009;88(11):1008–13.PubMedCrossRef Chen R, Chiba M, Mori S, Fukumoto M, Kodama T. Periodontal gene transfer by ultrasound and nano/microbubbles. J Dent Res. 2009;88(11):1008–13.PubMedCrossRef
161.
go back to reference Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 2013;34(2):393–401.PubMedCrossRef Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 2013;34(2):393–401.PubMedCrossRef
162.
go back to reference Chien Y, Chang YL, Li HY, Larsson M, Wu WW, Chien CS, et al. Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater. 2015;13:228–44.PubMedCrossRef Chien Y, Chang YL, Li HY, Larsson M, Wu WW, Chien CS, et al. Synergistic effects of carboxymethyl-hexanoyl chitosan, cationic polyurethane-short branch PEI in miR122 gene delivery: accelerated differentiation of iPSCs into mature hepatocyte-like cells and improved stem cell therapy in a hepatic failure model. Acta Biomater. 2015;13:228–44.PubMedCrossRef
163.
go back to reference Jeffery ND, Mcbain SC, Dobson J, Chari DM. Uptake of systemically administered magnetic nanoparticles (MNPs) in areas of experimental spinal cord injury (SCI). J Tissue Eng Regen Med. 2009;3(2):153–7.PubMedCrossRef Jeffery ND, Mcbain SC, Dobson J, Chari DM. Uptake of systemically administered magnetic nanoparticles (MNPs) in areas of experimental spinal cord injury (SCI). J Tissue Eng Regen Med. 2009;3(2):153–7.PubMedCrossRef
164.
go back to reference De Laporte L, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials. 2009;30(12):2361–8.PubMedPubMedCentralCrossRef De Laporte L, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials. 2009;30(12):2361–8.PubMedPubMedCentralCrossRef
165.
go back to reference De Laporte L, Huang A, Ducommun MM, Zelivyanska ML, Aviles MO, Adler AF, et al. Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomater. 2010;6(8):2889–97.PubMedPubMedCentralCrossRef De Laporte L, Huang A, Ducommun MM, Zelivyanska ML, Aviles MO, Adler AF, et al. Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomater. 2010;6(8):2889–97.PubMedPubMedCentralCrossRef
166.
go back to reference Park JS, Na K, Woo DG, Yang HN, Kim JM, Kim JH, et al. Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials. 2010;31(1):124–32.PubMedCrossRef Park JS, Na K, Woo DG, Yang HN, Kim JM, Kim JH, et al. Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials. 2010;31(1):124–32.PubMedCrossRef
167.
go back to reference Kido Y, Jo J, Tabata Y. A gene transfection for rat mesenchymal stromal cells in biodegradable gelatin scaffolds containing cationized polysaccharides. Biomaterials. 2011;32(3):919–25.PubMedCrossRef Kido Y, Jo J, Tabata Y. A gene transfection for rat mesenchymal stromal cells in biodegradable gelatin scaffolds containing cationized polysaccharides. Biomaterials. 2011;32(3):919–25.PubMedCrossRef
168.
go back to reference Mencia CI, Curtin CM, Shaw G, Murphy JM, Duffy GP, O’Brien FJ. A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. J Control Release. 2015;200:42–51.CrossRef Mencia CI, Curtin CM, Shaw G, Murphy JM, Duffy GP, O’Brien FJ. A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. J Control Release. 2015;200:42–51.CrossRef
169.
go back to reference Tokatlian T, Cam C, Siegman SN, Lei Y, Segura T. Design and characterization of microporous hyaluronic acid hydrogels for in vitro gene transfer to mMSCs. Acta Biomater. 2012;8(11):3921–31.PubMedPubMedCentralCrossRef Tokatlian T, Cam C, Siegman SN, Lei Y, Segura T. Design and characterization of microporous hyaluronic acid hydrogels for in vitro gene transfer to mMSCs. Acta Biomater. 2012;8(11):3921–31.PubMedPubMedCentralCrossRef
172.
go back to reference Mencia Castano I, Curtin CM, Duffy GP, O’Brien FJ. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis. Sci Rep. 2016;6:27941.PubMedPubMedCentralCrossRef Mencia Castano I, Curtin CM, Duffy GP, O’Brien FJ. Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis. Sci Rep. 2016;6:27941.PubMedPubMedCentralCrossRef
173.
go back to reference Kowalczewski CJ, Saul JM. Surface-mediated delivery of siRNA from fibrin hydrogels for knockdown of the BMP-2 binding antagonist noggin. Acta Biomater. 2015;25:109–20.PubMedPubMedCentralCrossRef Kowalczewski CJ, Saul JM. Surface-mediated delivery of siRNA from fibrin hydrogels for knockdown of the BMP-2 binding antagonist noggin. Acta Biomater. 2015;25:109–20.PubMedPubMedCentralCrossRef
174.
go back to reference Hwang BW, Kim SJ, Park KM, Kim H, Yeom J, Yang J, et al. Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. J Control Release. 2015;220(A):119–29.PubMedCrossRef Hwang BW, Kim SJ, Park KM, Kim H, Yeom J, Yang J, et al. Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. J Control Release. 2015;220(A):119–29.PubMedCrossRef
175.
go back to reference Tierney EG, Mcsorley K, Hastings CL, Cryan S, O’Brien T, Murphy MJ, et al. High levels of ephrinB2 over-expression increases the osteogenic differentiation of human mesenchymal stem cells and promotes enhanced cell mediated mineralisation in a polyethyleneimine-ephrinB2 gene-activated matrix. J Control Release. 2013;165(3):173–82.PubMedCrossRef Tierney EG, Mcsorley K, Hastings CL, Cryan S, O’Brien T, Murphy MJ, et al. High levels of ephrinB2 over-expression increases the osteogenic differentiation of human mesenchymal stem cells and promotes enhanced cell mediated mineralisation in a polyethyleneimine-ephrinB2 gene-activated matrix. J Control Release. 2013;165(3):173–82.PubMedCrossRef
176.
go back to reference Chen X, Nomani A, Patel N, Nouri F-S, Hatefi A. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials. 2018;152:1–14.PubMedCrossRef Chen X, Nomani A, Patel N, Nouri F-S, Hatefi A. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells. Biomaterials. 2018;152:1–14.PubMedCrossRef
177.
go back to reference Chen J, Wang Q, Zhou J, Deng W, Yu Q, Cao X, Wang J, Shao F, Li Y, Ma P, Spector M, Yu J, Xu X. Porphyra polysaccharide-derived carbon dots for non-viral co-delivery of different gene combinations and neuronal differentiation of ectodermal mesenchymal stem cells. Nanoscale. 2017;9(30):10820–31.PubMedCrossRef Chen J, Wang Q, Zhou J, Deng W, Yu Q, Cao X, Wang J, Shao F, Li Y, Ma P, Spector M, Yu J, Xu X. Porphyra polysaccharide-derived carbon dots for non-viral co-delivery of different gene combinations and neuronal differentiation of ectodermal mesenchymal stem cells. Nanoscale. 2017;9(30):10820–31.PubMedCrossRef
178.
go back to reference Gonzalez-Fernandez T, Sathy B-N, Hobbs C, Cunniffe G-M, Mccarthy H-O, Dunne N-J, Nicolosi V, O’Brien F-J, Kelly D-J. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater. 2017;55:226–38.PubMedCrossRef Gonzalez-Fernandez T, Sathy B-N, Hobbs C, Cunniffe G-M, Mccarthy H-O, Dunne N-J, Nicolosi V, O’Brien F-J, Kelly D-J. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater. 2017;55:226–38.PubMedCrossRef
179.
go back to reference Lee Y-H, Wu H-C, Yeh C-W, Kuan C-H, Liao H-T, Hsu H-C, Tsai J-C, Sun J-S, Wang T-W. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater. 2017;63:210–26.PubMedCrossRef Lee Y-H, Wu H-C, Yeh C-W, Kuan C-H, Liao H-T, Hsu H-C, Tsai J-C, Sun J-S, Wang T-W. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater. 2017;63:210–26.PubMedCrossRef
180.
go back to reference Raftery R, O’Brien F, Cryan S. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules. 2013;18(5):5611–47.PubMedCrossRef Raftery R, O’Brien F, Cryan S. Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules. 2013;18(5):5611–47.PubMedCrossRef
181.
go back to reference Raftery RM, Tierney EG, Curtin CM, Cryan SA, O’Brien FJ. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. J Control Release. 2015;210:84–94.PubMedCrossRef Raftery RM, Tierney EG, Curtin CM, Cryan SA, O’Brien FJ. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. J Control Release. 2015;210:84–94.PubMedCrossRef
182.
go back to reference Keeney M, Onyiah S, Zhang Z, Tong X, Han L, Yang F. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials. 2013;34(37):9657–65.PubMedCrossRef Keeney M, Onyiah S, Zhang Z, Tong X, Han L, Yang F. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials. 2013;34(37):9657–65.PubMedCrossRef
183.
go back to reference Holmes C, Daoud J, Bagnaninchi PO, Tabrizian M. Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment. Adv Healthc Mater. 2014;3(4):572–80.PubMedCrossRef Holmes C, Daoud J, Bagnaninchi PO, Tabrizian M. Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment. Adv Healthc Mater. 2014;3(4):572–80.PubMedCrossRef
184.
go back to reference Liu Y, Shi M, Xu M, Yang H, Wu C. Multifunctional nanoparticles of Fe3O4@SiO2(FITC)/PAH conjugated the recombinant plasmid of pIRSE2-EGFP/VEGF(165) with dual functions for gene delivery and cellular imaging. Expert Opin Drug Deliv. 2012;9(10):1197–207.PubMedCrossRef Liu Y, Shi M, Xu M, Yang H, Wu C. Multifunctional nanoparticles of Fe3O4@SiO2(FITC)/PAH conjugated the recombinant plasmid of pIRSE2-EGFP/VEGF(165) with dual functions for gene delivery and cellular imaging. Expert Opin Drug Deliv. 2012;9(10):1197–207.PubMedCrossRef
185.
go back to reference Asayama S, Kumagai T, Kawakami H. Synthesis and characterization of methylated poly(l-histidine) to control the stability of its siRNA polyion complexes for RNAi. Bioconjug Chem. 2012;23(7):1437–42.PubMedCrossRef Asayama S, Kumagai T, Kawakami H. Synthesis and characterization of methylated poly(l-histidine) to control the stability of its siRNA polyion complexes for RNAi. Bioconjug Chem. 2012;23(7):1437–42.PubMedCrossRef
186.
go back to reference Wu C, Li J, Zhu Y, Chen J, Oupický D. Opposing influence of intracellular and membrane thiols on the toxicity of reducible polycations. Biomaterials. 2013;34(34):8843–50.PubMedPubMedCentralCrossRef Wu C, Li J, Zhu Y, Chen J, Oupický D. Opposing influence of intracellular and membrane thiols on the toxicity of reducible polycations. Biomaterials. 2013;34(34):8843–50.PubMedPubMedCentralCrossRef
Metadata
Title
Non-viral gene delivery systems for tissue repair and regeneration
Authors
Pan Wu
Haojiao Chen
Ronghua Jin
Tingting Weng
Jon Kee Ho
Chuangang You
Liping Zhang
Xingang Wang
Chunmao Han
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1402-1

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue