Skip to main content
Log in

Polymeric Growth Factor Delivery Strategies for Tissue Engineering

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Tissue engineering seeks to replace and regrow damaged or diseased tissues and organs from either cells resident in the surrounding tissue or cells transplanted to the tissue site. The purpose of this review is to present the application of polymeric delivery systems for growth factor delivery in tissue engineering.

Methods. Growth factors direct the phenotype of both differentiated and stem cells, and methods used to deliver these molecules include the development of systems to deliver the protein itself, genes encoding the factor, or cells secreting the factor.

Results. Results in animal models and clinical trials indicate that these approaches may be successfully used to promote the regeneration of numerous tissue types.

Conclusions. Controlling the dose, location, and duration of these factors through polymeric delivery strategies will dictate their utility in tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Mooneyand and A. G. Mikos. Growing new organs. Sci. Am. 280:60-65 (1999).

    Google Scholar 

  2. P. Aebischer and J. Ridet. Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci. 24:533-540 (2001).

    Google Scholar 

  3. F. C. Payumo, H. D. Kim, M. A. Sherling, L. P. Smith, C. Powell, X. Wang, H. S. Keeping, R. F. Valentini, and H. H. Vandenburgh. Tissue engineering skeletal muscle for orthopaedic applications. Clin. Orthop. Oct:S228-S242 (2002).

    Google Scholar 

  4. E. Pimentel. Handbook of Growth Factors I: General Basic Aspects. CRC Press, Boca Raton, Florida, 1994.

    Google Scholar 

  5. D. F. Bowen-Pope, T. W. Malpass, D. M. Foster, and R. Ross. Platelet-derived growth factor in vivo: levels, activity, and rate of clearance. Blood 64:458-469 (1984).

    Google Scholar 

  6. E. R. Edelman, M. A. Nugent, and M. J. Karnovsky. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc. Natl. Acad. Sci. USA 90:1513-1517 (1993).

    Google Scholar 

  7. D. F. Lazarous, M. Shou, M. Scheinowitz, E. Hodge, V. Thirumurti, A. N. Kitsiou, J. A. Stiber, A. D. Lobo, S. Hunsberger, E. Guetta, S. E. Epstein, and E. F. Unger. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94:1074-1082 (1996).

    Google Scholar 

  8. G. D. Yancopoulos, S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242-248 (2000).

    Google Scholar 

  9. J. B. Murray, L. Brown, R. Langer, and M. Klagsburn. A micro sustained release system for epidermal growth factor. In Vitro 19:743-748 (1983).

    Google Scholar 

  10. V. Moulin. Growth factors in skin wound healing. Eur. J. Cell Biol. 68:1-7 (1995).

    Google Scholar 

  11. K. Hashimoto. Regulation of keratinocyte function by growth factors. J. Dermatol. Sci. 24(ppl 1):S46-S50 (2000).

    Google Scholar 

  12. C. H. Heldin and B. Westermark. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79:1283-1316 (1999).

    Google Scholar 

  13. M. H. Branton and J. B. Kopp. TGF-#x0392 and fibrosis. Microbes Infect. 1:1349-1365 (1999).

    Google Scholar 

  14. T. G. Terrell, P. K. Working, C. P. Chow, and J. D. Green. Pathology of recombinant human transforming growth factor-#x0392 1 in rats and rabbits. Int. Rev. Exp. Pathol. 34(Pt B):43-67 (1993).

    Google Scholar 

  15. A. Buckley, J. M. Davidson, C. D. Kamerath, T. B. Wolt, and S. C. Woodward. Sustained release of epidermal growth factor accelerates wound repair. Proc. Natl. Acad. Sci. USA 82:7340-7344 (1985).

    Google Scholar 

  16. T. A. Mustoe, G. F. Pierce, A. Thomason, P. Gramates, M. B. Sporn, and T. F. Deuel. Accelerated healing of incisional wounds in rats induced by transforming growth factor-#x0392. Science 237:1333-1336 (1987).

    Google Scholar 

  17. M. K. Nagau and J. M. Embil. Becaplermin: recombinant platelet derived growth factor, a new treatment for healing diabetic foot ulcers. Expert. Opin. Biol. Ther. 2:211-218 (2002).

    Google Scholar 

  18. R. J. Rohrich, S. A. Trott, M. Love, S. J. Beran, and H. H. Orenstein. Mersilene suture as a vehicle for delivery of growth factors in tendon repair. Plast. Reconstr. Surg. 104:1713-1717 (1999).

    Google Scholar 

  19. K. Ulubayram, A. Nur Cakar, P. Korkusuz, C. Ertan, and N. Hasirci. EGF containing gelatin-based wound dressings. Biomaterials 22:1345-1356 (2001).

    Google Scholar 

  20. M. Centrella, T. L. McCarthy, and E. Canalis. Effects of transforming growth factors on bone cells. Connect. Tissue Res. 20:267-275 (1989).

    Google Scholar 

  21. L. Lu, M. J. Yaszemski, and A. G. Mikos. TGF-#x03921 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J. Bone Joint. Surg. Am. 83-A(ppl 1):S82-S91 (2001).

    Google Scholar 

  22. K. Elima. Osteoinductive proteins. Ann. Med. 25:395-402 (1993).

    Google Scholar 

  23. G. Li, M. L. Bouxsein, C. Luppen, X. J. Li, M. Wood, H. J. Seeherman, J. M. Wozney, and H. Simpson. Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J. Orthop. Res. 20:779-788 (2002).

    Google Scholar 

  24. S. D. Boden, J. Kang, H. Sandhu, and J. G. Heller. Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial: 2002 Volvo Award in Clinical Studies. Spine 27:2662-2673 (2002).

    Google Scholar 

  25. K. Bessho, D. L. Carnes, R. Cavin, and J. L. Ong. Experimental studies on bone induction using low-molecular-weight poly (DL-lactide-co-glycolide) as a carrier for recombinant human bone morphogenetic protein-2. J. Biomed. Mater. Res. 61:61-65 (2002).

    Google Scholar 

  26. M. Mori, M. Isobe, Y. Yamazaki, K. Ishihara, and N. Nakabayashi. Restoration of segmental bone defects in rabbit radius by biodegradable capsules containing recombinant human bone morphogenetic protein-2. J. Biomed. Mater. Res. 50:191-198 (2000).

    Google Scholar 

  27. J. A. Burdick, M. N. Mason, A. D. Hinman, K. Thorne, and K. S. Anseth. Delivery of osteoinductive growth factors from degradable PEG hydrogels influences osteoblast differentiation and mineralization. J Control. Release 83:53-63 (2002).

    Google Scholar 

  28. B. H. Woo, B. F. Fink, R. Page, J. A. Schrier, Y. W. Jo, G. Jiang, M. DeLuca, H. C. Vasconez, and P. P. DeLuca. Enhancement of bone growth by sustained delivery of recombinant human bone morphogenetic protein-2 in a polymeric matrix. Pharm. Res. 18:1747-1753 (2001).

    Google Scholar 

  29. W. L. Murphy, M. C. Peters, D. H. Kohn, and D. J. Mooney. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21:2521-2527 (2000).

    Google Scholar 

  30. A. Minamide, M. Kawakami, H. Hashizume, R. Sakata, and T. Tamaki. Evaluation of carriers of bone morphogenetic protein for spinal fusion. Spine 26:933-939 (2001).

    Google Scholar 

  31. J. Street, M. Bao, L. deGuzman, S. Bunting, F. V. Peale Jr., N. Ferrara, H. Steinmetz, J. Hoeffel, J. L. Cleland, A. Daugherty, N. van Bruggen, H. P. Redmond, R. A. Carano, and E. H. Filvaroff. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99:9656-9661 (2002).

    Google Scholar 

  32. K. K. Hirschi, T. C. Skalak, S. M. Peirce, and C. D. Little. Vascular assembly in natural and engineered tissues. Ann. NY Acad. Sci. 961:223-242 (2002).

    Google Scholar 

  33. S. B. Freedman and J. M. Isner. Therapeutic angiogenesis for coronary artery disease. Ann. Intern. Med. 136:54-71 (2002).

    Google Scholar 

  34. R. Laham. Angiogenesis (clinical trials). Can. J. Cardiol. 17(ppl A):29A-32A (2001).

    Google Scholar 

  35. A. B. Ennett and D. J. Mooney. Tissue engineering strategies for in vivo neovascularisation. Expert. Opin. Biol. Ther. 2:805-818 (2002).

    Google Scholar 

  36. R. J. Laham, F. W. Sellke, E. R. Edelman, J. D. Pearlman, J. A. Ware, D. L. Brown, J. P. Gold, and M. Simons. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100:1865-1871 (1999).

    Google Scholar 

  37. M. C. Peters, P. J. Polverini, and D. J. Mooney. Engineering vascular networks in porous polymer matrices. J. Biomed. Mater. Res. 60:668-678 (2002).

    Google Scholar 

  38. Y. Kawakami, H. Iwata, Y. J. Gu, M. Miyamoto, Y. Murakami, A. N. Balamurugan, M. Imamura, and K. Inoue. Successful subcutaneous pancreatic islet transplantation using an angiogenic growth factor-releasing device. Pancreas 23:375-381 (2001).

    Google Scholar 

  39. H. Lee, R. A. Cusick, F. Browne, T. Ho Kim, P. X. Ma, H. Utsunomiya, R. Langer, and J. P. Vacanti. Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices. Transplantation 73:1589-1593 (2002).

    Google Scholar 

  40. T. P. Richardson, M. C. Peters, A. B. Ennett, and D. J. Mooney. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029-1034 (2001).

    Google Scholar 

  41. J. M. Isner. Myocardial gene therapy. Nature 415:234-239 (2002).

    Google Scholar 

  42. H. Kuwahara, A. T. Mitchell, M. D. Macklin, J. Zhao, D. Listengarten, and L. G. Phillips. Transfer of platelet-derived growth factor-BB gene by gene gun increases contraction of collagen lattice by fibroblasts in diabetic and non-diabetic human skin. Scand. J. Plast. Reconstr. Surg. Hand Surg. 34:301-307 (2000).

    Google Scholar 

  43. C. K. Byrnes, F. H. Khan, P. H. Nass, C. Hatoum, M. D. Duncan, and J. W. Harmon. Success and limitations of a naked plasmid transfection protocol for keratinocyte growth factor-1 to enhance cutaneous wound healing. Wound Repair Regen. 9:341-346 (2001).

    Google Scholar 

  44. D. S. Musgrave, P. Bosch, S. Ghivizzani, P. D. Robbins, C. H. Evans, and J. Huard. Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone. Bone 24:541-547 (1999).

    Google Scholar 

  45. D. F. Lazarous, M. Shou, J. A. Stiber, E. Hodge, V. Thirumurti, L. Goncalves, and E. F. Unger. Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc. Res. 44:294-302 (1999).

    Google Scholar 

  46. T. Reid, R. Warren, and D. Kirn. Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Ther. 9:979-986 (2002).

    Google Scholar 

  47. L. D. Shea, E. Smiley, J. Bonadio, and D. J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol. 17:551-554 (1999).

    Google Scholar 

  48. V. Labhasetwar, J. Bonadio, S. Goldstein, W. Chen, and R. J. Levy. A DNA controlled-release coating for gene transfer: transfection in skeletal and cardiac muscle. J. Pharm. Sci. 87:1347-1350 (1998).

    Google Scholar 

  49. D. Wang, D. R. Robinson, and G. S. Kwon. and J. Samuel. Encapsulation of plasmid DNA in biodegradable poly(D, L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Release 57:9-18 (1999).

    Google Scholar 

  50. S. A. Audouy, L. F. de Leij, D. Hoekstra, and G. Molema. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm. Res. 19:1599-1605 (2002).

    Google Scholar 

  51. J. A. Andrades, M. E. Nimni, B. Han, D. C. Ertl, F. L. Hall, and J. Becerra. Type I collagen combined with a recombinant TGF-#x0392 serves as a scaffold for mesenchymal stem cells. Int. J. Dev. Biol. (ppl 1):107S-108S (1996).

  52. E. Alsberg, K. W. Anderson, A. Albeiruti, J. A. Rowley, and D. J. Mooney. Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99:12025-12030 (2002).

    Google Scholar 

  53. K. Partridge, X. Yang, N. M. Clarke, Y. Okubo, K. Bessho, W. Sebald, S. M. Howdle, K. M. Shakesheff, and R. O. Oreffo. Adenoviral BMP-2 gene transfer in mesenchymal stem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds. Biochem. Biophys. Res. Commun. 292:144-152 (2002).

    Google Scholar 

  54. S. T. Boyce, R. J. Kagan, K. P. Yakuboff, N. A. Meyer, M. T. Rieman, D. G. Greenhalgh, and G. D. Warden. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 235:269-279 (2002).

    Google Scholar 

  55. X. Chen, M. Katakowski, Y. Li, D. Lu, L. Wang, L. Zhang, J. Chen, Y. Xu, S. Gautam, A. Mahmood, and M. Chopp. Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J. Neurosci. Res. 69:687-691 (2002).

    Google Scholar 

  56. A. S. Breitbart, J. M. Mason, C. Urmacher, M. Barcia, R. T. Grant, R. G. Pergolizzi, and D. A. Grande. Gene-enhanced tissue engineering: applications for wound healing using cultured dermal fibroblasts transduced retrovirally with the PDGF-B gene. Ann. Plast. Surg. 43:632-639 (1999).

    Google Scholar 

  57. J. M. Mason, A. S. Breitbart, M. Barcia, D. Porti, R. G. Pergolizzi, and D. A. Grande. Cartilage and bone #x00AEeneration using gene-enhanced tissue engineering. Clin. Orthop. Oct:S171-S178 (2000).

    Google Scholar 

  58. H. Iwaguro, J. Yamaguchi, C. Kalka, S. Murasawa, H. Masuda, S. Hayashi, M. Silver, T. Li, J. M. Isner, and T. Asahara. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular #x00AEeneration. Circulation 105:732-738 (2002).

    Google Scholar 

  59. Y. Lu, J. Shansky, M. Del Tatto, P. Ferland, S. McGuire, J. Marszalkowski, M. Maish, R. Hopkins, X. Wang, P. Kosnik, M. Nackman, A. Lee, B. Creswick, and H. Vandenburgh. Therapeutic potential of implanted tissue-engineered bioartificial muscles delivering recombinant proteins to the sheep heart. Ann. NY Acad. Sci. 961:78-82 (2002).

    Google Scholar 

  60. H. Peng, V. Wright, A. Usas, B. Gearhart, H. C. Shen, J. Cummins, and J. Huard. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110:751-759 (2002).

    Google Scholar 

  61. A. S. Breitbart, D. A. Grande, J. Laser, M. Barcia, D. Porti, S. Malhotra, A. Kogon, R. T. Grant, and J. M. Mason. Treatment of ischemic wounds using cultured dermal fibroblasts transduced retrovirally with PDGF-B and VEGF121 genes. Ann Plast Surg 46:555-561 (2001).

    Google Scholar 

  62. R. B. Rutherford, M. Moalli, R. T. Franceschi, D. Wang, K. Gu, and P. H. Krebsbach. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng. 8:441-452 (2002).

    Google Scholar 

  63. J. Y. Lee, S. H. Nam, S. Y. Im, Y. J. Park, Y. M. Lee, Y. J. Seol, C. P. Chung, and S. J. Lee. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J. Control. Release 78:187-197 (2002).

    Google Scholar 

  64. K. A. Hildebrand, S. L. Woo, D. W. Smith, C. R. Allen, M. Deie, B. J. Taylor, and C. C. Schmidt. The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am. J. Sports Med. 26:549-554 (1998).

    Google Scholar 

  65. D. M. Arm, A. F. Tencer, S. D. Bain, and D. Celino. Effect of controlled release of platelet-derived growth factor from a porous hydroxyapatite implant on bone ingrowth. Biomaterials 17:703-709 (1996).

    Google Scholar 

  66. C. M. Mierisch, S. B. Cohen, L. C. Jordan, P. G. Robertson, G. Balian, and D. R. Diduch. Transforming growth factor-#x0392 in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy 18:892-900 (2002).

    Google Scholar 

  67. M. Raschke, B. Wildemann, P. Inden, H. Bail, A. Flyvbjerg, J. Hoffmann, N. P. Haas, and G. Schmidmaier. Insulin-like growth factor-1 and transforming growth factor-#x03921 accelerates osteotomy healing using polylactide-coated implants as a delivery system: a biomechanical and histological study in minipigs. Bone 30:144-151 (2002).

    Google Scholar 

  68. J. W. Vehof, M. T. Haus, A. E. de Ruijter, P. H. Spauwen, and J. A. Jansen. Bone formation in transforming growth factor #x0392-I-loaded titanium fiber mesh implants. Clin. Oral Implants Res. 13:94-102 (2002).

    Google Scholar 

  69. P. A. Puolakkainen, D. R. Twardzik, J. E. Ranchalis, S. C. Pankey, M. J. Reed, and W. R. Gombotz. The enhancement in wound healing by transforming growth factor-#x0392 1 (TGF-#x0392 1) depends on the topical delivery system. J. Surg. Res. 58:321-329 (1995).

    Google Scholar 

  70. S. Govender, C. Csimma, H. K. Genant, A. Valentin-Opran, Y. Amit, R. Arbel, H. Aro, D. Atar, M. Bishay, M. G. Borner, P. Chiron, P. Choong, J. Cinats, B. Courtenay, R. Feibel, B. Geulette, C. Gravel, N. Haas, M. Raschke, E. Hammacher, D. Van Der Velde, P. Hardy, M. Holt, C. Josten, R. L. Ketterl, B. Lindeque, G. Lob, H. Mathevon, G. McCoy, D. Marsh, R. Miller, E. Munting, S. Oevre, L. Nordsletten, A. Patel, A. Pohl, W. Rennie, P. Reynders, P. M. Rommens, J. Rondia, W. C. Rossouw, P. J. Daneel, S. Ruff, A. Ruter, S. Santavirta, T. A. Schildhauer, C. Gekle, R. Schnettler, D. Segal, H. Seiler, R. B. Snowdowne, J. Stapert, G. Taglang, R. Verdonk, L. Vogels, A. Weckbach, A. Wentzensen, and T. Wisniewski. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Joint. Surg. Am. 84-A:2123-2134. (2002).

    Google Scholar 

  71. K. A. Selvig, R. G. Sorensen, J. M. Wozney, and U. M. Wikesjo. Bone repair following recombinant human bone morphogenetic protein-2 stimulated periodontal #x00AEeneration. J. Periodontol. 73:1020-1029 (2002).

    Google Scholar 

  72. S. Itoh, M. Kikuchi, K. Takakuda, K. Nagaoka, Y. Koyama, J. Tanaka, and K. Shinomiya. Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J. Biomed. Mater. Res. 63:507-515 (2002).

    Google Scholar 

  73. N. Saito, T. Okada, H. Horiuchi, N. Murakami, J. Takahashi, M. Nawata, H. Ota, K. Nozaki, and K. Takaoka. A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat. Biotechnol. 19:332-335 (2001).

    Google Scholar 

  74. T. R. Blattert, G. Delling, P. S. Dalal, C. A. Toth, H. Balling, and A. Weckbach. Successful transpedicular lumbar interbody fusion by means of a composite of osteogenic protein-1 (rhBMP-7) and hydroxyapatite carrier: a comparison with autograft and hydroxyapatite in the sheep spine. Spine 27:2697-2705 (2002).

    Google Scholar 

  75. J. N. Grauer, T. C. Patel, J. S. Erulkar, N. W. Troiano, M. M. Panjabi, and G. E. Friedlaender. 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26:127-33 (2001).

    Google Scholar 

  76. U. Ripamonti, J. Crooks, and D. C. Rueger. Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. Plast. Reconstr. Surg. 107:977-988 (2001).

    Google Scholar 

  77. K. Mizuno, K. Yamamura, K. Yano, T. Osada, S. Saeki, N. Takimoto, T. Sakurau, and Y. Nimura. Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J. Biomed. Mater. Res. 64:177-181 (2003).

    Google Scholar 

  78. J. J. Lopez, E. R. Edelman, A. Stamler, M. G. Hibberd, P. Prasad, K. A. Thomas, J. DiSalvo, R. P. Caputo, J. P. Carrozza, P. S. Douglas, F. W. Sellke, and M. Simons. Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. Am. J. Physiol. 274:H930-H936 (1998).

    Google Scholar 

  79. N. Fournier and C. J. Doillon. Biological molecule-imp#x00AEnated polyester: an in vivo angiogenesis study. Biomaterials 17:1659-1665 (1996).

    Google Scholar 

  80. J. L. Cleland, E. T. Duenas, A. Park, A. Daugherty, J. Kahn, J. Kowalski, and A. Cuthbertson. Development of poly-(D,L-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release 72:13-24 (2001).

    Google Scholar 

  81. N. Kipshidze, P. Chawla, and M. H. Keelan. Fibrin meshwork as a carrier for delivery of angiogenic growth factors in patients with ischemic limb. Mayo Clin. Proc. 74:847-848 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Mooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R.R., Mooney, D.J. Polymeric Growth Factor Delivery Strategies for Tissue Engineering. Pharm Res 20, 1103–1112 (2003). https://doi.org/10.1023/A:1025034925152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025034925152

Navigation