Skip to main content
Top
Published in: Thrombosis Journal 1/2015

Open Access 01-12-2015 | Case report

Unsuccessful percutaneous mechanical thrombectomy in fibrin-rich high-risk pulmonary thromboembolism

Authors: Jernej Vidmar, Igor Serša, Eduard Kralj, Peter Popovič

Published in: Thrombosis Journal | Issue 1/2015

Login to get access

Abstract

Background

We report a case of unsuccessful percutaneous mechanical thrombectomy in treatment of a high-risk pulmonary embolism (PE). Pulmonary thromboemboli are commonly expected as a homogenous mass, rich with red blood cell content, which respond well to percutaneous mechanical thrombectomy (PMT). Catheter-based approach or surgical embolectomy are two treatment options that are usually considered for treatment of high-risk PE when the thrombolytic therapy fails or it is contraindicated due to a patient’s persisting hemodynamic compromise. Currently, selection criteria for PE treatment options are based mostly on the assessment of patient’s history. The aim of this report is to highlight a possible treatment complication in PMT of structurally heterogeneous thrombotic mass due to PMT inadequacy.

Case presentation

A 32 year-old male with polytrauma was admitted to an intensive care unit after a right-sided nephrectomy and evacuation of retroperitoneal hematoma. The patient initial haemostatic disorder was improved by administration of blood preparations, an anti-fibrinolytic agent and concentrates of fibrinogen. On the third day he presented sudden onset of hemodynamic instability and was incapable of standard CTA diagnostic procedure. Urgent and relevant investigations including transthoracic and transesophageal echocardiogram confirmed a high-risk PE. PMT was performed due to contraindications for systemic thrombolysis. Long-term PMT was attempted using aspiration with several devices. No major improvement was achieved in any of the treatments and the patient died. Autopsy confirmed a large heterogeneous thrombotic mass in the pulmonary trunk folding to the right main artery. Additional histological analysis revealed a high fibrin-rich content in the peripheral surroundings of the thrombus.

Conclusion

In the case, it was confirmed that the outcome of PMT was directly influenced by mechanical and histological features of the thromboembolus in high-risk PE. Formation of a rather complex thromboembolus in high-risk PE favors surgical embolectomy as the only life-saving treatment option. Current diagnostic imaging techniques do not enable precise assessment of thrombi structure and are therefore unable to identify patients who might benefit from PMT or open surgical embolectomy. Surgical backup treatment should be considered if there are no contraindications in the event of a failed catheter intervention.
Literature
1.
go back to reference Aujesky D, Obrosky DS, Stone RA, Auble TE, Perrier A, Cornuz J, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med. 2005;172:1041–6.PubMedCentralPubMedCrossRef Aujesky D, Obrosky DS, Stone RA, Auble TE, Perrier A, Cornuz J, et al. Derivation and validation of a prognostic model for pulmonary embolism. Am J Respir Crit Care Med. 2005;172:1041–6.PubMedCentralPubMedCrossRef
2.
go back to reference Belohlavek J, Dytrych V, Linhart A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18:129–38.PubMedCentralPubMed Belohlavek J, Dytrych V, Linhart A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18:129–38.PubMedCentralPubMed
3.
go back to reference Kauczor HU, Heussel CP, Thelen M. Update on diagnostic strategies of pulmonary embolism. Eur Radiol. 1999;9:262–75.PubMedCrossRef Kauczor HU, Heussel CP, Thelen M. Update on diagnostic strategies of pulmonary embolism. Eur Radiol. 1999;9:262–75.PubMedCrossRef
4.
go back to reference Konstantinides SV. ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;2014(35):3145–6. Konstantinides SV. ESC Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;2014(35):3145–6.
5.
go back to reference Arcasoy SM, Kreit JW. Thrombolytic therapy of pulmonary embolism: a comprehensive review of current evidence. Chest. 1999;115:1695–707.PubMedCrossRef Arcasoy SM, Kreit JW. Thrombolytic therapy of pulmonary embolism: a comprehensive review of current evidence. Chest. 1999;115:1695–707.PubMedCrossRef
7.
8.
go back to reference Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galie N, Pruszczyk P, et al. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2008;29:2276–315.PubMedCrossRef Torbicki A, Perrier A, Konstantinides S, Agnelli G, Galie N, Pruszczyk P, et al. Guidelines on the diagnosis and management of acute pulmonary embolism: the Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur Heart J. 2008;29:2276–315.PubMedCrossRef
9.
go back to reference Leacche M, Unic D, Goldhaber SZ, Rawn JD, Aranki SF, Couper GS, et al. Modern surgical treatment of massive pulmonary embolism: results in 47 consecutive patients after rapid diagnosis and aggressive surgical approach. J Thorac Cardiovasc Surg. 2005;129:1018–23.PubMedCrossRef Leacche M, Unic D, Goldhaber SZ, Rawn JD, Aranki SF, Couper GS, et al. Modern surgical treatment of massive pulmonary embolism: results in 47 consecutive patients after rapid diagnosis and aggressive surgical approach. J Thorac Cardiovasc Surg. 2005;129:1018–23.PubMedCrossRef
10.
go back to reference Stulz P, Schlapfer R, Feer R, Habicht J, Gradel E. Decision making in the surgical treatment of massive pulmonary embolism. Eur J Cardiothorac Surg. 1994;8:188–93.PubMedCrossRef Stulz P, Schlapfer R, Feer R, Habicht J, Gradel E. Decision making in the surgical treatment of massive pulmonary embolism. Eur J Cardiothorac Surg. 1994;8:188–93.PubMedCrossRef
11.
go back to reference Ahmed P, Khan AA, Smith A, Pagala M, Abrol S, Cunningham Jr JN, et al. Expedient pulmonary embolectomy for acute pulmonary embolism: improved outcomes. Interact Cardiovasc Thorac Surg. 2008;7:591–4.PubMedCrossRef Ahmed P, Khan AA, Smith A, Pagala M, Abrol S, Cunningham Jr JN, et al. Expedient pulmonary embolectomy for acute pulmonary embolism: improved outcomes. Interact Cardiovasc Thorac Surg. 2008;7:591–4.PubMedCrossRef
12.
go back to reference Drasler WJ, Jenson ML, Wilson GJ, Thielen JM, Protonotarios EI, Dutcher RG, et al. Rheolytic catheter for percutaneous removal of thrombus. Radiology. 1992;182:263–7.PubMedCrossRef Drasler WJ, Jenson ML, Wilson GJ, Thielen JM, Protonotarios EI, Dutcher RG, et al. Rheolytic catheter for percutaneous removal of thrombus. Radiology. 1992;182:263–7.PubMedCrossRef
13.
go back to reference Engelhardt TC, Taylor AJ, Simprini LA, Kucher N. Catheter-directed ultrasound-accelerated thrombolysis for the treatment of acute pulmonary embolism. Thromb Res. 2011;128:149–54.PubMedCrossRef Engelhardt TC, Taylor AJ, Simprini LA, Kucher N. Catheter-directed ultrasound-accelerated thrombolysis for the treatment of acute pulmonary embolism. Thromb Res. 2011;128:149–54.PubMedCrossRef
14.
go back to reference Fava M, Loyola S. Applications of percutaneous mechanical thrombectomy in pulmonary embolism. Tech Vasc Interv Radiol. 2003;6:53–8.PubMedCrossRef Fava M, Loyola S. Applications of percutaneous mechanical thrombectomy in pulmonary embolism. Tech Vasc Interv Radiol. 2003;6:53–8.PubMedCrossRef
15.
go back to reference Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol. 1995;21:419–24.PubMedCrossRef Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol. 1995;21:419–24.PubMedCrossRef
16.
go back to reference Popovic P, Bunc M. Massive pulmonary embolism: percutaneous emergency treatment using an aspirex thrombectomy catheter. Cardiovasc Intervent Radiol. 2010;33:1052–5.PubMedCrossRef Popovic P, Bunc M. Massive pulmonary embolism: percutaneous emergency treatment using an aspirex thrombectomy catheter. Cardiovasc Intervent Radiol. 2010;33:1052–5.PubMedCrossRef
17.
go back to reference Eid-Lidt G, Gaspar J, Sandoval J, de los Santos FD, Pulido T, Gonzalez Pacheco H, et al. Combined clot fragmentation and aspiration in patients with acute pulmonary embolism. Chest. 2008;134:54–60.PubMedCrossRef Eid-Lidt G, Gaspar J, Sandoval J, de los Santos FD, Pulido T, Gonzalez Pacheco H, et al. Combined clot fragmentation and aspiration in patients with acute pulmonary embolism. Chest. 2008;134:54–60.PubMedCrossRef
18.
go back to reference Fava M, Loyola S, Huete I. Massive pulmonary embolism: treatment with the hydrolyser thrombectomy catheter. J Vasc Interv Radiol. 2000;11:1159–64.PubMedCrossRef Fava M, Loyola S, Huete I. Massive pulmonary embolism: treatment with the hydrolyser thrombectomy catheter. J Vasc Interv Radiol. 2000;11:1159–64.PubMedCrossRef
19.
go back to reference Liu S, Shi HB, Gu JP, Yang ZQ, Chen L, Lou WS, et al. Massive pulmonary embolism: treatment with the rotarex thrombectomy system. Cardiovasc Intervent Radiol. 2011;34:106–13.PubMedCrossRef Liu S, Shi HB, Gu JP, Yang ZQ, Chen L, Lou WS, et al. Massive pulmonary embolism: treatment with the rotarex thrombectomy system. Cardiovasc Intervent Radiol. 2011;34:106–13.PubMedCrossRef
20.
go back to reference Schmitz-Rode T, Gunther RW, Pfeffer JG, Neuerburg JM, Geuting B, Biesterfeld S. Acute massive pulmonary embolism: use of a rotatable pigtail catheter for diagnosis and fragmentation therapy. Radiology. 1995;197:157–62.PubMedCrossRef Schmitz-Rode T, Gunther RW, Pfeffer JG, Neuerburg JM, Geuting B, Biesterfeld S. Acute massive pulmonary embolism: use of a rotatable pigtail catheter for diagnosis and fragmentation therapy. Radiology. 1995;197:157–62.PubMedCrossRef
21.
go back to reference Schmitz-Rode T, Janssens U, Schild HH, Basche S, Hanrath P, Gunther RW. Fragmentation of massive pulmonary embolism using a pigtail rotation catheter. Chest. 1998;114:1427–36.PubMedCrossRef Schmitz-Rode T, Janssens U, Schild HH, Basche S, Hanrath P, Gunther RW. Fragmentation of massive pulmonary embolism using a pigtail rotation catheter. Chest. 1998;114:1427–36.PubMedCrossRef
22.
go back to reference Tajima H, Murata S, Kumazaki T, Nakazawa K, Kawamata H, Fukunaga T, et al. Manual aspiration thrombectomy with a standard PTCA guiding catheter for treatment of acute massive pulmonary thromboembolism. Radiat Med. 2004;22:168–72.PubMed Tajima H, Murata S, Kumazaki T, Nakazawa K, Kawamata H, Fukunaga T, et al. Manual aspiration thrombectomy with a standard PTCA guiding catheter for treatment of acute massive pulmonary thromboembolism. Radiat Med. 2004;22:168–72.PubMed
23.
24.
go back to reference Zeni Jr PT, Blank BG, Peeler DW. Use of rheolytic thrombectomy in treatment of acute massive pulmonary embolism. J Vasc Interv Radiol. 2003;14:1511–5.PubMedCrossRef Zeni Jr PT, Blank BG, Peeler DW. Use of rheolytic thrombectomy in treatment of acute massive pulmonary embolism. J Vasc Interv Radiol. 2003;14:1511–5.PubMedCrossRef
25.
go back to reference Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med. 2002;347:1143–50.PubMedCrossRef Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med. 2002;347:1143–50.PubMedCrossRef
26.
go back to reference Vidmar J, Blinc A, Kralj E, Balazic J, Bajd F, Sersa I. An MRI study of the differences in the rate of thrombolysis between red blood cell-rich and platelet-rich components of venous thrombi ex vivo. J Magn Reson Imaging. 2011;34:1184–91.PubMedCrossRef Vidmar J, Blinc A, Kralj E, Balazic J, Bajd F, Sersa I. An MRI study of the differences in the rate of thrombolysis between red blood cell-rich and platelet-rich components of venous thrombi ex vivo. J Magn Reson Imaging. 2011;34:1184–91.PubMedCrossRef
27.
go back to reference Ruggeri ZM. Mechanisms initiating platelet thrombus formation. Thromb Haemost. 1997;78:611–6.PubMed Ruggeri ZM. Mechanisms initiating platelet thrombus formation. Thromb Haemost. 1997;78:611–6.PubMed
29.
go back to reference Yuki I, Kan I, Vinters HV, Kim RH, Golshan A, Vinuela FA, et al. The impact of thromboemboli histology on the performance of a mechanical thrombectomy device. AJNR Am J Neuroradiol. 2012;33:643–8.PubMedCrossRef Yuki I, Kan I, Vinters HV, Kim RH, Golshan A, Vinuela FA, et al. The impact of thromboemboli histology on the performance of a mechanical thrombectomy device. AJNR Am J Neuroradiol. 2012;33:643–8.PubMedCrossRef
30.
go back to reference Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int. 2009;186:22–8.PubMedCrossRef Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int. 2009;186:22–8.PubMedCrossRef
31.
go back to reference Undas A, Ariens RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol. 2011;31:e88–99.PubMedCrossRef Undas A, Ariens RA. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol. 2011;31:e88–99.PubMedCrossRef
32.
go back to reference Skaf E, Beemath A, Siddiqui T, Janjua M, Patel NR, Stein PD. Catheter-tip embolectomy in the management of acute massive pulmonary embolism. Am J Cardiol. 2007;99:415–20.PubMedCrossRef Skaf E, Beemath A, Siddiqui T, Janjua M, Patel NR, Stein PD. Catheter-tip embolectomy in the management of acute massive pulmonary embolism. Am J Cardiol. 2007;99:415–20.PubMedCrossRef
33.
go back to reference Timsit JF, Reynaud P, Meyer G, Sors H. Pulmonary embolectomy by catheter device in massive pulmonary embolism. Chest. 1991;100:655–8.PubMedCrossRef Timsit JF, Reynaud P, Meyer G, Sors H. Pulmonary embolectomy by catheter device in massive pulmonary embolism. Chest. 1991;100:655–8.PubMedCrossRef
34.
go back to reference Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G, et al. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol. 2000;20:1354–61.PubMedCrossRef Collet JP, Park D, Lesty C, Soria J, Soria C, Montalescot G, et al. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol. 2000;20:1354–61.PubMedCrossRef
35.
go back to reference Phinikaridou A, Andia ME, Saha P, Modarai B, Smith A, Botnar RM. In vivo magnetization transfer and diffusion-weighted magnetic resonance imaging detects thrombus composition in a mouse model of deep vein thrombosis. Circ Cardiovasc Imaging. 2013;6:433–40.PubMedCentralPubMedCrossRef Phinikaridou A, Andia ME, Saha P, Modarai B, Smith A, Botnar RM. In vivo magnetization transfer and diffusion-weighted magnetic resonance imaging detects thrombus composition in a mouse model of deep vein thrombosis. Circ Cardiovasc Imaging. 2013;6:433–40.PubMedCentralPubMedCrossRef
36.
go back to reference Kalb B, Sharma P, Tigges S, Ray GL, Kitajima HD, Costello JR, et al. MR imaging of pulmonary embolism: diagnostic accuracy of contrast-enhanced 3D MR pulmonary angiography, contrast-enhanced low-flip angle 3D GRE, and nonenhanced free-induction FISP sequences. Radiology. 2012;263:271–8.PubMedCrossRef Kalb B, Sharma P, Tigges S, Ray GL, Kitajima HD, Costello JR, et al. MR imaging of pulmonary embolism: diagnostic accuracy of contrast-enhanced 3D MR pulmonary angiography, contrast-enhanced low-flip angle 3D GRE, and nonenhanced free-induction FISP sequences. Radiology. 2012;263:271–8.PubMedCrossRef
37.
38.
go back to reference Spuentrup E, Katoh M, Wiethoff AJ, Parsons Jr EC, Botnar RM, Mahnken AH, et al. Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med. 2005;172:494–500.PubMedCrossRef Spuentrup E, Katoh M, Wiethoff AJ, Parsons Jr EC, Botnar RM, Mahnken AH, et al. Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am J Respir Crit Care Med. 2005;172:494–500.PubMedCrossRef
Metadata
Title
Unsuccessful percutaneous mechanical thrombectomy in fibrin-rich high-risk pulmonary thromboembolism
Authors
Jernej Vidmar
Igor Serša
Eduard Kralj
Peter Popovič
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Thrombosis Journal / Issue 1/2015
Electronic ISSN: 1477-9560
DOI
https://doi.org/10.1186/s12959-015-0060-2

Other articles of this Issue 1/2015

Thrombosis Journal 1/2015 Go to the issue