Skip to main content
Top
Published in: Journal of Translational Medicine 1/2017

Open Access 01-12-2017 | Research

Osteoclast profile of medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy: a comparison with osteoradionecrosis and osteomyelitis

Authors: Christian Gross, Manuel Weber, Kay Creutzburg, Patrick Möbius, Raimund Preidl, Kerstin Amann, Falk Wehrhan

Published in: Journal of Translational Medicine | Issue 1/2017

Login to get access

Abstract

Background

The medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy [MRONJ (BP)] is characterized by non-healing exposed bone in the maxillofacial region. The pathogenesis of MRONJ (BP) is not fully understood. Giant, hypernucleated, inactive osteoclasts were found in MRONJ (BP) tissues, which indicated that accelerated cell–cell fusion might play a role. Dendritic cell-specific transmembrane protein (DC-STAMP) is associated with the cell–cell fusion of osteoclasts and precursor cells. Tartrate-resistant acid phosphatase (TRAP) is essential for osteoclastic bone resorption. The cell–cell fusion, as part of the osteoclastogenesis, and the resorptive activity can determine the morphology of osteoclasts. This study analyzed jaw bone from patients with MRONJ (BP), osteomyelitis (OM) and osteoradionecrosis (ORN) because a comparison with the osteoclast profiles of OM and ORN is essential for characterizing the osteoclast profile of MRONJ (BP).

Methods

Formalin-fixed routine jaw bone specimens from 70 patients [MRONJ (BP) n = 30; OM: n = 15, ORN: n = 15, control: n = 10] were analyzed retrospectively for osteoclast quantity, morphology and the expression of TRAP and DC-STAMP. The specimens were processed for hematoxylin and eosin staining (H&E), histochemistry (TRAP) and immunohistochemistry (anti-DC-STAMP) and were analyzed via virtual microscopy.

Results

The quantity, diameter and nuclearity of osteoclasts were significantly higher in MRONJ (BP) specimens than in OM, ORN and control specimens. Giant, hypernucleated osteoclasts were detected in MRONJ (BP) specimens only. Osteoclastic TRAP expression was lower in MRONJ (BP) and ORN specimens than in OM and control specimens. The DC-STAMP expression of osteoclasts and mononuclear cells was significantly higher in MRONJ (BP) and ORN specimens than in OM and control specimens.

Conclusions

This study indicates that the osteoclast profile of MRONJ (BP) is characterized by osteoclast inactivation and a high cell–cell fusion rate; however, the presence of giant, hypernucleated osteoclasts cannot be attributed to increased DC-STAMP-triggered cell–cell fusion alone. The incidental characterization of the osteoclast profiles of OM and ORN revealed differences that might facilitate the histopathological differentiation of these diseases from MRONJ (BP), which is essential because their therapies are somewhat different.
Literature
1.
go back to reference Tomihara K, et al. Osteomyelitis of the jaw in breast cancer patients receiving bisphosphonate therapy. Gan To Kagaku Ryoho. 2008;35(1):113–6.PubMed Tomihara K, et al. Osteomyelitis of the jaw in breast cancer patients receiving bisphosphonate therapy. Gan To Kagaku Ryoho. 2008;35(1):113–6.PubMed
2.
go back to reference Ruggiero SL. Bisphosphonate-related osteonecrosis of the jaw (BRONJ): initial discovery and subsequent development. J Oral Maxillofac Surg. 2009;67(5 Suppl):13–8.CrossRefPubMed Ruggiero SL. Bisphosphonate-related osteonecrosis of the jaw (BRONJ): initial discovery and subsequent development. J Oral Maxillofac Surg. 2009;67(5 Suppl):13–8.CrossRefPubMed
3.
go back to reference Grbic JT, et al. Incidence of osteonecrosis of the jaw in women with postmenopausal osteoporosis in the health outcomes and reduced incidence with zoledronic acid once yearly pivotal fracture trial. J Am Dent Assoc. 2008;139(1):32–40.CrossRefPubMed Grbic JT, et al. Incidence of osteonecrosis of the jaw in women with postmenopausal osteoporosis in the health outcomes and reduced incidence with zoledronic acid once yearly pivotal fracture trial. J Am Dent Assoc. 2008;139(1):32–40.CrossRefPubMed
4.
go back to reference Vahtsevanos K, et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol. 2009;27(32):5356–62.CrossRefPubMed Vahtsevanos K, et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J Clin Oncol. 2009;27(32):5356–62.CrossRefPubMed
5.
go back to reference Lo JC, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010;68(2):243–53.CrossRefPubMed Lo JC, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010;68(2):243–53.CrossRefPubMed
7.
go back to reference Walter C, et al. Prevalence and risk factors of bisphosphonate-associated osteonecrosis of the jaw in prostate cancer patients with advanced disease treated with zoledronate. Eur Urol. 2008;54(5):1066–72.CrossRefPubMed Walter C, et al. Prevalence and risk factors of bisphosphonate-associated osteonecrosis of the jaw in prostate cancer patients with advanced disease treated with zoledronate. Eur Urol. 2008;54(5):1066–72.CrossRefPubMed
8.
go back to reference Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7.CrossRefPubMed Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7.CrossRefPubMed
9.
go back to reference Walter C, et al. Analysis of reasons for osteonecrosis of the jaws. Clin Oral Investig. 2014;18(9):2221–6.CrossRefPubMed Walter C, et al. Analysis of reasons for osteonecrosis of the jaws. Clin Oral Investig. 2014;18(9):2221–6.CrossRefPubMed
10.
go back to reference Khan AA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30(1):3–23.CrossRefPubMed Khan AA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30(1):3–23.CrossRefPubMed
11.
go back to reference Allen MR, Pandya B, Ruggiero SL. Lack of correlation between duration of osteonecrosis of the jaw and sequestra tissue morphology: what it tells us about the condition and what it means for future studies. J Oral Maxillofac Surg. 2010;68(11):2730–4.CrossRefPubMedPubMedCentral Allen MR, Pandya B, Ruggiero SL. Lack of correlation between duration of osteonecrosis of the jaw and sequestra tissue morphology: what it tells us about the condition and what it means for future studies. J Oral Maxillofac Surg. 2010;68(11):2730–4.CrossRefPubMedPubMedCentral
12.
go back to reference Allen MR, Ruggiero SL. Higher bone matrix density exists in only a subset of patients with bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg. 2009;67(7):1373–7.CrossRefPubMed Allen MR, Ruggiero SL. Higher bone matrix density exists in only a subset of patients with bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg. 2009;67(7):1373–7.CrossRefPubMed
13.
go back to reference Topazian RG, Osteomyelitis of jaws. In: T.R.G.G.M. H, editor. Oral and maxillofacial infections. 1994. Philadelphia: Saunders. p. 51–286. Topazian RG, Osteomyelitis of jaws. In: T.R.G.G.M. H, editor. Oral and maxillofacial infections. 1994. Philadelphia: Saunders. p. 51–286.
14.
go back to reference Scolozzi P, et al. Enteric bacteria mandibular osteomyelitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2005;99(6):e42–6.CrossRef Scolozzi P, et al. Enteric bacteria mandibular osteomyelitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2005;99(6):e42–6.CrossRef
15.
go back to reference Marx RE. Chronic osteomyelitis of the jaws. Oral Maxillofac Clin N Am. 1991;3(2):367–81. Marx RE. Chronic osteomyelitis of the jaws. Oral Maxillofac Clin N Am. 1991;3(2):367–81.
16.
go back to reference Mercuri LG. Acute osteomyelitis of the jaws. Oral Maxillofac Surg Clin N Am. 1991;3:355–65. Mercuri LG. Acute osteomyelitis of the jaws. Oral Maxillofac Surg Clin N Am. 1991;3:355–65.
17.
go back to reference Store G, Boysen M. Mandibular osteoradionecrosis: clinical behaviour and diagnostic aspects. Clin Otolaryngol Allied Sci. 2000;25(5):378–84.CrossRefPubMed Store G, Boysen M. Mandibular osteoradionecrosis: clinical behaviour and diagnostic aspects. Clin Otolaryngol Allied Sci. 2000;25(5):378–84.CrossRefPubMed
18.
go back to reference Nabil S, Samman N. Risk factors for osteoradionecrosis after head and neck radiation: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(1):54–69.CrossRefPubMed Nabil S, Samman N. Risk factors for osteoradionecrosis after head and neck radiation: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(1):54–69.CrossRefPubMed
19.
go back to reference Suh JD, et al. Disease relapse after segmental resection and free flap reconstruction for mandibular osteoradionecrosis. Otolaryngol Head Neck Surg. 2010;142(4):586–91.CrossRefPubMed Suh JD, et al. Disease relapse after segmental resection and free flap reconstruction for mandibular osteoradionecrosis. Otolaryngol Head Neck Surg. 2010;142(4):586–91.CrossRefPubMed
20.
go back to reference Studer G, Grätz KW, Glanzmann C. Osteoradionecrosis of the mandibula in patients treated with different fractionations. Strahlenther Onkol. 2004;180(4):233–40.CrossRefPubMed Studer G, Grätz KW, Glanzmann C. Osteoradionecrosis of the mandibula in patients treated with different fractionations. Strahlenther Onkol. 2004;180(4):233–40.CrossRefPubMed
21.
23.
go back to reference Rogers MJ, et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.CrossRefPubMed Rogers MJ, et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49(1):34–41.CrossRefPubMed
24.
go back to reference Bellido T, Plotkin LI. Detection of apoptosis of bone cells in vitro. Methods Mol Biol. 2008;455:51–75.CrossRefPubMed Bellido T, Plotkin LI. Detection of apoptosis of bone cells in vitro. Methods Mol Biol. 2008;455:51–75.CrossRefPubMed
25.
go back to reference Lorget F, et al. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun. 2000;268(3):899–903.CrossRefPubMed Lorget F, et al. High extracellular calcium concentrations directly stimulate osteoclast apoptosis. Biochem Biophys Res Commun. 2000;268(3):899–903.CrossRefPubMed
26.
go back to reference Miyamoto T. Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med. 2011;60(4):101–5.CrossRefPubMed Miyamoto T. Regulators of osteoclast differentiation and cell-cell fusion. Keio J Med. 2011;60(4):101–5.CrossRefPubMed
27.
go back to reference Hartgers FC, et al. DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur J Immunol. 2000;30(12):3585–90.CrossRefPubMed Hartgers FC, et al. DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur J Immunol. 2000;30(12):3585–90.CrossRefPubMed
28.
go back to reference Zeng Z, Zhang C, Chen J. Lentivirus-mediated RNA interference of DC-STAMP expression inhibits the fusion and resorptive activity of human osteoclasts. J Bone Miner Metab. 2013;31(4):409–16.CrossRefPubMed Zeng Z, Zhang C, Chen J. Lentivirus-mediated RNA interference of DC-STAMP expression inhibits the fusion and resorptive activity of human osteoclasts. J Bone Miner Metab. 2013;31(4):409–16.CrossRefPubMed
31.
go back to reference Chiu YH, et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res. 2012;27(1):79–92.CrossRefPubMedPubMedCentral Chiu YH, et al. Regulation of human osteoclast development by dendritic cell-specific transmembrane protein (DC-STAMP). J Bone Miner Res. 2012;27(1):79–92.CrossRefPubMedPubMedCentral
32.
go back to reference Kim K, et al. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol. 2008;22(1):176–85.CrossRefPubMed Kim K, et al. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol Endocrinol. 2008;22(1):176–85.CrossRefPubMed
33.
go back to reference Mensah KA, Ritchlin CT, Schwarz EM. RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens. J Cell Physiol. 2010;223(1):76–83.PubMedPubMedCentral Mensah KA, Ritchlin CT, Schwarz EM. RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens. J Cell Physiol. 2010;223(1):76–83.PubMedPubMedCentral
34.
go back to reference Rho J, et al. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol. 2002;21(8):541–9.CrossRefPubMed Rho J, et al. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol. 2002;21(8):541–9.CrossRefPubMed
36.
go back to reference Hayman AR, et al. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem. 2000;48(2):219–28.CrossRefPubMed Hayman AR, et al. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem. 2000;48(2):219–28.CrossRefPubMed
37.
go back to reference Hayman AR, et al. Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J Histochem Cytochem. 2001;49(6):675–84.CrossRefPubMed Hayman AR, et al. Tartrate-resistant acid phosphatase (Acp 5): identification in diverse human tissues and dendritic cells. J Histochem Cytochem. 2001;49(6):675–84.CrossRefPubMed
38.
go back to reference Kirstein B, Chambers TJ, Fuller K. Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem. 2006;98(5):1085–94.CrossRefPubMed Kirstein B, Chambers TJ, Fuller K. Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem. 2006;98(5):1085–94.CrossRefPubMed
39.
go back to reference Halleen JM, et al. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int. 2002;71(1):20–5.CrossRefPubMed Halleen JM, et al. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int. 2002;71(1):20–5.CrossRefPubMed
40.
go back to reference Hayman AR, et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 1996;122(10):3151–62.PubMed Hayman AR, et al. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 1996;122(10):3151–62.PubMed
41.
go back to reference Mitsimponas KT, et al. Osteo-radio-necrosis (ORN) and bisphosphonate-related osteonecrosis of the jaws (BRONJ): the histopathological differences under the clinical similarities. Int J Clin Exp Pathol. 2014;7(2):496–508.PubMedPubMedCentral Mitsimponas KT, et al. Osteo-radio-necrosis (ORN) and bisphosphonate-related osteonecrosis of the jaws (BRONJ): the histopathological differences under the clinical similarities. Int J Clin Exp Pathol. 2014;7(2):496–508.PubMedPubMedCentral
42.
go back to reference Marx RE, Tursun R. Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradionecrosis: a blinded histopathologic comparison and its implications for the mechanism of each disease. Int J Oral Maxillofac Surg. 2012;41(3):283–9.CrossRefPubMed Marx RE, Tursun R. Suppurative osteomyelitis, bisphosphonate induced osteonecrosis, osteoradionecrosis: a blinded histopathologic comparison and its implications for the mechanism of each disease. Int J Oral Maxillofac Surg. 2012;41(3):283–9.CrossRefPubMed
43.
go back to reference You TM, Kim HS. Histopathologic comparison of osteomyelitis, osteoradionecrosis, medication-related osteonecrosis of the jaw. Korean J Oral Maxillofac Pathol. 2015;39(3):551–8.CrossRef You TM, Kim HS. Histopathologic comparison of osteomyelitis, osteoradionecrosis, medication-related osteonecrosis of the jaw. Korean J Oral Maxillofac Pathol. 2015;39(3):551–8.CrossRef
44.
go back to reference Hansen T, et al. Osteonecrosis of the jaws in patients treated with bisphosphonates—histomorphologic analysis in comparison with infected osteoradionecrosis. J Oral Pathol Med. 2006;35(3):155–60.CrossRefPubMed Hansen T, et al. Osteonecrosis of the jaws in patients treated with bisphosphonates—histomorphologic analysis in comparison with infected osteoradionecrosis. J Oral Pathol Med. 2006;35(3):155–60.CrossRefPubMed
45.
go back to reference Yang Li C, et al. High-dose risedronate treatment partially preserves cancellous bone mass and microarchitecture during long-term disuse. Bone. 2005;37(3):287–95.CrossRefPubMed Yang Li C, et al. High-dose risedronate treatment partially preserves cancellous bone mass and microarchitecture during long-term disuse. Bone. 2005;37(3):287–95.CrossRefPubMed
46.
go back to reference Reitsma PH, et al. Kinetic studies of bone and mineral metabolism during treatment with (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD) in rats. Calcif Tissue Int. 1980;32(1):145–57.CrossRefPubMed Reitsma PH, et al. Kinetic studies of bone and mineral metabolism during treatment with (3-amino-1-hydroxypropylidene)-1,1-bisphosphonate (APD) in rats. Calcif Tissue Int. 1980;32(1):145–57.CrossRefPubMed
47.
go back to reference Fisher JE, Rodan GA, Reszka AA. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology. 2000;141(12):4793–6.CrossRefPubMed Fisher JE, Rodan GA, Reszka AA. In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology. 2000;141(12):4793–6.CrossRefPubMed
48.
49.
go back to reference Rauch F, et al. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Investig. 2002;110(9):1293–9.CrossRefPubMedPubMedCentral Rauch F, et al. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Investig. 2002;110(9):1293–9.CrossRefPubMedPubMedCentral
50.
go back to reference Russell RG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007;119(Suppl 2):S150–62.CrossRefPubMed Russell RG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007;119(Suppl 2):S150–62.CrossRefPubMed
51.
go back to reference Rogers MJ, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(12 Suppl):2961–78.CrossRefPubMed Rogers MJ, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(12 Suppl):2961–78.CrossRefPubMed
52.
53.
go back to reference Parfitt AM, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J Bone Miner Res. 2009;2(6):595–610.CrossRef Parfitt AM, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J Bone Miner Res. 2009;2(6):595–610.CrossRef
54.
go back to reference Heymann D, et al. A model for osteonecrosis of the jaw with zoledronate treatment following repeated major trauma. PLoS ONE. 2015;10(7):e0132520.CrossRef Heymann D, et al. A model for osteonecrosis of the jaw with zoledronate treatment following repeated major trauma. PLoS ONE. 2015;10(7):e0132520.CrossRef
55.
go back to reference de Molon RS, et al. Spontaneous osteonecrosis of the jaws in the maxilla of mice on antiresorptive treatment: a novel ONJ mouse model. Bone. 2014;68:11–9.CrossRefPubMedPubMedCentral de Molon RS, et al. Spontaneous osteonecrosis of the jaws in the maxilla of mice on antiresorptive treatment: a novel ONJ mouse model. Bone. 2014;68:11–9.CrossRefPubMedPubMedCentral
56.
go back to reference Nagaoka Y, et al. Mevalonates restore zoledronic acid-induced osteoclastogenesis inhibition. J Dent Res. 2015;94(4):594–601.CrossRefPubMed Nagaoka Y, et al. Mevalonates restore zoledronic acid-induced osteoclastogenesis inhibition. J Dent Res. 2015;94(4):594–601.CrossRefPubMed
57.
go back to reference Williams DW, et al. Impaired bone resorption and woven bone formation are associated with development of osteonecrosis of the jaw-like lesions by bisphosphonate and anti-receptor activator of NF-kappaB ligand antibody in mice. Am J Pathol. 2014;184(11):3084–93.CrossRefPubMedPubMedCentral Williams DW, et al. Impaired bone resorption and woven bone formation are associated with development of osteonecrosis of the jaw-like lesions by bisphosphonate and anti-receptor activator of NF-kappaB ligand antibody in mice. Am J Pathol. 2014;184(11):3084–93.CrossRefPubMedPubMedCentral
58.
go back to reference Wang R, et al. Bone metabolism markers: indicators of loading dose intravenous ibandronate treatment for bone metastases from breast cancer. Clin Exp Pharmacol Physiol. 2016;44:88–93.CrossRef Wang R, et al. Bone metabolism markers: indicators of loading dose intravenous ibandronate treatment for bone metastases from breast cancer. Clin Exp Pharmacol Physiol. 2016;44:88–93.CrossRef
59.
go back to reference Chung YH, et al. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. J Periodontal Res. 2006;41(4):288–96.CrossRefPubMed Chung YH, et al. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. J Periodontal Res. 2006;41(4):288–96.CrossRefPubMed
60.
go back to reference Suda K, et al. Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL. J Cell Physiol. 2002;190(1):101–8.CrossRefPubMed Suda K, et al. Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL. J Cell Physiol. 2002;190(1):101–8.CrossRefPubMed
61.
go back to reference Widaa A, et al. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS ONE. 2012;7(7):e40586.CrossRefPubMedPubMedCentral Widaa A, et al. Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS ONE. 2012;7(7):e40586.CrossRefPubMedPubMedCentral
62.
go back to reference Scheven BA, et al. Direct and indirect radiation effects on osteoclast formation in vitro. Bone Miner. 1987;2(4):291–300.PubMed Scheven BA, et al. Direct and indirect radiation effects on osteoclast formation in vitro. Bone Miner. 1987;2(4):291–300.PubMed
63.
go back to reference Alwood JS, et al. Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue. J Interf Cytokine Res. 2015;35(6):480–7.CrossRef Alwood JS, et al. Ionizing radiation stimulates expression of pro-osteoclastogenic genes in marrow and skeletal tissue. J Interf Cytokine Res. 2015;35(6):480–7.CrossRef
64.
go back to reference Hansen T, et al. Increased numbers of osteoclasts expressing cysteine proteinase cathepsin K in patients with infected osteoradionecrosis and bisphosphonate-associated osteonecrosis—a paradoxical observation? Virchows Arch. 2006;449(4):448–54.CrossRefPubMed Hansen T, et al. Increased numbers of osteoclasts expressing cysteine proteinase cathepsin K in patients with infected osteoradionecrosis and bisphosphonate-associated osteonecrosis—a paradoxical observation? Virchows Arch. 2006;449(4):448–54.CrossRefPubMed
65.
go back to reference Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int. 2005;77(5):263–74.CrossRefPubMed Balemans W, Van Wesenbeeck L, Van Hul W. A clinical and molecular overview of the human osteopetroses. Calcif Tissue Int. 2005;77(5):263–74.CrossRefPubMed
Metadata
Title
Osteoclast profile of medication-related osteonecrosis of the jaw secondary to bisphosphonate therapy: a comparison with osteoradionecrosis and osteomyelitis
Authors
Christian Gross
Manuel Weber
Kay Creutzburg
Patrick Möbius
Raimund Preidl
Kerstin Amann
Falk Wehrhan
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2017
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-017-1230-8

Other articles of this Issue 1/2017

Journal of Translational Medicine 1/2017 Go to the issue