Skip to main content
Top
Published in: Thrombosis Journal 1/2015

Open Access 01-12-2015 | Original basic research

Inhibition of thrombin generation in human plasma by phospholipid transfer protein

Authors: Hiroshi Deguchi, Gertrud Wolfbauer, Marian C. Cheung, Yajnavalka Banerjee, Darlene J. Elias, José A. Fernández, John J. Albers, John H. Griffin

Published in: Thrombosis Journal | Issue 1/2015

Login to get access

Abstract

Background

Plasma phospholipid transfer protein (PLTP) transfers lipids between donors and acceptors (e.g., from HDL to VLDL) and modulates lipoprotein composition, size, and levels. No study has reported an assessment of the effects of PLTP on blood clotting reactions, such as reflected in thrombin generation assays, or on the association of venous thrombosis (VTE) risk with PLTP activity.

Methods

The in vitro effects of PLTP on blood coagulation reactions and the correlations between plasma PLTP activity levels and VTE were studied.

Results

Recombinant (r) PLTP concentration-dependently inhibited plasma thrombin generation and factor XII-dependent kallikrein generation when sulfatide was used to stimulate factor XII autoactivation in plasma. However, rPLTP did not inhibit thrombin generation in plasma induced by factor XIa or tissue factor, implicating an effect of PLTP on contact activation reactions. In purified systems, rPLTP inhibited factor XII autoactivation stimulated by sulfatide in the presence of VLDL. In surface plasmon resonance studies, purified factor XII bound to immobilized rPLTP, implying that rPLTP inhibits factor XII-dependent contact activation by binding factor XII in the presence of lipoproteins. Analysis of plasmas from 40 male patients with unprovoked VTE and 40 matched controls indicated that low PLTP lipid transfer activity (≤25th percentile) was associated with an increased risk of VTE after adjustment for body mass index, plasma lipids, and two known thrombophilic genetic risk factors.

Conclusion

These data imply that PLTP may be an antithrombotic plasma protein by inhibiting generation of prothrombotic factor XIIa in the presence of VLDL. This newly discovered anticoagulant activity of PLTP merits further clinical and biochemical studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991;30:10363–70.PubMedCrossRef Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry. 1991;30:10363–70.PubMedCrossRef
3.
go back to reference Renné T, Pozgajová M, Grüner S, Schuh K, Pauer HU, Burfeind P, et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med. 2005;202:271–81.PubMedCentralPubMedCrossRef Renné T, Pozgajová M, Grüner S, Schuh K, Pauer HU, Burfeind P, et al. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med. 2005;202:271–81.PubMedCentralPubMedCrossRef
4.
go back to reference Björkqvist J, Nickel KF, Stavrou E, Renné T. In vivo activation and functions of the protease factor XII. Thromb Haemost. 2014;112:868–75.PubMedCrossRef Björkqvist J, Nickel KF, Stavrou E, Renné T. In vivo activation and functions of the protease factor XII. Thromb Haemost. 2014;112:868–75.PubMedCrossRef
5.
7.
go back to reference Cheng Q, Tucker EI, Pine MS, Sisler I, Matafonov A, Sun MF, et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood. 2010;116:3981–9.PubMedCentralPubMedCrossRef Cheng Q, Tucker EI, Pine MS, Sisler I, Matafonov A, Sun MF, et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood. 2010;116:3981–9.PubMedCentralPubMedCrossRef
8.
go back to reference Tans G, Griffin JH. Properties of sulfatides in factor-XII-dependent contact activation. Blood. 1982;59:69–75.PubMed Tans G, Griffin JH. Properties of sulfatides in factor-XII-dependent contact activation. Blood. 1982;59:69–75.PubMed
9.
go back to reference Tans G, Rosing J, Griffin JH. Sulfatide-dependent autoactivation of human blood coagulation Factor XII (Hageman Factor). J Biol Chem. 1983;258:8215–22.PubMed Tans G, Rosing J, Griffin JH. Sulfatide-dependent autoactivation of human blood coagulation Factor XII (Hageman Factor). J Biol Chem. 1983;258:8215–22.PubMed
10.
go back to reference Rosing J, Tans G, Griffin JH. Surface-dependent activation of human factor XII (Hageman factor) by kallikrein and its light chain. Eur J Biochem. 1985;151:531–8.PubMedCrossRef Rosing J, Tans G, Griffin JH. Surface-dependent activation of human factor XII (Hageman factor) by kallikrein and its light chain. Eur J Biochem. 1985;151:531–8.PubMedCrossRef
11.
go back to reference Shimada T, Sugo T, Kato H, Yoshida K, Iwanaga S. Activation of factor XII and prekallikrein with polysaccharide sulfates and sulfatides: comparison with kaolin-mediated activation. J Biochem. 1985;97:429–39.PubMed Shimada T, Sugo T, Kato H, Yoshida K, Iwanaga S. Activation of factor XII and prekallikrein with polysaccharide sulfates and sulfatides: comparison with kaolin-mediated activation. J Biochem. 1985;97:429–39.PubMed
12.
go back to reference Tans G, Rosing J, Berrettini M, Lämmle B, Griffin JH. Autoactivation of human plasma prekallikrein. J Biol Chem. 1987;262:11308–14.PubMed Tans G, Rosing J, Berrettini M, Lämmle B, Griffin JH. Autoactivation of human plasma prekallikrein. J Biol Chem. 1987;262:11308–14.PubMed
13.
go back to reference Tans G, Janssen-Claessen T, Rosing J, Griffin JH. Studies on the effect of serine protease inhibitors on activated contact factors. Application in amidolytic assays for factor XIIa, plasma kallikrein and factor XIa. Eur J Biochem. 1987;164:637–42.PubMedCrossRef Tans G, Janssen-Claessen T, Rosing J, Griffin JH. Studies on the effect of serine protease inhibitors on activated contact factors. Application in amidolytic assays for factor XIIa, plasma kallikrein and factor XIa. Eur J Biochem. 1987;164:637–42.PubMedCrossRef
14.
go back to reference Røjkjaer R, Schousboe I. The surface-dependent autoactivation mechanism of factor XII. Eur J Biochem. 1997;243:160–6.PubMedCrossRef Røjkjaer R, Schousboe I. The surface-dependent autoactivation mechanism of factor XII. Eur J Biochem. 1997;243:160–6.PubMedCrossRef
15.
go back to reference Maas C, Govers-Riemslag JW, Bouma B, Schiks B, Hazenberg BP, Lokhorst HM, et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest. 2008;118:3208–18.PubMedCentralPubMed Maas C, Govers-Riemslag JW, Bouma B, Schiks B, Hazenberg BP, Lokhorst HM, et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest. 2008;118:3208–18.PubMedCentralPubMed
16.
go back to reference Griffin JH, Fernandez JA, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis. Thromb Haemost. 2001;86:386–94.PubMed Griffin JH, Fernandez JA, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis. Thromb Haemost. 2001;86:386–94.PubMed
18.
go back to reference Deguchi H, Fernandez JA, Griffin JH. Plasma cholesteryl ester transfer protein and blood coagulability. Thromb Haemost. 2007;98:1160–4.PubMed Deguchi H, Fernandez JA, Griffin JH. Plasma cholesteryl ester transfer protein and blood coagulability. Thromb Haemost. 2007;98:1160–4.PubMed
19.
go back to reference Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta. 1821;2012:345–57. Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta. 1821;2012:345–57.
20.
go back to reference Huuskonen J, Ekström M, Tahvanainen E, Vainio A, Metso J, Pussinen P, et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000;151:451–61.PubMedCrossRef Huuskonen J, Ekström M, Tahvanainen E, Vainio A, Metso J, Pussinen P, et al. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000;151:451–61.PubMedCrossRef
21.
go back to reference Oka T, Kujiraoka T, Ito M, Nagano M, Ishihara M, Iwasaki T, et al. Measurement of human plasma phospholipid transfer protein by sandwich ELISA. Clin Chem. 2000;46:1357–64.PubMed Oka T, Kujiraoka T, Ito M, Nagano M, Ishihara M, Iwasaki T, et al. Measurement of human plasma phospholipid transfer protein by sandwich ELISA. Clin Chem. 2000;46:1357–64.PubMed
22.
go back to reference Siggins S, Kärkkäinen M, Tenhunen J, Metso J, Tahvanainen E, Olkkonen VM, et al. Quantitation of the active and low-active forms of human plasma phospholipid transfer protein by ELISA. J Lipid Res. 2004;45:387–95.PubMedCrossRef Siggins S, Kärkkäinen M, Tenhunen J, Metso J, Tahvanainen E, Olkkonen VM, et al. Quantitation of the active and low-active forms of human plasma phospholipid transfer protein by ELISA. J Lipid Res. 2004;45:387–95.PubMedCrossRef
23.
go back to reference Cheung MC, Wolfbauer G, Deguchi H, Fernández JA, Griffin JH, Albers JJ. Biochim. Biophys Acta. 2009;1791:206–11. Cheung MC, Wolfbauer G, Deguchi H, Fernández JA, Griffin JH, Albers JJ. Biochim. Biophys Acta. 2009;1791:206–11.
24.
go back to reference Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985;26:842–51.PubMed Tall AR, Krumholz S, Olivecrona T, Deckelbaum RJ. Plasma phospholipid transfer protein enhances transfer and exchange of phospholipids between very low density lipoproteins and high density lipoproteins during lipolysis. J Lipid Res. 1985;26:842–51.PubMed
25.
go back to reference Tollefson JH, Ravnik S, Albers JJ. Isolation and characterization of a phospho-lipid transfer protein (LTP-II) from human plasma. J Lipid Res. 1988;29:1593–602.PubMed Tollefson JH, Ravnik S, Albers JJ. Isolation and characterization of a phospho-lipid transfer protein (LTP-II) from human plasma. J Lipid Res. 1988;29:1593–602.PubMed
26.
go back to reference Cheung MC, Wolfbauer G, Albers JJ. Plasma phospholipid mass transfer rate relationship to plasma phospholipid and cholesteryl ester transfer activities and lipid parameters. Biochim Biophys Acta. 1996;1303:103–10.PubMedCrossRef Cheung MC, Wolfbauer G, Albers JJ. Plasma phospholipid mass transfer rate relationship to plasma phospholipid and cholesteryl ester transfer activities and lipid parameters. Biochim Biophys Acta. 1996;1303:103–10.PubMedCrossRef
27.
go back to reference Nishida HI, Nishida T. Phospholipid transfer protein mediates transfer of not only phosphotidylcholine but also cholesterol from phosphotidylcholine-cholesterol vesicles to high density lipoproteins. J Biol Chem. 1997;272:6959–64.PubMedCrossRef Nishida HI, Nishida T. Phospholipid transfer protein mediates transfer of not only phosphotidylcholine but also cholesterol from phosphotidylcholine-cholesterol vesicles to high density lipoproteins. J Biol Chem. 1997;272:6959–64.PubMedCrossRef
28.
go back to reference Tu A-Y, Nishida HI, Nishida T. High-density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J Biol Chem. 1993;268:23098–105.PubMed Tu A-Y, Nishida HI, Nishida T. High-density lipoprotein conversion mediated by human plasma phospholipid transfer protein. J Biol Chem. 1993;268:23098–105.PubMed
29.
go back to reference Albers JJ, Wolfbauer G, Cheung MC, Day JR, Ching AF, Lok S, et al. Functional expression of human and mouse plasma phospholipid transfer protein: effect of recombinant and plasma PLTP on HDL subspecies. Biochim Biophys Acta. 1995;1258:27–34.PubMedCrossRef Albers JJ, Wolfbauer G, Cheung MC, Day JR, Ching AF, Lok S, et al. Functional expression of human and mouse plasma phospholipid transfer protein: effect of recombinant and plasma PLTP on HDL subspecies. Biochim Biophys Acta. 1995;1258:27–34.PubMedCrossRef
30.
go back to reference von Eckardstein A, Jauhiainen M, Huang Y, Metso J, Langer C, Pussinen P, et al. Phospholipid transfer protein mediated conversion of high density lipoproteins generates prebeta-HDL. Biochim Biophys Acta. 1996;1301:255–62.CrossRef von Eckardstein A, Jauhiainen M, Huang Y, Metso J, Langer C, Pussinen P, et al. Phospholipid transfer protein mediated conversion of high density lipoproteins generates prebeta-HDL. Biochim Biophys Acta. 1996;1301:255–62.CrossRef
31.
go back to reference Setälä NL, Holopainen JM, Metso J, Wiedmer SK, Yohannes G, Kinnunen PK, et al. Interfacial and lipid transfer properties of human phospholipid transfer protein: implications for the transfer mechanism of phospholipids. Biochemistry. 2007;46:1312–9.PubMedCrossRef Setälä NL, Holopainen JM, Metso J, Wiedmer SK, Yohannes G, Kinnunen PK, et al. Interfacial and lipid transfer properties of human phospholipid transfer protein: implications for the transfer mechanism of phospholipids. Biochemistry. 2007;46:1312–9.PubMedCrossRef
32.
go back to reference Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ, et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010;122:470–7.PubMedCrossRef Vergeer M, Boekholdt SM, Sandhu MS, Ricketts SL, Wareham NJ, Brown MJ, et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010;122:470–7.PubMedCrossRef
33.
go back to reference Schlitt A, Bickel C, Thumma P, Blankenberg S, Rupprecht HJ, Meyer J, et al. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:1857–62.PubMedCrossRef Schlitt A, Bickel C, Thumma P, Blankenberg S, Rupprecht HJ, Meyer J, et al. High plasma phospholipid transfer protein levels as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23:1857–62.PubMedCrossRef
34.
go back to reference Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, et al. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res. 2009;50:723–9.PubMedCentralPubMedCrossRef Schlitt A, Blankenberg S, Bickel C, Lackner KJ, Heine GH, Buerke M, et al. PLTP activity is a risk factor for subsequent cardiovascular events in CAD patients under statin therapy: the AtheroGene study. J Lipid Res. 2009;50:723–9.PubMedCentralPubMedCrossRef
35.
go back to reference Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I, et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis. 2008;196:219–26.PubMedCrossRef Schgoer W, Mueller T, Jauhiainen M, Wehinger A, Gander R, Tancevski I, et al. Low phospholipid transfer protein (PLTP) is a risk factor for peripheral atherosclerosis. Atherosclerosis. 2008;196:219–26.PubMedCrossRef
36.
go back to reference de Vries R, Dallinga-Thie GM, Smit AJ, Wolffenbuttel BH, van Tol A, Dullaart RP. Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus. Diabetologia. 2006;49:398–404.PubMedCrossRef de Vries R, Dallinga-Thie GM, Smit AJ, Wolffenbuttel BH, van Tol A, Dullaart RP. Elevated plasma phospholipid transfer protein activity is a determinant of carotid intima-media thickness in type 2 diabetes mellitus. Diabetologia. 2006;49:398–404.PubMedCrossRef
37.
go back to reference Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP):review of an emerging cardiometabolic risk factor. Obes Rev. 2009;10:403–11.PubMedCrossRef Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP):review of an emerging cardiometabolic risk factor. Obes Rev. 2009;10:403–11.PubMedCrossRef
38.
go back to reference Yatsuya H, Tamakoshi K, Hattori H, Otsuka R, Wada K, Zhang H, et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ J. 2004;68:11–6.PubMedCrossRef Yatsuya H, Tamakoshi K, Hattori H, Otsuka R, Wada K, Zhang H, et al. Serum phospholipid transfer protein mass as a possible protective factor for coronary heart diseases. Circ J. 2004;68:11–6.PubMedCrossRef
39.
go back to reference Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem. 2008;283:11541–9.PubMedCentralPubMedCrossRef Oram JF, Wolfbauer G, Tang C, Davidson WS, Albers JJ. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J Biol Chem. 2008;283:11541–9.PubMedCentralPubMedCrossRef
40.
go back to reference Hron G, Kollars M, Binder BR, Eichinger S, Kyrle PA. Identification of patients at low risk for recurrent venous thromboembolism by measuring thrombin generation. JAMA. 2006;296:397–402.PubMedCrossRef Hron G, Kollars M, Binder BR, Eichinger S, Kyrle PA. Identification of patients at low risk for recurrent venous thromboembolism by measuring thrombin generation. JAMA. 2006;296:397–402.PubMedCrossRef
41.
go back to reference Deguchi H, Pecheniuk NM, Elias DJ, Averell PM, Griffin JH. High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation. 2005;112:893–9.PubMedCrossRef Deguchi H, Pecheniuk NM, Elias DJ, Averell PM, Griffin JH. High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation. 2005;112:893–9.PubMedCrossRef
42.
go back to reference Klein S, Spannagl M, Engelmann B. Phosphatidylethanolamine participates in the stimulation of the contact system of coagulation by very-low-density lipoproteins. Arterioscler Thromb Vasc Biol. 2001;21:1695–700.PubMed Klein S, Spannagl M, Engelmann B. Phosphatidylethanolamine participates in the stimulation of the contact system of coagulation by very-low-density lipoproteins. Arterioscler Thromb Vasc Biol. 2001;21:1695–700.PubMed
43.
go back to reference Dashty M, Motazacker MM, Levels J, de Vries M, Mahmoudi M, Peppelenbosch MP, et al. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb Haemost. 2014;111:518–30.PubMedCrossRef Dashty M, Motazacker MM, Levels J, de Vries M, Mahmoudi M, Peppelenbosch MP, et al. Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb Haemost. 2014;111:518–30.PubMedCrossRef
44.
go back to reference Cochrane CG, Griffin JH. The biochemistry and pathophysiology of the contact system of plasma. Adv Immunol. 1982;33:241–306.PubMed Cochrane CG, Griffin JH. The biochemistry and pathophysiology of the contact system of plasma. Adv Immunol. 1982;33:241–306.PubMed
45.
go back to reference Kaplan AP, Joseph K. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway. Adv Immunol. 2014;121:41–89.PubMed Kaplan AP, Joseph K. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway. Adv Immunol. 2014;121:41–89.PubMed
46.
go back to reference Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim Biophys Acta. 1813;2011:1917–24. Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim Biophys Acta. 1813;2011:1917–24.
47.
go back to reference Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, et al. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J. 2014;28:2318–31.PubMedCentralPubMedCrossRef Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, et al. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J. 2014;28:2318–31.PubMedCentralPubMedCrossRef
Metadata
Title
Inhibition of thrombin generation in human plasma by phospholipid transfer protein
Authors
Hiroshi Deguchi
Gertrud Wolfbauer
Marian C. Cheung
Yajnavalka Banerjee
Darlene J. Elias
José A. Fernández
John J. Albers
John H. Griffin
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Thrombosis Journal / Issue 1/2015
Electronic ISSN: 1477-9560
DOI
https://doi.org/10.1186/s12959-015-0054-0

Other articles of this Issue 1/2015

Thrombosis Journal 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.